Inorg. Chem. 2002, 41, 6118-6124

Hexaalkylguanidinium and 2-(Dialkylamino)-1,3-dimethylimidazolinium Trimethyldifluorosiliconates and Perfluoroalkoxides. Accidental Isolation and Molecular Structure of $[C(NMe_2)_3]^+F^-\cdot 6CH_2Cl_2^{\$}$

Alexander A. Kolomeitsev, *,† German Bissky,† Jan Barten,† Natalya Kalinovich,† Enno Lork,† and Gerd-Volker Röschenthaler*,†

Institute of Organic Chemistry, Ukrainian National Academy of Sciences, Murmanskaya 6, 02094 Kiev, Ukraine, and Institut für Anorganische & Physikalische Chemie, Universität Bremen, Leobener Strasse, D-28334 Bremen, Germany

Received January 28, 2002

Hexaalkylguanidinium and 2-(dialkylamino)-1,3-dimethylimidazolinium trimethyldifluorosiliconates, precursors for two stable hexaalkylguanidinium perfluoroalkoxides, were synthesized by treating commercially available bis(dialkylamino)-difluoromethane derivatives with (dialkylamino)trimethylsilanes in aprotic media. With hexamethylguanidinium pentafluoroethoxide the introduction of the lipophilic and electronegative C_2F_5O group was straightforwardly achieved in the case of primary and secondary alkyl triflates to furnish the respective fluorinated ethers. The molecular structures of $[(CH_2NMe)_2C(NEt_2)]^+[Me_3SiF_2]^-$ and $[C(NMe_2)_3]^+F^-\cdot 6CH_2Cl_2$ were determined, showing in the latter case a fluoride anion octahedrally coordinated by six methylene chloride molecules via hydrogen bridges with a F···H distance of 205 pm (C···F distance 270.0(3) pm).

Introduction

Among the most commonly used methods of introducing fluorine and fluorinated moieties into organic and inorganic molecules are nucleophilic displacement reactions requiring a respective reagent of reasonable high solubility in aprotic organic solvents, e.g. fluorides with lipophilic counterions $Q^+ = Alk_4N^+$, {[(Me₂N)₃P]₂N}⁺, [S(NMe₂)₃]⁺ (TAS⁺), [C(NMe₂)₃]⁺ (HMG⁺), TDAE²⁺ (TDAE = tetrakis(dimethyl-amino)ethylene), [P(NAlk₂)₄]⁺, and Bu₄P⁺.¹⁻⁸ The onium fluorides with the best solubility in THF or monoglyme contain at least one phosphorus atom: {[(Me₂N)₃P]₂N}⁺F⁻;⁶ [P(NAlk₂)₄]⁺F⁻;⁸ An increasing countercation size

- [‡] Universität Bremen.
- [§] Dedicated to Prof. Rüdiger Mews on the occasion of his 60th birthday.
- Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. J. Am. Chem. Soc. 1990, 112, 7619–7625.
- (2) Mahjoub, A. R.; Zhang, X.; Seppelt, K. Chem.-Eur. J. 1995, 1, 261– 265. Seppelt, K. Angew. Chem. 1992, 104, 299–300.
- (3) Adams, D. J.; Clark, J. H. Chem. Soc. Rev. 1999, 28, 225-231 and references therein.
- (4) Kolomeitsev, A. A.; Seifert, F. U.; Röschenthaler, G.-V. J. Fluorine Chem. 1995, 71, 47–49.
- (5) Chambers, R. D.; Gray, W. K.; Sandford, G.; Vaughan, J. F. S. J. Fluorine Chem. 1999, 94, 213–215.
- (6) Schwesinger, R.; Link, R.; Thiele, G.; Rotter, H.; Honnert, D.; Limbach, H. H.; Männle, F. Angew. Chem. 1991, 103, 1376–1378.

6118 Inorganic Chemistry, Vol. 41, No. 23, 2002

also decreases the Q^+F^- lattice energy, favorable for the nucleophilic fluorination and perfluoroalkoxylation, too.^{2,3} The advantages of Me₄N⁺F⁻ (TMAF) are the high thermal and chemical stability of the Me₄N⁺ cation and the high nucleophilicity of the very weak solvated fluoride ion.¹⁻⁴ A drawback of this salt is its low solubility in etheral solvents. It was also mentioned that the high symmetry of Me₄N⁺ often leads to disordered crystal structures.⁹ Another approach to fluoride-ion sources includes the use of hypervalent fluorosilicon, e.g. TAS⁺[Me₃SiF₂]⁻, or fluorotin onium derivatives showing excellent fluorinating power and being useful sources of highly nucleophilic fluoride, as well.¹⁰⁻¹⁸ There

- (8) Seto, H.; Qian, Z.; Yoshioka, H.; Uchibori, Y.; Umeno, M. Chem. Lett. 1991, 1185–1188.
- (9) Zhang, X.; Bau, R.; Sheehy, J. A.; Christe, K. O. J. Fluorine Chem. 1999, 98, 121–126.
- (10) Middleton, W. J. U.S. Patent N3 940 402, 1976; *Cnem. Abstr.* 1976, 85, 6388j.
- (11) Gingras, M. Tetrahedron Lett. 1991, 32, 7381-7384.
- (12) Hatanaka, Y.; Goda, K.; Okahara, Y.; Hiyama, T. *Tetrahedron* **1994**, *50*, 8301–8316.
- (13) Pilcher, P. S.; Ammon, H. L.; DeShong, P. J. Am. Chem. Soc. 1995, 117, 5166-5167.
- (14) Brescia, M.-R.; DeShong, P. J. Org. Chem. 1998, 63, 3156-3157.

10.1021/ic020081v CCC: \$22.00 © 2002 American Chemical Society Published on Web 10/26/2002

^{*} Corresponding authors. Fax: +49-421-218-4267. E-mail: alex@chemie.uni-bremen.de (A.A.K.); gvr@chemie.uni-bremen.de (G.-V.R.).

[†] Ukrainian National Academy of Sciences.

⁽⁷⁾ Kolomeitsev, A. A.; Bissky, G.; Lork, E.; Movchun, V. N.; Rusanov, E.; Kirsch, P.; Röschenthaler, G.-V. J. Chem. Soc., Chem. Commun. 1999, 1017–1019. Kolomeitsev, A. A.; Kirij, N. V.; Pazenok, S. V.; Appel, W. K.; Röschenthaler, G.-V. 14th Winter Fluorine Conference; Publisher: ACS Fluorine Division St. Petersburg, FL, 1999; Abstract 37, p 26.

Trimethyldifluorosiliconates and Perfluoroalkoxides

is a need in new effective and selective reagents for the introduction of lipophilic CF₃O or C₂F₅O moieties into organic molecules, which could then be more able to traverse the lipid cell membranes than their nonfluorinated counterparts. Recently Blazejewski et al. have proposed 2-(trifluoromethoxy)ethyl triflate as a synthon, however, limited to trifluoromethoxy derivatives only.¹⁹ The salts TAS⁺CF₃O⁻ and TAS⁺C₂F₅O⁻ were used to substitute bromine or triflate in alkyl bromides or triflates.^{18,20,21} Because of the low yields of alkyl trifluoromethyl ethers in the reactions with the most synthetically useful functionalized secondary triflates, the low selectivity (20–75% content of alkyl fluoride byproducts), the high cost of TASF, and the toxicity of one of its precursor, SF₄, these compounds have not found broad application as anionic perfluoroalkoxylating reagents.

The perfluorinated carbanionic species HMG⁺[C(CF₃)₃]⁻, prepared from HMG⁺HF₂⁻ or HMG⁺F⁻ and perfluoroisobutene, was found to be a stable solid.^{22,23} The lipophilic and robust HMG⁺ could be the cation of choice to get stable HMG⁺ perfluoroalkoxides since the positive charge is distributed over three nitrogen atoms. Searching for a general route to pure hexaalkylguanidinium fluorides containing no HF₂⁻ as precursors for hexaalkylguanidinium perfluoroalkoxides avoiding SF₄ and its derivatives, we decided to study the reactions of bis(dialkylamino)methane derivatives with (dialkylamino)trimethylsilanes.²⁴

Experimental Section

Materials and Apparatus. Chemicals were obtained from commercial sources and used without further purification. 2-Chloro-1,3-dimethylimidazolidinium chloride and tetramethylchloroformamidinium chloride were prepared according to published methods.²⁵ Bis(dimethylamino)difluoromethane and 2,2-difluoro-1,3dimethylimidazoline (DFI) were synthesized by the method disclosed in a Mitsui patent.²⁶ Bis(dimethylamino)difluoromethane and 2,2-difluoro-1,3-dimethylimidazoline (DFI) solutions in CH₃CN and 1,3-dimethylimidazolidinone (DMI) were also prepared by modification of the patent procedure: after fluorination of 2-chloro-1,3dimethylimidazolinium chloride and tetramethyl-chloroformamidinium chloride with KF in CH₃CN or DMI and separation of

- (16) Smart, B. E.; Middleton, W. J.; Farnham, W. B. J. Am. Chem. Soc. 1986, 108, 4905.
- (17) Farnham, W. B.; Dixon, D. A.; Middleton, W. J.; Calabrese, J. C.; Harlow, R. L.; Whitney, J. F.; Jones, G. A.; Guggenberger, L. J. J. Am. Chem. Soc. 1987, 109, 476–483.
- (18) Farnham, W. B.; Smart, B. E.; Middleton, Calabrese, J. C.; Dixon, W. J. J. Am. Chem. Soc. 1985, 107, 4565–4567.
- (19) Blazejewski, J.-C.; Anselmi, E.; Wakselman, C. J. Org. Chem. 2001, 66, 1061–1063.
- (20) Farnham, W. B.; Middleton, W. J. U.S. Patent N4 628 094, 1986; *Chem. Abstr.* 1986, 105, 114600n.
- (21) Trainor, G. L. J. Carbohydr. Chem. 1985, 4, 545-563.
- (22) Delyagina, N. I.; Igumnov, S. M.; Snegirev, V. F.; Knunyants, I. L. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1981**, 2238–2243; *Chem. Abstr.* **1981**, 96, 34405h.
- (23) Igumnov, S. M.; Delyagina, N. I.; Knunyants, I. L. Bull. Acad. Sci USSR Div. Chem. Sci. 1986, 35, 1191–1193 and references therein.
- (24) Kolomeitsev, A. A.; Bissky, G.; Röschenthaler, G.-V. J. Fluorine Chem. 2000, 103, 159–161.
- (25) Hamed, A.; Mueller, E.; Jochims, J. C. *Tetrahedron* 1986, 42, 6645– 6656.
- (26) Sonoda, H.; Okada, K.; Goto, K.; Fukumura, K.; Naruse, J.; Hayashi,
 H.; Nagata, T.; Takanashi, A. Eur. Pat. Appl. EP 0949226, 1999;
 Chem. Abstr. 1999, 131, 271696c.

inorganic salts, the resulting mixtures were distilled in vacuo to give colorless solution of DFI and bis(dimethylamino)difluoromethane in CH₃CN or DMI, respectively. The synthesis of hexaalkylguanidinium trimethyldifluorosilicates were performed either with these solutions or with CH₃CN or DMI solutions of pure DFI and bis(dimethylamino)difluoromethane obtained after fractionation in vacuo. CH₃CN was distilled from phosphorus pentoxide and then stored over calcium hydride. DMI was distilled in vacuo and stored over (4 Å) molecular sieves. All reactions and manipulations were conducted under an atmosphere of dry nitrogen. The NMR spectra were recorded on a Bruker DPX-200 NMR instrument (¹³C, 50.32 MHz; ¹⁹F, 188.31 MHz; ¹H, 200.13 MHz), with positive shifts being downfield from the external standards CCl₃F (¹⁹F) and TMS (¹³C and ¹H).

General Method for the Preparation of Hexaalkylguanidinium Trimethyldifluorosiliconates. To a solution of (0.28 mol) bis(dialkylamino)difluoromethane in 300 mL of acetonitrile cooled to -30 °C was added dropwise (0.41 mol) (trimethylsilyl)dimethylamine. The reaction mixture was stirred at -30 °C for 4 h. During a period of 4 h, the reaction temperature was raised from -30 °C to room temperature and the mixture was stirred additionaly for 1 h at room temperature. After cooling of the resulting solution to 0 °C, half of the solvent, 150 mL, was pumped off in vacuo and 250 mL of Et₂O was added. The precipitated colorless solid was filtered off under nitrogen, washed with 100 mL of Et₂O, and finally dried in vacuo at room temperature for 0.5 h to yield pure products in the yields noted.

Hexamethylguanidinium difluorotrimethylsiliconate ([(Me₂-N)₃C]⁺[Me₃SiF₂]⁻; 96%) (1): colorless powder with mp 166– 167 °C (from CH₂Cl₂). NMR data (acetonitrile-*d*₃, 233 K): C(NMe₂)₃⁺ ion, δ (¹H) 2.8 ppm (s, 18H); Me₃SiF₂⁻ ion, δ (¹H) -0.2 ppm (s, CH₃, 9H); δ (¹³C) 6.3 ppm (s, CH₃ of the Me₃SiF₂⁻ ion); δ (¹³C) 39.7 ppm (s, (CH₃)₂N); δ (¹³C) 163.3 ppm (s, C⁺); δ (¹⁹F) -59.3 ppm (s, 2F, Me₃SiF₂⁻). Anal. Calcd for C₁₀H₂₇F₂N₃Si: C, 47.02; H, 10.65. Found: C, 46.86; H, 10.80.

N,N,N',N'-Tetramethyl-N'',N''-diethylguanidinium trimethyldifluorsiliconate ([(NMe₂)₂CNEt₂]⁺[Me₃SiF₂]⁻; 95%) (2): colorless powder with mp 87–89 °C. NMR data (acetonitrile- d_3 , 233 K): C(NEt₂)(NMe₂)₂⁺ ion, δ (¹H) 1.2 ppm (t, CH₃, 6H); δ (¹H) 3.1 ppm (s, 12H); δ (¹H) 3.4 ppm (q, $^{3}J_{HH} = 4.4$ Hz, CH₂, 4H); Me₃SiF₂⁻ ion, δ (¹H) -0.2 ppm (s, CH₃, 9H); δ (¹³C) 5.2 ppm (s, CH₃ of the Me₃SiF₂⁻ ion); δ (¹³C) 13.1 ppm (s, CH₃); δ (¹³C) 36.0 ppm (s, (CH₃)₂N); δ (¹³C) 45.7 ppm (s, CH₂); δ (¹³C) 163.9 ppm (s, C⁺); δ (¹⁹F) -60.0 ppm (s, 2F, Me₃SiF₂⁻). Anal. Calcd for C₁₂H₃₁F₂N₃-Si: C, 50.84; H, 11.02. Found: C, 50.45; H, 11.25.

2-(Dimethylamino)-1,3-dimethylimidazolinium trimethyldifluorsiliconate ([(CH₂NMe)₂CNMe₂]⁺[Me₃SiF₂]⁻; 95% in CH₃CN, 70% in DMI) (3): colorless powder with mp 79–82 °C. NMR data (acetonitrile-*d*₃, 233 K): [CH₂N(Me)]₂C(NMe₂)⁺ ion, δ (¹H) 2.9 ppm (s, CH₃, 6H); δ (¹H) 3.0 ppm (s, CH₃, 6H); δ (¹H) 3.6 ppm (s, CH₂, 4H); Me₃SiF₂⁻ ion, δ (¹H) -0.3 ppm (s, CH₃, 9H); δ (¹³C) 6.0 ppm (s, CH₃ of the Me₃SiF₂⁻ ion); δ (¹³C) 36.5 ppm (s, CH₃, (CH₃)₂N); δ (¹³C) 40.3 ppm (s, CH₃); δ (¹³C) 50.1 ppm (s, CH₂); δ (¹³C) 164.2 ppm (s, C⁺); δ (¹⁹F) -61.6 ppm (s, 2F, Me₃SiF₂⁻). Anal. Calcd for C₁₀H₂₅F₂N₃Si: C, 47.40; H, 9.94. Found: C, 47.26; H, 9.88.

2-(Diethylamino)-1,3-dimethylimidazolinium trimethyldifluorosiliconate ([(CH₂NMe)₂CNEt₂]⁺[Me₃SiF₂]⁻; 95%) (4): colorless powder with mp 67–73 °C. NMR data (acetonitrile-*d*₃, 233 K): [CH₂N(Me)]₂C(NMe₂)⁺ ion, δ (¹H) 1.1 ppm (t, CH₃, 6H); δ (¹H) 2.8 ppm (s, CH₂, 4H); δ (¹H) 3.0 ppm (s, CH₃, 6H); δ (¹H) 3.3 ppm (q, ³*J*_{HH} = 4.5 Hz, CH₂, 4H); Me₃SiF₂⁻ ion, δ (¹H) –0.2 ppm (s, CH₃, 9H); δ (¹³C) 4.5 ppm (s, CH₃ of the Me₃SiF₂⁻ ion); δ (¹³C)

⁽¹⁵⁾ Kvicala, J.; Musik, P.; Paleta, O. Synlett 2001, 4, 547-549.

13.1 ppm (s, CH₃); δ (¹³C) 36.0 ppm (s, CH₃,); δ (¹³C) 44.0 ppm (s, CH₂); δ (¹³C) 49.4 ppm (s, CH₂); δ (¹³C) 164.5 ppm (s, C⁺); δ (¹⁹F) –59.3 ppm (s, 2F, Me₃SiF₂⁻). Anal. Calcd for C₁₂H₂₉F₂N₃Si: C, 51.21; H, 10.39. Found: C, 50.78; H, 10.19.

Hexamethylguanidinium Heptafluoroisopropanolate ([Me₂-N]₃C⁺[(CF₃)₂CFO]⁻, **95%**) (6). This salt was prepared by adding (CF₃)₂C=O to (Me₂N)₃C⁺ Me₃SiF₂⁻ following the procedure to synthesize (Me₂N)₃C⁺C₂F₅O⁻: colorless powder with mp 86–90 °C. NMR data (methylene chloride- d_2 , 200 K): C(NMe₂)₃⁺ ion, δ (¹H) 2.9 ppm (s, 18H); δ (¹⁹F) –68.7 ppm (s, CF, 1F); δ (¹⁹F) –81.4 ppm (s, CF₃, 3F). Anal. Calcd for C₁₀H₁₈F₇N₃O: C, 36.48; H, 5.51. Found: C, 36.38; H, 5.61.

Hexamethylguanidinium Pentafluoroethanolate ((Me₂N)₃-C⁺C₂F₅O⁻) (7). Into a well-stirred suspension of 3.3 g (12.9 mmol) of (Me₂N)₃C⁺Me₃SiF₂⁻ in 20 mL of monoglyme cooled to -50 °C was condensed 1.8 g (15.5 mmol) of trifluoracetyl fluoride. During a period of 1 h, the reaction temperature was raised from -50 °C to ambient temperature. All volatile products were pumped off in vacuo to leave a colorless solid, which was washed two times with Et₂O (2 × 5 mL) and dried in vacuo. (Me₂N)₃C⁺C₂F₅O⁻ (3.4 g, 12.19 mmol, 95%) was obtained as a white powder with mp 167–170 °C. NMR data (methylene chloride-*d*₂, 200 K): C(NMe₂)₃⁺ ion, δ (¹H) 2.9 ppm (s, 18H); δ (¹³C) 39.7 ppm (s, (CH₃)₂N); δ (¹³C) 163.3 ppm (s, C⁺); δ (¹⁹F) –35.2 ppm (s, CF₂, 2F); δ (¹⁹F) –85.7 ppm (s, CF₃, 3F). Anal. Calcd for C₉H₁₈F₅N₃O: C, 38.71; H, 6.50. Found: C, 38.61; H, 6.85.

Ethyl 2-(Pentafluoroethoxy)propionate (MeCH(OC₂F₅)COOEt, 87.4%) (8). To a well-stirred solution of 4.9 g (17.6 mmol) of hexamethylguanidinium pentafluoroethanolate in 30 mL of CH3-CN cooled with ice was added dropwise 4.0 g (16.0 mmol) of ethyl 2-(trifluoromethylsulfonyloxy)propionate dissolved in 4 mL of CH3-CN during a period of 1 h. The temperature was raised to ambient temperature and the mixture stirred for 1 h. The mixture was poured in sodium hydrocarbonate solution (3%, 50 mL) and extracted with pentane (3×50 mL). The combined organic extracts were washed with water and dried over MgSO₄. The final purification by distillation under reduced pressure gave pure ethyl 2-(pentafluoroethoxy)propionate. CH₃C(H)(OC₂F₅)(COOC₂H₅) (3.3 g, 13.98 mmol, 87.4%) is a colorless liquid with bp 61-62 °C/55 Torr. NMR data (chloroform- d_3): $\delta(^{1}\text{H})$ 1.3 ppm (t, $^{3}J(\text{HH}) = 7.3$ Hz, CH₃); $\delta(^{1}\text{H})$ 1.5 ppm (d, $^{3}J(\text{HH}) = 7.2 \text{ Hz}$, CH₃); $\delta(^{1}\text{H})$ 4.2 ppm (q, CH₂), $\delta(^{1}\text{H})$ 4.8 ppm (q, CH); $\delta(^{19}\text{F})$ –87.7 (s, CF₃) ppm, $\delta_{A}(^{19}\text{F})$ –90.3, $\delta_{\rm B}(^{19}{\rm F})$ –91.5 (AB system, $J_{\rm AB}$ = 146.8 Hz, CF₂); $\delta(^{13}{\rm C})$ 14.0 ppm (s, CH₃), δ(¹³C) 18.5 ppm (s, CH₃); δ(¹³C) 60.1 ppm (s, CH₂); δ-(¹³C) 70.7 ppm (t, ⁴*J*(CF) = 4.5 Hz, CH); δ (¹³C) 115.3 ppm (tq, ${}^{1}J(CF) = 271.9 \text{ Hz}, {}^{2}J(CF) = 42.0 \text{ Hz}, CF_{2}); \delta({}^{13}C) 116.9 \text{ ppm}$ $(qt, {}^{1}J(CF) = 281.1 \text{ Hz}, {}^{2}J(CF) = 44.8 \text{ Hz}, CF_{3}); \delta({}^{13}C) 169.7 \text{ ppm}$ (s, CH). Anal. Calcd for C7H9F5O3: C, 35.60; H, 3.84. Found: C, 35.28; H, 3.99.

1,1,2,2-Pentafluoro-2-(2,2,2-trifluoroethoxy)ethane (CF₃-CF₂OCH₂CF₃, **71.6%**) (9). To a vessel with a Teflon stopcock containing a magnetically stirred mixture of 1.2 g (5 mmol) of hexamethylguanidinium pentafluoroethanolate and 5 mL of diglyme was added in one portion 1.15 g (5 mmol) of (2,2,2-trifluoroethyl)trifluoromethanesulfonate. The vessel was closed and the mixture stirred at 55 °C for 3.5 h. After being cooled to 20 °C, the product was pumped off in vacuo using a water aspirator pump into a trap cooled with liquid nitrogen. The final trap-to-trap vacuum distillation gave 0.78 g of 1,1,1,2,2-pentafluoro-2-(2,2,2-trifluoroethoxy)ethane. NMR data (chloroform-*d*₃): δ (¹H) 4.3 ppm (q, 2H, ³*J*(HF) = 7.5 Hz, CH₂O); δ (¹⁹F) -76.3 ppm (t, 3F, ³*J*(HF) = 7.5 Hz, CF₃); δ (¹⁹F) -87.6 (s, 3F, CF₃); -92.8 ppm (s, 2F, OCF₂).^{27.28} **1,1,2,2-Pentafluoro-2-methoxyethane (CF₃CF₂OCH₃, 95%)** (**10**).^{27–29} This compound was synthesized by adding methyl trifluoromethanesulfonate to $(Me_2N)_3C^+C_2F_5O^-$ at 0 °C followed by stirring for 3 h at 20 °C in a glass vessel with a Teflon stopcock. The workup is as for CF₃CF₂OCH₂CF₃. NMR data (chloroform- d_3): $\delta(^{1}$ H) 2.0 ppm (s 3H, CH₃O); $\delta(^{19}$ F) –87.2 ppm (s, 3F, CF₃); –87.6 ppm (s, 2F, OCF₂); $\delta(^{1}$ H) 4.3 ppm (q, 2H, ³*J*(HF) = 7.5 Hz, CH₂O); $\delta(^{19}$ F) –76.3 ppm (t, 3F, ³*J*(HF) = 7.5 Hz, CF₃); $\delta^{-(^{19}$ F) –87.6 (s, 3F, CF₃); –92.8 ppm (s, 2F, OCF₂). MS (CI/NH₃; *m/z*): 150 (M⁻, 7); 169 (M⁺F⁻, 67); 135 (M – CH₃⁻, 100). MS (EI; *m/z*): 131 (M – F, 29); 119 (M – OCH₃, 57); 81 (M – CF₃, 100); 69 (CF₃, 73).

Crystal Structure Determination. Crystals of [(CH₂NMe)₂- $CNEt_2$]⁺[Me₃SiF₂]⁻, **4**, were grown from a concentrated solution in acetonitrile (1 g in 4 mL), which was cooled with liquid nitrogen, and diethyl ether (4 mL) was condensed into the solid. The flask was placed into a cryostate at -30 °C and allowed to stand for 7 d at this temperature. The crystals of $[C(NMe_2)_3]^+Me_3SiF_2^-$, 1,³⁰ were obtained in a similar way from methylene chloride/ether at -30 °C. Along with the crystals of 1 some crystals of [C(NMe₂)₃]⁺F⁻ were also found and subjected to crystal structure analysis. The single-crystal X-ray data of the compounds were collected at 173-(2) K using graphite-monochromatized Mo K α radiation (λ = 71.073 pm) on Siemens P4 (4) and STOE IPDS (5) diffractometers. The structures were solved by direct methods and anisotropically refined based on F² using the SHELX-97 program package.³¹ The hydrogen atoms were placed in calculated positions, assigned common isotropic thermal parameters, and allowed to ride on their parent atoms. For the HMG⁺ cation two sets of N positions were found, related to a 60° rotation with a 1:1 occupancy ratio. The carbon atoms were not effected by this disorder. Further details are given in Table 1. Complete structural data are found in the Supporting Information.

Results and Discussion

Bis(dialkylamino)difluoromethane derivatives, (R₂N)₂CF₂, as precursors for fluorinated hexaalkylguanidinium salts have been chosen for the following reasons: (1) They are easily available^{25,26} via chlorination of tetraalkylurea derivatives with oxalyl chloride followed by fluorination of (Alk₂N)₂-CCl⁺Cl⁻ with KF in CH₃CN or DMI. (2) Their solutions in aprotic solvents are stable in glass vessels, and as a result of the elongated C-F bonds due to two α -dialkylamino groups, the compounds are very useful fluorinating agents, especially for the fluorination of alcohols.²⁶ (3) The use of hexaalkylguanidinium fluorides is a useful alternative to TASF. excluding the necessity to operate with highly toxic sulfur tetrafluoride. (4) It was possible to study the stabilizing influence of the hexaalkylguanidinium (HAG) cation on different anionic species to develop, on the basis of hexaalkylguanidinium fluorides, new anionic perfluoroalkoxy reagents for introducing the lipophilic and electrononegative $R_FO^$ groups into organic molecules.

Synthesis of Hexaalkylguanidinium Trimethyldifluorosiliconates. The reactions of bis(dialkylamino)difluor-

- (28) Tamura M.; Takubo, S.; Quan, H.; Sekija, A. Synlett 2000, 343-344.
- (29) Scherer, O.; Millauer, H.; Wojtech, B. Ger. Pat. 1 283 820, 1968.
- (30) Röschenthaler, G.-V.; Kolomeitsev, A. A.; Lork, E.; Bissky, G. Z. *Kristallogr. NCS* 2002, *217*, 419–420.
- (31) Sheldrick, G. M. SHELX-97; University of Göttingen: Göttingen, Germany, 1997.

⁽²⁷⁾ Kurosawa, S.; Arimura, T.; Sekija, A. J. Fluorine Chem. 1997, 85, 111-114.

Table 1. Crystal Data and Details of Data Collection and Structure Refinement for Compounds 4 and 5.6CH₂Cl₂

param	$C_{12}H_{29}F_2N_3Si$	$C_7H_{18}N_3F{\boldsymbol{\cdot}}6CH_2Cl_2$
fw	281.47	672.80
cryst system	monoclinic	rhombohedral
space group	P2/n	R3
lattice params	$a = 913.5(2) \text{ pm}, \alpha = 90^{\circ}$	$a = 1425.85(8) \text{ pm}, \alpha = 90^{\circ}$
	$b = 860.0(2) \text{ pm}, \beta = 96.99(3)^{\circ}$	$b = 1425.85(8) \text{ pm}, \beta = 90^{\circ}$
	$c = 1058.0(2) \text{ pm}, \gamma = 90^{\circ}$	$c = 1301.66(8) \text{ pm}, \gamma = 120^{\circ}$
cell vol, nm ³	0.8250(3)	2.2918(2)
formula units/unit cell	2	3
$D_{\rm calcd}$, Mg/m ³	1.133	1.462
μ_{calcd} (Mo K α), mm ⁻¹	0.152	1.101
F(000)	308	1026
cryst size, mm ³	$0.50 \times 0.40 \times 0.20$	$0.50 \times 0.50 \times 0.40$
2θ range, deg	2.78-26.04	2.86-27.50
obsd reflens	11 447	1537
indpdt reflens	$1621 (R_{int} = 0.0829)$	$1140 (R_{int} = 0.0282)$
goodness of fit	1.070	1.055
\widetilde{R}_{1} ; wR2 [$I > 2\sigma(I)$]	0.0496; 0.1377	0.0411; 0.0954
R1, wR2 (all data)	0.0657, 0.1456	0.0562; 0.1035
$\Delta \rho_{\rm min/max}, \rm pm^{-3}$	$(-0.196/0.216) \times 10^{-6}$	$(-0.321/0.437) \times 10^{-6}$

Scheme 1

methane derivatives with silvlated secondary amines have not been studied so far. Because of the lack of the full analytical data in our brief communication, we have not exactly assigned the structure of the reaction product to $(Me_2N)_3C^+F^-$.²⁴ Its full characterization has shown that it is not hexamethylguanidinium fluoride but (Me₂N)₃C⁺Me₃SiF₂^{-.32} Here we describe the preparation of the structurally diverse hexaalkylguanidinium and 2-(dialkylamino)-1,3-dimethylimidazolinium trimethyldifluorosiliconates. The rate of the reaction of bis(dimethylamino)difluoromethane with (dimethylamino)trimethylsilane depends strongly on the solvent used. In pentane or diethyl ether no reaction was observed in a period of 24 h at 20 °C. An addition of catalytic amounts of CH₃CN, CH₂Cl₂, NMP, or 1,3-dimethylimidazolidinone (DMI) accelerated the reaction. It is most convenient to operate with CH₃CN or DMI solutions of bis(dialkylamino)difluoromethane derivatives prepared according to a Mitsui patent:²⁶ after fluorination of (Alk₂N)₂CCl⁺Cl⁻ with KF followed by filtration from inorganic salts, (Alk₂N)₂CF₂ reagents along with a solvent were distilled to give ca. 13% weight solution of (Alk₂N)₂CF₂ in CH₃CN or DMI. Stirring of bis(dialkylamino)difluoromethanes with (dimethylamino)trimethylsilanes in CH₃CN during 4 h at -30 °C followed by warming up to ambient temperature and stirring for 1 h leads to nearly quantitative formation of e.g. $(Alk_2N)_3C^+Me_3SiF_2^-$ salts as colorless powders (Scheme 1). The chemistry of the previously synthesized hexamethylguanidinium fluoride (HMGF) has not been developed, apparently because of its difficult access from HMG⁺ pivaloate and Et₂NSF₃ and the extreme basicity of HMGF.²³ In contrast to $(Me_2N)_3C^+F^-$, which shows a 50% $HF_2^$ impurity even in DMF solution,²³ due to F⁻ complexation with Me₃SiF, the basicity of $(Me_2N)_3C^+Me_3SiF_2^-$ is reduced compared with HMGF. In our case no significant HF₂⁻ concentration in $(Me_2N)_3C^+Me_3SiF_2^-$ solutions was detected; e.g. a saturated solution of (Me₂N)₃C⁺Me₃SiF₂⁻ in CH₃CN formed only 5.5% of HF2⁻ within 24 h at 20 °C. In HMG⁺Me₃SiF₂⁻ solutions in DMF at 20 °C only 0.2–0.5% HF₂⁻ was observed; no HF₂⁻ was detected in monoglyme solution at 20 °C. CH₃CN and DMF solutions of this salt obtained at -30 °C show no hydrogen difluoride content. Until now there was no evidence for $(Me_2N)_3S^+F^-$ existing in substance or in solution, e.g. TASF, (Me₂N)₃S⁺Me₃SiF₂⁻, decomposed in a vacuum or after being dissolved in CH₃-CN at the ambient temperature losing immediately Me₃SiF to give no (Me₂N)₃S⁺F⁻ but TAS⁺HF₂⁻ along with sulfurcontaining unidentified products of TAS⁺ decomposition.¹⁰ A similar decomposition in CH₃CN at 20 °C was reported also for (Me₂N)₃S(O)⁺Me₃SiF₂.³³ Christe et al. tried to synthesize hexamethylguanidinium fluoride, $(Me_2N)_3C^+F^-$, similar to the synthesis of anhydrous Me₄N⁺F⁻,¹ reacting (Me₂N)₃C⁺OH⁻ in water with HF and removing water in vacuo. But their attempts failed, and instead of (Me₂N)₃C⁺F⁻ the hexafluorosilicate $[(Me_2N)_3C^+]_2SiF_6^{2-}$ was isolated and characterized by X-ray diffraction.9 (Me₂N)₃C⁺Me₃SiF₂⁻ can be easily recrystallized from CH₃CN/ether or methylene chloride/ether solutions prepared at -30 to -40 °C. Presumably due to the dynamic equilibria between (Me₂N)₃C⁺Me₃- SiF_2^- and $Me_3SiF/(Me_2N)_3C^+F^-$ (Scheme 2), from the methylene chloride/ether solution of (Me₂N)₃C⁺Me₃SiF₂⁻ obtained at -30 °C were isolated and characterized by solidstate X-ray diffraction both salts, (Me₂N)₃C⁺Me₃SiF₂⁻ and hexamethylguanidinium fluoride, (Me₂N)₃C⁺F⁻, as a solvate with six methylene chloride molecules.

⁽³²⁾ Kolomeitsev, A. A.; Bissky, G.; Röschenthaler, G.-V. 16th International Symposium on Fluorine Chemistry; Royal Society of Chemistry: Durham, U.K., 2000; Abstract 1P-107.

⁽³³⁾ Wessel, J.; Behrens, U.; Lork, E.; Borrman, T.; Stohrer, W.-D.; Mews, R. Inorg. Chem. 2002, 41, 4715–4721.

 $[(Me_2N)_3C]^+ [Me_3SiF_2]^- \xleftarrow{CH_2Cl_2} [(Me_2N)_3C]^+ F \cdot 6CH_2Cl_2 + Me_3SiF_1 \\ 1 \\ 5$

It was quite surprising that $(Me_2N)_3C^+F^-$ does not fluorinate methylene chloride at -30 °C. In this case HMGF is similar to Me₄NF which fluorinates CH₂Cl₂ at ambient temperature,³⁴ but its methylene chloride solution obtained at -30 °C is stable at this temperature for many hours. In this case both, fluorination and deprotonation of the solvent do not occur. ^{2,35}

We have also tried to prepare (Me₂N)₃C⁺F⁻ in accordance with our procedure to synthesize anhydrous (TMA)F.⁴ The methathesis of [C(NMe₂)₃]⁺BF₄⁻ salt with a solution of ovendried KF in anhydrous methanol (in 2-propanol KF is sparingly soluble) proceeds quantitatively to afford [C(N-Me₂)₃]⁺F⁻ in CH₃OH solution [δ (¹⁹F) CH₃OH = -147.9 ppm (s), δ (¹⁹F) H₂O = -119.0 ppm (s)]. But after removal of methanol (20–130 °C, 0.01 mbar) [C(NMe₂)₃]⁺HF₂⁻ was obtained [δ (¹H) (acetonitrile-*d*₃) = 2.83 ppm (s); (δ ¹⁹F) = -147.7 ppm (d), *J*(HF) = 120.7 Hz].

Synthesis of $(Me_2N)_3C^+C_2F_5O^-$ and $(Me_2N)_3C^+(CF_3)_2$ -CFO⁻. Hexamethylguanidinium difluorotrimethylsiliconate is easy to handle under nitrogen and a very reactive source of highly nucleophilic fluoride. $(Me_2N)_3C^+Me_3SiF_2^-$ reacts with trifluoroacetyl fluoride and hexafluoroacetone in CH₃-CN, THF, or monoglyme to give the colorless salts $(Me_2N)_3C^+C_2F_5O^-$ and $(Me_2N)_3C^+(CF_3)_2CFO^-$, respectively, stable until their melting points (Scheme 3). Thus, because of easy availability and high activity of hexamethylguanidinium difluorotrimethylsiliconate and relative salts 2–4, there is no need to operate with hexamethylguanidinium fluoride, difficult to prepare and to handle.

Trainor²¹ studied TAS⁺CF₃O⁻ in the reactions with carbohydrate triflate esters. The trifluoromethoxide anion replaced the primary triflate group under generally mild reaction conditions, but a significant alkyl fluoride impurity was detected. The more sterically hindered secondary carbohydrate triflates require harsher reaction conditions, and the alkyl fluoride formation increased, becoming in some cases the main reaction product.

Table 2. Comparison of the Reactions of $HMG^+OC_2F_5^-$ and $TAS^+OC_2F_5^-$ with TfOCH(Me)CO₂Et (0.2 mmol)

	yield, % ^b	
	C ₂ F ₅ OC(Me)CO ₂ Et	FCH(Me)CO ₂ Et
$TAS^+OC_2F_5^{-a}$	43	16
$HMG^+OC_2F_5^{-a}$	74	3

 a 0.2 mmol, 0.5 mL of CH_3CN, 1 h, 20 °C. b Yield from $^{19}\mathrm{F}$ NMR, reference PhCF_3.

The properties of $(Me_2N)_3C^+C_2F_5O^-$ (7) as a $C_2F_5O^$ transfer reagent were compared with those of (Me₂N)₃S⁺-C₂F₅O^{-.20} The ¹⁹F NMR study of a 1 mol L⁻¹ solution of HMG⁺OC₂F₅⁻ in CH₃CN at 20 °C revealed a 5.8% mol of $CF_3C(O)F$. The signal of the $-OCF_2$ - group was observed as a broad singulet ($\Delta_{1/2} = 1074$ Hz). In the case of TAS⁺⁻OC₂F₅⁻ (1 mol L⁻¹, 20 °C) a higher CF₃C(O)F content (16.4%) was observed ($\Delta_{1/2} = 1800$ Hz). The 0.4 mol L^{-1} solutions of both salts in CH₃CN (see Table 2) were tested in 1:1 ratio reactions with ethyl 2-(trifluoromethylsulfonyloxy)propionate. The ¹⁹F NMR analysis of the reaction mixtures in 1 h has shown that $(Me_2N)_3C^+C_2F_5O^-$ gave 2-(pentafluoroethoxy)propionic acid ethyl ester (8) in 74% yield along with 3% 2-(fluoroethyl)propionic acid ethyl ester³⁶ and that TAS⁺OC₂F₅⁻ in 1 h gave 43% 2-(pentafluoroethoxy)propionic acid ethyl ester and 15.9% 2-(fluoroethyl)propionic acid ethyl ester as a byproduct.

The optimization of the conditions (see Experimental Section) for $(Me_2N)_3C^+C_2F_5O^-$ (7) reacting with ethyl 2-(trifluoromethylsulfonyloxy)propionate 2-(pentafluoroethoxy)propionic acid ethyl ester (8) gave 2-(pentafluoroethoxy)propionic acid ethyl ester in 87% isolated yield. Moreover, only 0.4 mol % of 2-(fluoroethyl)propionic acid ethyl ester was detected in the reaction mixture. The less electrophilic 2.2.2-trifluorethyl-trifluormethansulfonate required more severe conditions. Treatment of the alkoxide (7) with it at 55 °C for 3.5 h afforded 1,1,1,2,2-pentafluoro-2-(2,2,2-trifluoroethoxy)ethane $(9)^{28}$ in 71% isolated yield. $(Me_2N)_3C^+C_2F_5O^-$ easily reacts at 20 °C also with methyl triflate to form 1,1,1,2,2-pentafluoro-2-methoxyethane (10) (95%).²⁹ In both cases no alkyl fluoride byproduct was observed. These ethers, CF₃CF₂OCH₃ and CF₃CF₂OCH₂CF₃, were recently found to be the most promising hydrofluorocarbons (HFCs) to substitute the chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Alternative methods to prepare these alkyl perfluoroalkyl ethers include hightemperature fluorination of methyl and trifluoroethyl trifluorovinyl ethers with high valence metal fluorides such as cobalt trifluoride or manganese trifluoride.^{27,28} CF₃CF₂OCH₃ and CF₃CF₂OC₂H₅ can be prepared also from a CF₃C(O)F/ KF(CsF) mixture and dialkyl sulfates at elevated temperatures. In this case the formation of MeF or EtF byproducts is not dramatic as far as both alkyl fluorides could be easily separated from alkyl perfluoroalkyl ethers.29 When this paper had been accepted for publication, a similar protocol describing oxalyl fluoride/KF(CsF) reactions with CH₃CH₂OTf and

⁽³⁴⁾ Christe, K. O.; Wilson, W. W. J. Fluorine Chem. 1990, 47, 117–120.
(35) Frohn, H.-J. Private communication.

⁽³⁶⁾ Thenappan, A.; Burton, D. J. J. Org. Chem. 1990, 55, 2311-2317.

Trimethyldifluorosiliconates and Perfluoroalkoxides

CF₃CH₂OTf was published.³⁷ It was mentioned that especially for CF₃CH₂OTf the competing fluorination reaction caused serious separation problems. HMG⁺OC₂F₅⁻ is superior to the TAS⁺CF₃O⁻, TAS⁺OC₂F₅⁻, and CF₃C(O)F/KF-(CsF) systems because of better product yields, reaction selectivity, and product isolation. Compound 7 forms practically pure alkyl pentafluoroethyl ethers, in contrary to TAS⁺ R_FO^- reactions with alkyl triflates where up to 75% of AlkF byproducts were formed. The increased reactivity of HMG⁺OC₂F₅⁻ can be explained by the higher chemical stability of the carbocation $(Me_2N)_3C^+$ over $(Me_2N)_3S^+$. Moreover, $(Me_2N)_3C^+$, as we demonstrated above, is a better stabilizer for perfluoroalkoxy anions in solution than $(Me_2N)_3S^+$. The stabilizing effect of the counterion on $R_FO^$ anions depends not only on its large size but also on the degree of charge delocalization. There is no doubt that HMG⁺, where the positive charge is distributed over the three nitrogen atoms, acts as a better nonpolarizing stabilizer for perfluoroalkoxide species than TAS⁺, since for $S(NH_2)_3^+$ the main part of the Mulliken positive charge (+0.92e) is located on the sulfur atom,17 whereas HMG⁺ should be regarded as an imminium cation rather than a carbenium ion.9

In conclusion, the methodology reported herein is expected to be quite general for selective pentafluoroalkoxylation of primary and secondary carbon atoms of alkyl triflates. The ready availability of hexaalkylguanidinium trimethyldifluorosiliconates, variety of perfluorocarboxyl fluorides and of triflate esters, mild reaction conditions, and selectivity for pentafluoroalkoxylation reaction suggest that this metodology should be quite versatile to be applied for complex systems. Further study will be focused on straightforward synthesis of hexaalkylguanidinium fluorides based on DFI type reagents and their comparison with HAG⁺ trimethyldifluorosiliconates in "Halex" reactions. The progress in this field will be reported in due course.

Crystal Structure of [(CH₂NMe)₂CNEt₂]⁺Me₃SiF₂⁻. The compound is ionic, with discrete [(CH₂NMe)₂CNEt₂]⁺ cations structurally analyzed by X-ray diffraction the first time and Me₃SiF₂⁻ anions (Figure 1). The CN₃ framework is planar, the sum of the angles being almost 360° [111.2-(3)° for N(1)#2-C(3)-N(1) (endocyclic) and 248.76(13)° (exocyclic) for N(1)-C(3)-N(2) and N(1)#2-C(3)-N(2)]. The endocyclic C(3)-N(1) [133.9(2) pm] and exocyclic C(3)-N(2) [134.9(4) pm] bond distances differing by 1.0 pm only are somewhat longer than an average C=N double bond (130 pm) indicating that the cation can be considered an iminium species.9,38 Similar bond lengths were found in the hexamethyl guanidinium salts 30 [(Me₂N)₃C]⁺[Me₃SiF₂]⁻. The geometry at the nitrogen atoms N(1) and N(2) is essentially planar. The five-membered ring is twisted on $C(5)-C(5)#2 [C(4)-N(1)-C(3)-N(1)#2 = -158.3(2)^{\circ},$ $C(4)-N(1)-C(5)-C(5)#2 = -146.7(2)^{\circ}$ with -9.0(2) pm deviation at N(1), 0.00(18) pm at C(3), +9.0(2) pm at N(1)-

Figure 1. X-ray crystal structure representation of $[(CH_2NMe)_2-CNEt_2]^+Me_3SiF_2^-$ with 50% thermal ellipsoids. Selected bond lengths (pm) and angles (deg) for the cation: C(3)–N(1) 133.9(2), C(3)–N(2) 134.9(4), N(1)–C(4) 145.6(3), N(1)–C(5) 147.1(3), N(2)–C(6) 147.6(3); N(1)#2–C(3)–N(1) 111.2(3), (13) N(1)–C(3)–N(2) 124.38, C(3)–N(1)–C(4) 127.1(2), C(3)–N(1)–C(5) 109.33(18), C(4)–N(1)–C(5) 122.27(19), C(3)–N(2)–C(6) 120.87(13), C(6)–N(2)–C(6)#2 120.87(13), N(1)–C(5)–C(5)#2 101.87(12); C(4)–N(1)–C(3)–N(1)#2 –158.3(2), C(4)–N(1)–C(5)–C(5)#2 –146.7(2)°.

Figure 2. X-ray crystal structure representation of $[C(NMe_2)_3]^+F^{-\bullet}6CH_2Cl_2$ with 50% thermal ellipsoids

#2, -14.6(3) pm at C(5)#2, and +14.6(3) pm at C(5). The trigonal-bipyramidal Me₃SiF₂⁻ anion shows structural parameters similar to those of refs 30 and39 with the bond lengths Si(1)-F(1) = 177.25(15) pm, Si(1)-C(2) = 187.8-(4) pm, and Si(1)-C(1) = 189.0(3) pm and angles F(1)-Si(1)-F(1)#1 = 179.62(13)°, F(1)-Si(1)-C(2) = 89.81(6)°, F(1)-Si(1)-C(1) = 90.47(10)°, and C(1)-Si(1)-C(2) = 119.83(10)°.^{30,39} Both fluorine atoms are bridging to the *N*-methyl groups of two neighboring cations by H₂C(4)-*H*···*F*-Si contacts (241.6 pm) slightly less than the sum of the van der Waals radii of 255 pm. There are also C(1)-*H*···*F*-Si contacts of 245.6 and 247.7 pm in the Me₃SiF₂⁻ anion.

Crystal Structure of $[C(NMe_2)_3]^+F^-6CH_2Cl_2$. The structure shows discrete HMG⁺ cations and F⁻ anions, octahedrally coordinated by six methylene chloride molecules (Figure 2). The structural parameters of the HMG⁺ cation are in accord with already published data.⁹ The CN₃ unit is planar, with N(1)-C(1)-N(1)#2 = 119.992(6)°. The C(1)-N(1) bond distance was found to be 133.9 pm, proving the iminium cation character (see above and refs 7 and 27); the

⁽³⁷⁾ Murata, J.; Tamura, M.; Sekiya, A. J. Fluorine Chem. 2002, 113, 97– 100.

⁽³⁸⁾ Wilson, A. J. C. International Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; Vol. C, p 697.

⁽³⁹⁾ Dixon, D. A.; Farnham, W. B.; Heilemann, W.; Mews, R.; Noltemeyer, M. Heteroatom Chem. 1993, 4, 287–295.

N(1)-C(2) distance is 152.1(4) pm. The geometry around the nitrogen atoms is planar with the sum of the angles $[C(1)-N(1)-C(2) = 117.5(3)^\circ$, C(1)-N(1)-C(2)#5 = $117.5(3)^\circ$, $C(2)-N(1)-C(2)\#5 = 125.3(3)^\circ$] being 360.3°. The structure of the methylene chloride with C(3)-Cl(1) [176.4(3) pm], C(3)-Cl(2) [177.2(3)], and Cl(1)-C(3)-Cl(2) $[110.36(15)^\circ]$ is similar to what is found for the pure compound (C-Cl = 176.8 pm, Cl-C-Cl = 112.01°).⁴⁰ One hydrogen of each CH₂Cl₂ molecule forms a hydrogen bridge to the fluoride anion $[H\cdots F = 205(3) \text{ pm}, \text{ C-H}\cdots F =$ $178(2)^\circ]$. In the case of 1,1,3,3,5,5-hexamethylpiperidinium

(40) Kawaguchi, T.; Tanaka, K.; Takeuchi, T.; Watanabe, T. Bull. Chem. Soc. Jpn. 1973, 46, 62.

fluoride, an adduct with four CH_2F_2 molecules was found with H···F contacts less than 220 pm.²

Acknowledgment. A.A.K. is grateful to the Deutsche Forschungsgemeinschaft (Grant 436 UKR 113/36/0) for financial support.

Supporting Information Available: Crystallographic data for $[(CH_2NMe)_2CNEt_2]^+Me_3SiF_2^-$ and $[C(NMe_2)_3]^+F^-\cdot 6CH_2Cl_2$ in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC020081V