Inorganici

Hypohalite Ion Catalysis of the Disproportionation of Chlorine Dioxide

Lu Wang and Dale W. Margerum*

*Department of Chemistry, Purdue Uni*V*ersity, West Lafayette, Indiana 47907-1393*

Received July 8, 2002

The disproportionation of chlorine dioxide in basic solution to give ClO₂ and ClO₃ is catalyzed by OBr and OCI⁻. The reactions have a first-order dependence in both [CIO₂] and [OX-] (X = Br, CI) when the CIO₂⁻
concentrations are low However, the reactions become second order in [CIO₂] with the addition of excess CIO concentrations are low. However, the reactions become second-order in [ClO₂] with the addition of excess ClO₂-, and the observed rates become inversely proportional to $[ClO_2^-]$. In the proposed mechanisms, electron transfer from OX⁻ to ClO₂ ($k_1^{\text{OBF}} = 2.05 \pm 0.03$ M⁻¹ s⁻¹ for OBr⁻/ClO₂ and $k_1^{\text{OC}} = 0.91 \pm 0.04$ M⁻¹ s⁻¹ for OCl⁻/ClO₂)
occurs in the first stan to give OX and ClO₋. This reversible stan ($k_{\text{OBF}} + k_{\$ occurs in the first step to give OX and ClO_2^- . This reversible step $(k_1^{OBF}/k_{-1}^{OBF} = 1.3 \times 10^{-7}$ for OBr-/ClO₂, k_1^{OCT}/k_{-1}^{OCT}
 $k_2^{OCT} = 5.1 \times 10^{-10}$ for OCl^{-}/ClO_2) accounts for the observed suppression by Cl $k_{C_1}^{CCl} = 5.1 \times 10^{-10}$ for OCl⁻/ClO₂) accounts for the observed suppression by ClO₂⁻. The second step is the reaction between two free radicals (YQ and ClO) to form YOClO. These rate constants are $k_{D}^{OBI} = 1$ reaction between two free radicals (XO and ClO₂) to form XOClO₂. These rate constants are $k_2^{OBF} = 1.0 \times 10^8$ M⁻¹ e-1 for ORI/ClO₁ and $k_2^{OOF} = 7 \times 10^8$ M⁻¹ e-1 for OCl/ClO₁. The XOClO₂ adduct by radiati s^{-1} for OBr/ClO₂ and $k_2^{\text{OC}} = 7 \times 10^9$ M⁻¹ s⁻¹ for OCl/ClO₂. The XOClO₂ adduct hydrolyzes rapidly in the basic
solution to give ClO₁₇ and to reconomic OX₇. The activation parameters for the first stop solution to give ClO₃⁻ and to regenerate OX⁻. The activation parameters for the first step are Δ*H*₁[†] = 55 ± 1 kJ
mol⁻¹ A S [‡] = - 49 + 2 L mol⁻¹ K⁻¹ for the OBr⁻¹ClO, reaction and A H⁺ = 61 + 3 k L m ol⁻¹, ∆*S*₁[‡] = − 49 ± 2 J mol⁻¹ K⁻¹ for the OBr⁻/ClO₂ reaction and ∆*H*₁[‡] = 61 ± 3 kJ mol⁻¹, ∆*S*₁[‡] = − 43 ±
2 J mol⁻¹ K⁻¹ for the OCl⁻¹/ClO₂ reaction 2 J mol⁻¹ K⁻¹ for the OCl⁻/ClO₂ reaction.

Introduction

It has long been known¹⁻⁶ that chlorine dioxide disproportionates in basic solutions to give ClO_2^- and ClO_3^- . Recent work has shown that oxygen is also a product of the decomposition at low $CIO₂$ concentrations.⁷ The disproportionation reaction is catalyzed by hypochlorite ion⁸ and by bromite ion, 9 and the present work shows that hypobromite ion also catalyzes $ClO₂$ disproportionation. We also show that excess ClO_2^- suppresses the rates of both the OBr^- and the OCl⁻ reactions. Hence, a new mechanism is needed for hypohalite catalysis that takes the $ClO₂$ ⁻ suppression into account.

Experimental Section

Reagents. All solutions were made with distilled, deionized water. Chlorine dioxide stock solution was prepared as described

- (1) Bray, W. C. *Z. Anorg. Allg. Chem*. **¹⁹⁰⁶**, *48,* ²¹⁷-250.
- (2) Halperin, J.; Taube, H. *J. Am. Chem. Soc.* **¹⁹⁵²**, *74,* ³⁷⁵-380.
- (3) Granstrom, M. L.; Lee, G. F. *Public Works* **¹⁹⁵⁷**, *88,* ⁹⁰-92*.*
- (4) Gordon, G.; Keiffer, R. G.; Rosenblatt, D. H. In *Progress in Inorganic Chemistry*; Lippard, S. J., Ed.; Wiley-Interscience: New York, 1972; pp 201-287.
- (5) Emerich, D. E. Ph.D. Dissertation, Miami University, 1981.
- (6) Gordon, G. *Pure Appl. Chem.* **¹⁹⁸⁹**, *61,* ⁸⁷³-878.
- (7) Odeh, I. N.; Francisco, J. S.; Margerum, D. W. *Inorg. Chem.*, in press.
- (8) Csorda´s, V.; Bubins, B.; Fa´bia´n, I.; Gordon, G. *Inorg. Chem.* **2001**, *⁴⁰*, 1833-1836.

previously^{10,11} and was protected from light and stored at 5 $^{\circ}$ C. The $ClO₂$ stock solution was standardized spectrophotometrically on the basis of the molar absorptivity of ClO₂, $\epsilon = 1230 \text{ M}^{-1} \text{ cm}^{-1}$ at 359 nm.11 Working solutions of NaOCl were prepared from a stock solution obtained by slowly bubbling $Cl_2(g)$ into a well-stirred solution of NaOH (\sim 0.3 M) maintained at 0−4 °C. Concentrations of the NaOCl solutions were determined spectrophotometrically at 292 nm ($\epsilon = 362$ M⁻¹cm⁻¹).¹¹ Sodium chlorite was purified and recrystallized as described previously,⁹ and stock solutions were standardized spectrophotometrically ($\epsilon = 154.0 \text{ M}^{-1} \text{ cm}^{-1}$ at 260 nm).¹¹ The ionic strength (μ) was adjusted with NaClO₄ that was recrystallized from water, redissolved, and standardized gravimetrically. Solutions of phosphate and carbonate buffer were prepared from the reagent-grade salts. For kinetic measurements, the pH was buffered by mixing stock solutions of 1.0 M $Na₂HPO₄$ and NaH₂- PO_4 (p $K_a = 6.26$)¹¹ or 1.0 M NaHCO₃ (p $K_a = 9.48$)¹¹ and Na₂CO₃ to yield the desired pH upon 10-fold dilution.

Preparation of NaOBr Solutions. We discovered in the process of this work that trace levels of BrO_2^- in HOBr/OBr⁻ solutions can affect the observed rate of catalytic disproportionation of ClO2. This is due to electron-transfer reactions in which BrO_2^- and ClO_2 give BrO_2 and ClO_2^{-9} Precautions were taken to minimize the formation of BrO_2^- in our preparation of OBr^- solutions. Solutions of $HOBr/OBr^-$ disproportionate to BrO_2^- and Br^- with a rate that depends on $[HOBr]_T^2$, where $[HOBr]_T = [OBr^-] + [HOBr]$;

- (10) Masschelein, W. J. *J. Am. Water Works Assoc.* **¹⁹⁸⁴**, *⁷⁶*, 70-76.
- (11) Furman, C. S.; Margerum, D. W. *Inorg. Chem.* **¹⁹⁹⁸**, *³⁷*, 4321-4327.

10.1021/ic020440m CCC: \$22.00 © 2002 American Chemical Society **Inorganic Chemistry,** Vol. 41, No. 23, 2002 **6099** Published on Web 10/24/2002

^{*} To whom correspondence should be addressed. E-mail: margerum@ chem.purdue.edu.

⁽⁹⁾ Wang, L.; Nicoson, J. S.; Huff Hartz, K. E.; Francisco, J. S.; Margerum, D. W. *Inorg. Chem.* **²⁰⁰²**, *⁴¹*, 108-113.

however, OBr⁻ is much slower to react than $HOBr¹²$ (p K_a of HOBr $= 8.59$ at 25.0 °C, $\mu = 1.0$ M).¹² Therefore, hypobromite was prepared by adding small amounts of $Br₂(1)$ very slowly to a vigorously stirred 0.3 M NaOH solution. Bromide ion was removed with freshly precipitated AgOH in a method similar to that of Noszticzius et al.¹³ in which 50 mL of 0.1 M AgNO₃ and 10 mL of 1 M NaOH were mixed in a 200 mL flask. After the AgOH precipitate was freed from its colloid fraction by $4-5$ decantations with 0.1 M NaOH, 25 mL of the OBr⁻ stock was added and shaken with the precipitate. After filtration, the clear light-yellow NaOBr solution was analyzed spectrophotometrically at 329 nm on the basis of its molar absorptivity of 332 M^{-1} cm⁻¹.¹⁴ The OBr⁻ stock solution (∼0.1 M) was prepared daily and kept in 0.1 M NaOH. The OBr⁻ reactant solutions were diluted prior to the reaction. In the presence of $0.1 M OH^-$, the $[Ag^+]$ in the OBr⁻ stock solution would be 2×10^{-7} M. In our kinetic studies, 1.45×10^{-2} M or less of OBr⁻ was used, which is a 7-fold dilution of the OBr⁻ stock. Accordingly, 2.8×10^{-8} M or less Ag⁺ would be present in the reactant solution. Additional tests of $(OBr^- + Br^-)$ solutions (without a AgOH treatment) gave the same kinetic results as solutions that were treated with AgOH. Ion chromatographic (IC) analysis was used to measure the BrO_2^- content in the $OBr^$ solution. In this analysis, excess of $(NH₄)₂SO₄$ solid was added into the OBr⁻ sample solution at $p[H^+] = 9.5$ in order to remove $OBr^-/HORr$, which reacts with the column packing. BrO_2^- does not react with NH₃/NH₄⁺.¹⁵ The ion chromatographic results showed that the $[\text{BrO}_2^-]$ present in OBr^- stock was only 0.07 mol % of the initial [OBr⁻]. Interference from BrO_2^- in the OBr⁻ stock is negligible for kinetic studies in basic solutions. However, interference from the BrO_2^- reaction becomes appreciable below $p[H^+]$ 7.7.

Products and Stoichiometry. Ion chromatography was used to identify and quantitatively determine the reaction products. Excess ethylenediamine was added to remove the OBr-¹⁶ before the product solutions were analyzed on the Dionex DX-500 IC. Detailed experimental procedures for the determination of the products by IC were described in earlier work.⁹

A Perkin-Elmer Lambda-9 UV-vis-NIR spectrophotometer used in conjunction with PECSS (Perkin-Elmer Computerized Spectroscopy Software) was used to acquire spectra for the reaction. Spectral scans were taken from 250 to 450 nm at 100 s intervals and after the reaction was complete.

pH Measurement. An Orion model 720 A digital pH meter equipped with a Corning combination electrode was used. The electrode was calibrated by titrations of standard HClO₄ with standard NaOH to correct the measured pH values to $-\log[H^+]$ (=p[H⁺]) at 25.0 \pm 0.1 °C and an ionic strength (μ) adjusted to 1.0 M with NaClO4.

Kinetic Measurements. Kinetic traces for slow reactions were acquired with the Perkin-Elmer Lambda-9 UV-vis-NIR spectrophotometer. The kinetics of the fast reactions were followed on an Applied PhotoPhysics SX.18 MV stopped-flow spectrophotometer (APPSF, optical path length $= 0.962$ cm). The molar absorptivities of ClO_2 , OCl^- , and ClO_2^- determined on the Lambda-9 UV-vis-
NIR spectrophotometer¹¹ agreed with values measured on the NIR spectrophotometer¹¹ agreed with values measured on the APPSF. All reactions were run under pseudo-first-order conditions

(12) Beckwith, R. C.; Margerum, D. W. *Inorg. Chem.* **¹⁹⁹⁷**, *³⁶*, 3754- 3760.

(15) Hashmi, M. H.; Ayaz, A. A. *Anal. Chem.* **¹⁹⁶³**, *³⁵*, 908-909.

Figure 1. Spectral evidence of no OBr⁻ loss in the catalyzed decay of ClO₂. Conditions: $[OBr^-]_T = 1.01$ mM, $[CO_2]_i = 0.994$ mM, $[CO_3]_T =$ 0.10 M, $p[H^+] = 11.6, 25.0 \degree C$, 1 cm cell, reaction time = 1.55 h, 100 s time interval per scan. Appreciable amounts of $ClO₂$ are already lost when the first scan was made because of a 3 min time interval between mixing and the first scan.

Table 1. Ion Chromatographic Determination of Products for the Reaction of ClO2 with OBr- *^a*

$p[H^+]$ of reaction mixture	yield ratio ^b $\left[$ ClO ₂ ⁻ $\right]$ / $\left[$ ClO ₃ ⁻ $\right]$
10.9 11.4	1.00 ± 0.04 1.00 ± 0.04

a Conditions: $[OBr^-]_i = [OBr^-]_f = 0.960$ mM, $[CO_3]_T = 0.10$ M, $[ClO_2]_i$ $= 1.7$ mM, 25.0 °C. *b* Ethylenediamine was used to remove OBr⁻ from the solution.

with $[HOBr]_T$ or $[HOCl]_T$ (=[HOCl] + [OCl⁻]) in large excess over [ClO₂]. Reactions were maintained at an ionic strength of 1.0 M. The rates of the reactions were monitored at 359 or 380 nm for the disappearance of $ClO₂$. SigmaPlot 4.0¹⁷ was used for the regression analysis.

Results and Discussion

I. Reaction between OBr- **and ClO2.**

Stoichiometry. When OBr⁻ and ClO₂ solutions are mixed to give 1.0 mM concentrations of each at $p[H^+]$ 11.6, a significant absorbance drop at 359 nm is observed, and a final absorbance from 250 to 450 nm remains, in which the dominant absorbing species is OBr^- (Figure 1). Ion chromatographic results show that ClO_2^- and ClO_3^- are the products of the reaction with a 1:1 stoichiometry (Table 1). After all the $ClO₂$ reacts, the remaining absorbance from 250 to 450 nm is in good agreement with the sum of the absorbance spectra of the added OBr⁻ and the $ClO_2^$ generated from the reaction where [ClO_2^- = $\frac{1}{2}$ [ClO₂]_i and
no OBr⁻ is lost. The rate of the depletion of ClO₂ increases no OBr^- is lost. The rate of the depletion of $ClO₂$ increases with the increase of $[OBr⁻]$ added. It is apparent that the disproportionation of $ClO₂$ is catalyzed by OBr^- (eq 1).

$$
2ClO_2 + 2OH^- \xrightarrow{OBF^-} ClO_2^- + ClO_3^- + H_2O \qquad (1)
$$

Kinetics. Without initial addition of excess $ClO₂^-$, the rates of loss of $ClO₂$ with added OBr^- show a first-order $2ClO_2 + 2OH^- \xrightarrow{OBr^-}$
tics. Without initial
loss of ClO_2 with a

⁽¹³⁾ Noszticzius, Z.; Noszticzius, E.; Schelly, Z. A. *J. Phys. Chem.* **1983**, *87,* ⁵¹⁰-524.

⁽¹⁴⁾ Troy, R. C.; Margerum, D. W. *Inorg. Chem.* **¹⁹⁹¹**, *³⁰*, 3538-3543.

⁽¹⁶⁾ Furman, C. S. Ph.D. Thesis, Purdue University, 1998. (17) *SigmaPlot 4.0 for Windows*; SPPS Inc., 1997.

Figure 2. Dependence of the observed first-order rate constant on [OX⁻] for the reaction of OX^- with ClO_2 . (a) Conditions for the OBr^-/ClO_2 reaction: $[CO_3]_T = 0.10$ M, $\mu = 1.0$ M, $[CO_2]_i = 0.41$ mM, no added $[ClO_2^-]_i$, $p[H^+] = 9.9-10.0, 25.0 \degree C$. Slope = (4.09 \pm 0.09) M⁻¹ s⁻¹;
intercent = (6 + 7) × 10⁻⁴ s⁻¹ (b) Conditions for the OCU/CIO₂ intercept = $(6 \pm 7) \times 10^{-4}$ s⁻¹. (b) Conditions for the OCl⁻/ClO₂ reaction: $[CO_3]_T = 0.10$ M, $\mu = 1.0$ M, $[ClO_2]_i = 0.1$ mM, no added $[ClO_2^-]_i$, $p[H^+] = 10.6, 25.0 \degree C$. Slope = (1.81 \pm 0.07) M⁻¹ s⁻¹; intercept = (8 + 6) \times 10⁻⁴ s⁻¹ $= (8 \pm 6) \times 10^{-4} \text{ s}^{-1}.$

Table 2. No Effect of Carbonate Buffer or Bromide Ion on the Hypohalite Catalysis of ClO2 Disproportionation*^a*

$OBr^{-}/ClO2$ reaction		$OC1^-/ClO2$ reaction		
$[CO3]T$, M	$k_{\rm obsd}/[OBr^{-}],$ $M^{-1} s^{-1 b}$	$[CO3]$ _T , M	k_{obsd} [OCl ⁻], $M^{-1} s^{-1}$	
0.00	4.20 ^c	0.05	1.83	
0.05	4.15^{d}	0.30	1.85	
0.30	4.28e			
$[CO3]T$, M	added $[Br^-]$, M		$k_{\text{obsd}}^{\text{2nd}}, \mathbf{M}^{-1} \mathbf{s}^{-1} f$	
0.05	0.0			

0.10 0.0 32.2 0.10 0.05 31.3

a Conditions: 25.0 °C, $\mu = 1.0$ M. *b* $[C1O_2^-]_i = 0$ M. The $k_{obsd}/[OBr^-]$
ues refer to eq. 9 *c* Conditions: [HOBr]r = 14.3 mM. $[C1O_2]_i = 0.22$ values refer to eq 9. ^{*c*} Conditions: $[HOBr]_T = 14.3$ mM, $[CIO_2]_i = 0.22$ mM, $p[H^+] = 8.73$. *d* Conditions: $[HOBr]_T = 5.32$ mM, $[CIO_2]_i = 0.26$ mM, $p[H^+] = 9.87$. *e* Conditions: $[HOBr]_T = 5.32$ mM, $[CIO_2]_i = 0.26$ mM, $p[H^+] = 10.14. f [ClO₂⁻]i = 12.3$ mM, $[HOBr]_T = 13.32$ mM, $[CIO₂]₁ = 0.12$ mM, $p[H^+] = 11.0 - 10.9$ The k^{2nd} volume refer to sq. 11 = 0.12 mM, $p[H^+]$ = 11.0-10.9. The $k_{\text{obsd}}^{\text{2nd}}$ values refer to eq 11.

² Conditions: HOCU_E = 2.62 mM [ClO_o]_i = 0.10 mM nH⁺1 = *g* Conditions: $[HOCI]_T = 2.62$ mM, $[CIO_2]_i = 0.10$ mM, $p[H^+] =$ $9.87 - 10.13$.

dependence upon the concentration of chlorine dioxide (eq 2). The observed first-order rate constants (k_{obsd}) have a firstorder dependence in [OBr⁻] (Figure 2a).

$$
-d[ClO2]/dt = kobsd[ClO2] \t(2)
$$

Our studies show that the reaction has no dependence on the concentration of carbonate buffer (Table 2) or on hydroxide ion concentration from $p[H^+]$ 10.0 to 11.2 (pK_W) $=$ 13.6).¹⁸ As additional tests, we also prepared OBr⁻ stock by bubbling Br2 vapor into a well-stirred NaOH solution. Contamination of $BrO₂⁻$ should be minimized by this method because locally high concentrations of $Br₂$ are avoided and

Figure 3. Dependence of $k_{\text{obsd}}/[\text{HOX}]_T$ on $p[H^+]$ for the catalytic reactions of OBr^- and OCl^- in ClO_2 disproportionation. The open circles (O) in Figure 3a are from measured rate constants under conditions where $BrO_2^$ interference is expected. $pK_{\text{a}}^{\text{HOBr}} = 8.59^{12}$ and $pK_{\text{a}}^{\text{HOC}} = 7.47^{27}$ were used
for the calculations. Conditions: HPO ₁ $_{\text{m}} = 0.10$ M at $pH^{\pm 1} \le 8$. ICO₂1 $_{\text{m}}$ for the calculations. Conditions: $[HPO_4]_T = 0.10 \text{ M at } p[H^+] \le 8$, $[CO_3]_T$ $= 0.10$ M at p[H⁺] > 8.5, [ClO₂]_i = 0.1-0.01 mM, $\mu = 1.0$ M, 25.0 °C.

the pH value should be uniform throughout the solution. The k_{obsd} /[OBr⁻] data (the points at p[H⁺] 11.14, 8.73, 8.95 in Figure 3a) obtained by using this OBr^- stock solution are consistent with our other data. Additional evidence supports the conclusion that $BrO₂⁻$ contamination does not interfere with data at higher pH. Because the $BrO₂⁻/ClO₂$ reaction⁹ is greatly accelerated by $[CO₃^{2–}]$ while the OBr^-/ClO_2 reaction has no $[CO₃²⁻]$ dependence, appreciable amounts of BrO_2^- present in the OBr⁻ stock solution will cause a significant difference in the overall rates when $CO₃²⁻$ is present compared to when it is absent. Our experiments show that, when excess HOBr/OBr- was used to buffer the reaction at $p[H^+]$ 8.73 (no carbonate buffer was added), the k_{obsd} [OBr-] value (shown in Table 2 and Figure 3a) is in good agreement with the $k_{obsd}/[OBr^-]$ values for the reactions buffered with carbonate.

Interference from Bromite Ion below p[H+**] 8.5.** Prior to our efforts to minimize $BrO₂⁻$ concentrations in the preparation of OBr⁻ solutions, we experienced difficulty in obtaining reproducible rate constants for the OBr^- reaction with $ClO₂$. After the preparation of OBr^- solution with only

⁽¹⁸⁾ Molina, M.; Melios, C.; Tognolli, J. O.; Luchiari, L. C.; Jafelicci, M., Jr. *J. Electroanal. Chem. Interfacial Electrochem.* **1979,** *¹⁰⁵*, 237- 246.

Table 3. Calculations for the Interference from $[\text{BrO}_2^-]$ When It Is 0.1% [HOBr]_T

$p[H^+]$	$[HOBr]_{T}^a$ (mM)	(mM)	$[CIO_2]_i^b$ $\Sigma k^{\text{Nu}}[Nu]^c$ $(M^{-1} s^{-1})$	r_{ORr}^{-d} $(M s^{-1})$	r_{BrO_2} -d $(M s^{-1})$	$r_{\rm BrO_2}$ -/ $r_{\rm OBr}$ ⁻
11.25^e 10.17e 9.55e 8.95e 7.64^{f} 641f	14.5 14.5 14.5 14.3 2.37 2.72.	0.248 0.248 0.248 0.22 0.10 0.10		1.56×10^7 7.66 $\times 10^{-6}$ 6.34 $\times 10^{-8}$ 1.29×10^7 7.66 $\times 10^{-6}$ 5.70 $\times 10^{-8}$ 8.51×10^6 6.91 $\times 10^{-6}$ 4.38 $\times 10^{-8}$ 1.11×10^6 2.82×10^{-6} 1.13×10^{-8}	4.27×10^{-9} 7.20 $\times 10^{-10}$ 3.80×10^{-9} 9.80×10^{-9}	0.008 0.007 0.006 0.003 0.2 2.6

a [HOBr]_T is the concentration used in the kinetic study. *b* [ClO₂]_i is the initial concentration of ClO₂. $c \sum k^{Nu}[Nu] = k^{H_2O} \times 55.5 + k^{OH}[OH^-] +$ k^{CO_3} [CO₃²⁻]. At p[H⁺] < 7.64, [ClO₂⁻] = 0, the Σk^{Nu} [Nu] term does not contribute to the rate $\frac{d}{d}$ rog-- and re-o - are the OBr⁻ and BrO₂⁻ reaction contribute to the rate. d r_{OBr} and r_{BrO_2} are the OBr⁻ and BrO₂⁻ reaction rates at the first half-life of the ClO₂ decay. e [CO₃]_T = 0.10 M. *f* [HPO₄]_T $= 0.10$ M.

 0.07% BrO₂⁻ content, reproducibility was no longer a problem above $p[H^+]$ 8.5. However, there are several reasons why BrO_2^- interference still occurs at lower pH. First, the disproportionation of HOBr to give BrO_2^- and Br^- is 3 orders of magnitude faster at pH $5-8$ than it is at pH 11 .¹² Therefore, at low pH, the concentration of BrO_2^- increases during the time of the reaction. Second, HOBr is a poor catalyst (or a noncatalyst) of $CIO₂$ disproportionation, and longer reaction times are needed to observe the reaction at $p[H^+]$ values below 8.5 where more HOBr is present. This, in turn, allows more BrO_2^- to form. Third, HOBr reacts rapidly with ClO_2^- at pH 5–8 to generate ClO_3^- and Br^{-11} .
The removal of ClO_2^- accelerates the BrO₂⁻ catalysis of ClO_2 . The removal of ClO_2^- accelerates the Br O_2^- catalysis of ClO_2 disproportionation.⁹ Higher concentrations of ClO_2^- are needed to suppress the OBr⁻ catalysis. Because the pK_a of $HBrO₂$ is 3.59,¹⁹ its formation is not significant in the pH range of this study. However, low pH increases the rate of $BrO₂$ ⁻ formation because of general-acid assistance from $H_2PO_4^-$. The combination of all these factors is complex.^{9,11,12} Table 3 shows that, from our measured rate constants, the effect of 0.1% BrO_2^- in [HOBr]_T would be negligible for the OBr^{-}/ClO_2 studies at pH 8.95 or higher but would be significant at $p[H^+]$ 7.6 and lower (the details for the calculation are shown in the Supporting Information). Figure 3a shows that the pH dependence of the OBr^{-}/ClO_{2} reaction from $p[H^+]$ 8.73 to 11.23 (\bullet) fits the assumption that HOBr does not react (eq 3). The open circles (O) in Figure 3a are from measured rate constants under conditions where $BrO_2^$ interference is expected. These are not included in the fit.

$$
\frac{k_{\text{obsd}}}{\left[\text{HOBr}\right]_{\text{T}}} = k^{\text{OBr}^{-}} \frac{K_{\text{a}}^{\text{HOBr}}}{K_{\text{a}}^{\text{HOBr}} + \left[\text{H}^{+}\right]}
$$
(3)

Effect of Chlorite. When excess ClO_2^- is added to the OBr^{-}/ClO_{2} mixture, the reaction order shifts from first-order to second-order dependence in $\lbrack CIO_2 \rbrack$ (Figure 4a). The inhibitory effect of ClO_2^- on the rate at p[H⁺] 10.5 is shown in Figure 5a. The observed second-order rate constant is inversely proportional to the excess $[ClO_2$ ⁻]. It is known that HOBr reacts with ClO_2^- to generate ClO_2 and ClO_3^- and that the reaction is general-acid catalyzed.¹¹ At $p[H^+] = 10.5$,

Figure 4. Kinetic traces of the OX^- reactions with ClO_2 in excess $[ClO_2^-]$. (a) Conditions for the OBr⁻/ClO₂ reaction: $[OBr^-] = 17.02$ mM, $[CO_3]_T$ = 0.10 M, $[ClO₂]$ _i = 0.20 mM, $[ClO₂⁻]$ = 15.71 mM, $p[H⁺]$ = 10.50, μ
= 1.0 M, 25.0 °C, λ = 390 nm, cell path = 0.962 cm, (b) Conditions for $= 1.0$ M, 25.0 °C, $\lambda = 390$ nm, cell path $= 0.962$ cm. (b) Conditions for the OCl⁻/ClO₂ reaction: [OCl⁻] = 18.77 mM, [CO₃]_T = 0.10 M, [ClO₂]_i = 0.045 mM, [ClO_2^- = 7.98 mM, p[H^+] = 10.30, μ = 1.0 M, 25.0 °C, λ = 380 nm, cell path = 1.0 cm $\lambda = 380$ nm, cell path $= 1.0$ cm.

Figure 5. Suppression by $[ClO_2^-]$ of the second-order rate constant for the reaction of \overline{OX}^- with \overline{ClO}_2 . (a) Conditions for the OBr^-/ClO_2 reaction: $[OBr^-] = 17.02$ mM, $[CO_3]_T = 0.10$ M, $[ClO_2]_i = 0.20$ mM, $p[H^+] =$ 10.50, $\mu = 1.0$ M, 25.0 °C, $\lambda = 390$ nm. (b) Conditions for the OCl⁻/ClO₂ reaction: $[OCI^-] = 18.77$ mM, $[CO_3]_T = 0.10$ M, $[ClO_2]_i = 0.045$ mM, $p[H^+] = 10.30, \mu = 1.0 \text{ M}, 25.0 \text{ °C}, \lambda = 380 \text{ nm}.$ Regression fit: $k_{obs}^{\text{2nd}} = 2E^{OX} L^O(X - U \text{ CIO}^{-1})$ $2K_1^{OX^-}k_2^{OX}[OX^-]/[ClO_2^-].$

[HOBr] is approximately 1% of the $[HOBr]_T$, so the reaction between HOBr and ClO_2^- under these conditions is much slower than the OBr⁻ catalysis of $ClO₂$ disproportionation. We also find no dependence on Br^- and carbonate concentrations in the presence of excess $ClO₂⁻$ (Table 2). This is in marked contrast to the large effect of many nucleophile species (including CO_3^2 and Br⁻) on the kinetics of the reaction between BrO_2^- and ClO_2 because of nucleophile assistance of the electron transfer between the intermediate species $BrO₂$ with $ClO₂$.⁹

Mechanism. The rate inhibition by ClO_2^- is mechanistically significant and strongly suggests that an electron (19) Huff Hartz, K. E.; Nicoson, J. S.; Wang, L.; Margerum, D. W. *Inorg.*

Chem., accepted for publication.

Disproportionation of Chlorine Dioxide

transfer occurs from OBr^- to $ClO₂$. The proposed mechanism for the reaction is given in eqs $4-7$, where BrO is a highly reactive radical.

$$
ClO2 + OBr- \frac{k_1^{OBr}}{k_{-1}^{OBr}} ClO2- + BrO K1OBr
$$
 (4)
BrO + ClO₂ $\frac{k_2^{OBr}}{k_{-1}^{OBr}} BrOClO2$ (5)

$$
BrO + ClO2 \xrightarrow{k_2^{OBr}} BrOClO2
$$
 (5)
\nClO₂ + OH⁻ $\xrightarrow{rapid} OBr^-$ + HClO₃ (6)

$$
BrOCIO_2 + OH^- \xrightarrow{rapid} OBr^- + HClO_3 \tag{6}
$$

$$
BrOClO2 + OH- \frac{rapid}{ }OBr- + HClO3
$$
 (6)
\n
$$
HClO3 + OH- \frac{rapid}{ }ClO3- + H2O
$$
 (7)

It could react with ClO_2^- to go back to the reactants or react with excess $ClO₂$ to form an adduct, $BrOClO₂$. The stabilities of various $BrClO₃$ species in the gas phase have been studied by ab initio methods.20 Calculations show that formation of $BrClO₃$ by the reaction between BrO and $ClO₂$ is very favorable. The BrOCl(O)O conformation was found to be the most stable of the BrClO₃ isomers; it is 34.3 kJ mol^{-1} more stable than $(BrO + OClO)²⁰$ This calculation by Francisco and Clark²⁰ supports the second step in our proposed mechanism. Water solvation will undoubtedly have a large effect on the stability and reactivity of the intermediates. However, gas phase calculations provide a useful model to evaluate the plausibility of the proposed intermediate. The $BrOClO₂$ adduct can then be attacked by $OH⁻$ to give OH and $HOCIO₂$ (eq 6), and chloric acid is rapidly converted to $ClO₃⁻$ as a final product in basic solution (eq 7). $HClO_3 + OH^- \xrightarrow{rapid} ClO_3$
t with ClO_2^- to go back to
ClO₂ to form an adduct, Br

A steady-state approximation in regard to BrO gives the rate expression in eq 8, where the factor of 2 accounts for the stoichiometric ratio in eqs 4 and 5. Typically, the concentration of ClO₂ used in this study was low $(< 0.2$ mM).

$$
-d[CIO_2]/dt = \frac{2k_1^{OBr^-} k_2^{OBr}[OBr^-][ClO_2]^2}{k_{-1}^{OBr}[ClO_2^-] + k_2^{OBr}[ClO_2]}
$$
(8)

When no initial ClO_2^- was added, the $[ClO_2^-]$ generated from the disproportionation of $CIO₂$ was low, and the reverse step (k_{-1}^{OBF}) in eq 4 could be neglected. Under this condition $(\text{[ClO}_2)/[\text{ClO}_2^-] \gg k_{-1}^{\text{Br}}/k_2^{\text{OB}})$, the rate expression in eq 8
simplifies to eq 9. To meet the required condition, the data simplifies to eq 9. To meet the required condition, the data for the first 75% of the reaction were used to determine the observed first-order rate constants.

$$
-d[ClO_2]/dt = 2k_1^{OBr^-}[OBr^-][ClO_2] = k_{obsd}[ClO_2]
$$
 (9)

From the slope of the k_{obsd} versus [OBr⁻] plot in Figure 2a, $k_1^{OBr^-}$ is determined as 2.05 ± 0.03 M⁻¹ s⁻¹. Reduction
potential values for OBr/OBr⁻ and ClO₂/ClO₂⁻ are reported potential values for OBr/OBr^- and ClO_2/ClO_2^- are reported to be 1.34 and 0.934 V, respectively.²¹ These potentials lead to a value of 1.3×10^{-7} for the equilibrium constant K_1^{OBF} $(\equiv k_{1}^{OBr^-}/k_{-1}^{OBr})$ for the first step (eq 4). From the $K_1^{OBr^-}$ and $h_{-1}^{OBr^-}$ and $h_{-1}^{OBr^-}$ and $h_{-1}^{OBr^-}$ and $h_{-1}^{OBr^-}$ k_1^{OBF} values, k_{-1}^{OBF} is estimated to be 1.6 \times 10⁷ M⁻¹ s⁻¹.

Figure 6. Eyring plots for the reaction of OX⁻/ClO₂. Conditions for the OBr^{-}/ClO_2 reaction: $[HOBr]_T = 0.58$ mM, $[ClO_2^-] = 0.0$ M, $[ClO_2]_i = 0.010$ mM $[CO_2]_T = 0.10$ M $\mu = 1.0$ M $n[H^+] = 10$ 70. Slone = -6.6 0.010 mM, $[CO_3]_T = 0.10$ M, $\mu = 1.0$ M, $p[H^+] = 10.70$. Slope = -(6.6) \pm 0.3) × 10³ K, intercept = 17.9 \pm 0.9. Conditions for the OCl⁻/ClO₂ reaction: $[HOC1]_T = 2.51 \text{ mM}, [ClO_2^-]_i = 0.0 \text{ M}, [ClO_2]_i = 0.10 \text{ mM},$
 $[CO_2]_T = 0.10 \text{ M}, \mu = 1.0 \text{ M}, \text{ n} [H^+1] = 10.60 \text{ Slope} = -(7.2 + 0.4) \times$ $[CO₃]_T = 0.10$ M, $\mu = 1.0$ M, $p[H⁺] = 10.60$. Slope = -(7.2 \pm 0.4) \times 10^3 K, intercept = 19 ± 1 .

Because the k_{-1}^{OBF} value is large, the addition of excess CIO_2^- could lead to the inequality, k_{-1}^{OB} $[ClO_2^-] \gg$
 k_{-1}^{OB} ^{[ClO2}] in the depominator in eq. 8. Elimination of the k_{2}^{OBF} [ClO₂], in the denominator in eq 8. Elimination of the k_2^{OBF} [ClO₂] term gives the rate expression in eq 10. Equations 10 and 11 are consistent with our experimental observations that the addition of excess $ClO₂$ ⁻ causes the reaction to exhibit a second-order dependence in $[CIO_2]$ and that the reciprocal of the observed second-order rate constant is directly proportional to the excess $[ClO₂-]$.

$$
-\mathrm{d}[\text{ClO}_2]/\mathrm{d}t = \frac{2K_1^{\text{OBF}} k_2^{\text{OBF}} [\text{OBF}^-][\text{ClO}_2]^2}{[\text{ClO}_2^-]}
$$
(10)

$$
k_{\rm obsd}^{\rm 2nd} = \frac{2K_1^{\rm OBr} k_2^{\rm OBr} [\rm OBr^-]}{[\rm CIO_2^-]}
$$
(11)

The slope of the plot of $[OBr^-]/k_{obsd}^{2nd}$ versus $[ClO_2^-]$ (Supporting Information Figure 2) gives $1/(2K_1^{\text{OBF}} + k_2^{\text{OBF}}) =$
(3.86 \pm 0.09) \times 10⁻² M⁻¹ s⁻¹. This slope value and the $(3.86 \pm 0.09) \times 10^{-2}$ M⁻¹ s⁻¹. This slope value and the V^{OBF} value allow V^{OBF} K_1^{OBr} value allow k_2^{OBr} to be evaluated as 1.0×10^8 M^{-1} s⁻¹.

Activation Parameters Measurement. The temperature dependence of the kinetics was determined over the temperature range from 5 to 25 °C at $p[H^+] = 10.70$ with $[HOBr]_T = 0.58$ mM, $[CIO_2]_i = 0.010$ mM, no added ClO_2^- ,
and $\mu = 1.0$ M. The activation enthalpy $\Delta H_i^{\dagger} = 55 + 1$ kH and $\mu = 1.0$ M. The activation enthalpy, $\Delta H_1^{\dagger} = 55 \pm 1$ kJ
mol⁻¹ and the activation entropy, $\Delta S_2^{\dagger} = -49 + 2$ J mol⁻¹ mol⁻¹, and the activation entropy, $\Delta S_1^{\dagger} = -49 \pm 2$ J mol⁻¹
K⁻¹ of the reaction are obtained from an Eyring Plot (Figure K^{-1} , of the reaction are obtained from an Eyring Plot (Figure 6a). The activation parameters determined under this condition correspond to the electron-transfer step in eq 4. The positive ΔH_1^{\ddagger} and negative ΔS_1^{\ddagger} values correspond to the need to bring OBr^- and ClO_2 together as well as their rear-(20) Francisco, J. S.; Clark, J. *J. Phys. Chem. A* **1998**, 102 , $2209-2214$.
 **rangement prior to electron transfer to give OBr and ClO₂⁻.

rangement prior to electron transfer to give OBr and ClO₂⁻.**

⁽²¹⁾ Stanbury, D. M. *Ad*V*. Inorg. Chem.* **¹⁹⁸⁹**, *³³*, 69-138.

II. Reaction between OCl⁻ and ClO₂. An early study of the decomposition of $ClO₂$ in aqueous solution in the presence of HOCl was reported in 1959 by Flis and co-workers.22 In a more recent investigation of the reaction by Csordás and co-workers,⁸ a mechanism was proposed in which $ClO₂$ and $OCl⁻$ form an adduct in a rate-determining step, followed by a rapid electron transfer from the adduct to the second ClO2. Our results from a spectrophotometric study of the reaction stoichiometry agree with their conclusion that OCI^- catalyzes the decomposition of $ClO₂$. We also observed a first-order dependence in both $[CIO_2]$ and $[OCI^-]$ (Figure 2b) when $ClO₂$ and $OCl⁻$ reactant solutions were mixed. However, we found important evidence that Csordás et al. missed, in which addition of excess $ClO₂$ ⁻ changes the reaction order from first-order to second-order dependence in $[CIO₂]$ (Figure 4b) and suppresses the rate (Figure 5b). These observations indicate that an electron transfer must occur from OCI^- to ClO_2 in the first step, which therefore leads to a different mechanism from the one proposed by these authors*.* We find no buffer dependence for the reaction (Table 2). The mechanism we propose (eqs $12-15$) is analogous to that for the reaction of OBr^- with $ClO₂$ (eqs $4 - 7$).

$$
ClO_2 + OCl^{-} \frac{k_1^{OCl^{-}}}{k_1^{OCl}} ClO_2^{-} + ClO \t K_1^{OCl^{-}} \t (12)
$$

$$
ClO + ClO2 \xrightarrow{k_2^{OCl}} ClOCIO2
$$
 (13)
\n
$$
ClO2 + OH^- \xrightarrow{rapid} OCI^- + HClO3
$$
 (14)

$$
CIOCIO2 + OH- \frac{rapid}{ } OCl- + HClO3
$$
 (14)
HClO₃ + OH⁻ $\frac{rapid}{ } ClO3- + H2O$ (15)

$$
HClO3 + OH- \xrightarrow{\text{rapra}} ClO3- + H2O
$$
 (15)

Calculation of the stability of $Cl₂O₃²³$ shows that the formation of $CIOCIO₂$ from the reaction in eq 13 would be favorable by 45.6 kJ mol⁻¹ in the gas phase. $HClO_3 + OH^- \xrightarrow{\text{rapid}} ClO_3$
n of the stability of Cl₂
ClOClO₂ from the reacti

Csordás et al. 8 excluded the possibility of an electron transfer between the reactants on the basis of the work by Fábián et al.²⁴ and Buxton et al.²⁵ However, the mechanism proposed for the ClO reaction with ClO_2^- and ClO_2 by Fábián et al.²⁴ actually supports our proposed k_{-1}^{OCl} and k_2^{OCl} Fabral et al. actually supports our proposed κ_{-1} and κ_2 steps in eqs 12 and 13. When Buxton and Subhani²⁵ performed their pioneering pulse radiolysis study in 1972, it was erroneously thought that an OH-type radical was the primary product of the reaction between a hydrated electron and a halogen oxoanion. Later pulse radiolytic studies by Eriksen et al.²⁶ and Zuo et al.²⁷ detected and demonstrated that $ClO₂$ and $OCl⁻$ are the products of the reaction between the solvated electron and $ClO₂⁻$. Their interpretations were

- (22) Flis, I. E.; Mishchenko, K. P.: Salnis, K. Yu. *J. Appl. Chem.* **1959**, *32,* ²⁹⁵-301.
- (23) Clark, J.; Francisco, J. S. *J. Phys. Chem. A* **¹⁹⁹⁷**, *101,* ⁷¹⁴⁵-7153.
- (24) Fa´bia´n, I.; Szucs, D.; Gordon, G. *J. Phys. Chem. A* **²⁰⁰⁰**, *¹⁰⁴*, 8045- 8049.
- (25) Buxton, G. V.; Subhani, M. S. *J. Chem. Soc., Faraday Trans. 1* **1972**, *68,* ⁹⁴⁷-955. (26) Eriksen, T. E.; Lind, J.; Mere´nyi, G. *J. Chem. Soc., Faraday Trans.*
- *1,* **¹⁹⁸¹**, *⁷⁷*, 2115-2123. (27) Zuo, Z.; Katsumura, Y.; Ueda, K.; Ishigure, K. *J. Chem. Soc., Faraday*
- *Trans.* **¹⁹⁹⁷**, *⁹³*, 1885-1891.

that the rate constant for the solvated electron reaction with ClO₂⁻ was 2.5 \times 10⁹ M⁻¹ s⁻¹²⁶ and 4.4 \times 10⁹ M⁻¹ s⁻¹²⁷ As will be shown, we find a value of 3.6×10^9 M⁻¹ s⁻¹ for the ClO reaction with ClO_2^- to give ClO₂ and OCl⁻ (eq 12, k_{-1}^{OCl}). This strongly suggests that ClO may be an interme- λ_{-1} . This strongly suggests that CIO may be an intermediate in the reaction of e(aq)⁻ with CIO₂⁻, and the presence of excess ClO_2^- causes the formation of ClO_2 and OCl⁻. Hence, our results are in substantial agreement with those of Eriksen et al.²⁶ and Zuo et al.²⁷

According to the mechanism in eqs $12-15$, the rate expression for the reaction of OCl^- and $ClO₂$ is given in eq 16.

$$
-\mathrm{d}[\text{ClO}_2]/\mathrm{d}t = \frac{2k_1^{\text{OCl}}k_2^{\text{OCl}}[\text{OCl}^-][\text{ClO}_2]^2}{k_{-1}^{\text{OCl}}[\text{ClO}_2^-] + k_2^{\text{OCl}}[\text{ClO}_2]}
$$
(16)

Equations 17 and 18 give the simplified rate expressions.

$$
-d[ClO_2]/dt = 2k_1^{OCl^-}[OCl^-][ClO_2]
$$

(when $k_2^{OCl}[ClO_2] \gg k_{-1}^{OCl}[ClO_2^-])$ (17)

$$
-d[ClO_{2}]/dt = \frac{2k_{1}^{OCl}k_{2}^{OCl}[OCl^{-}]}{k_{-1}^{OCl}[ClO_{2}^{-}]}[ClO_{2}]^{2}
$$

\n
$$
ClO_{2} + OCl^{-} \xrightarrow{k_{1}^{OCl}} ClO_{2}^{-} + ClO \t K_{1}^{OCl^{-}}
$$

\n
$$
ClO + ClO \xrightarrow{k_{2}^{OCl}} ClOClO.
$$

\n
$$
(13)
$$
\nWe followed the reaction for only 50% loss of ClO₂ in
\nthe *LOCl₋₁* dependence that the maximum of the
\n*QCl₋₁* dependence that the maximum of the

We followed the reaction for only 50% loss of ClO₂ in the [OCl-] dependence study to meet the requirement for eq 17 that $\left[\text{ClO}_2\right]/\left[\text{ClO}_2\right] \gg k_{-1}^{\text{OCl}}/k_2^{\text{OCl}}$. From the value of
the clane in Figure 2b, k_{-1}^{OCl} is determined as 0.01 + 0.04 the slope in Figure 2b, k_1^{OCI} is determined as 0.91 ± 0.04
M⁻¹ s⁻¹ By using the reported potential values ²¹ F° (OCl) M^{-1} s⁻¹. By using the reported potential values,²¹ E° (OCl/ OCI^- = 1.50 V, $E^{\circ}(\text{ClO}_2/\text{ClO}_2^-) = 0.924$ V, the equilibrium
constant E^{OCI^-} for the electron transformation in eq. 12 is constant $K_1^{\text{OCI}^-}$ for the electron-transfer step in eq 12 is calculated to be 2.55 \times 10⁻¹⁰. To have second-order dependence in $[CIO_2]$ (eq 18), concentrations of ClO_2^- ranging from 7.98 to 14.63 mM were used in the $\text{[ClO}_2\text{^-}]$ dependence study to meet the required condition: k_1^{OCI} [ClO₂⁻] \gg
 k^{OCI} [ClO₂] . However, at these high [ClO₂⁻] the kinetic $k_2^{\rm OCl}$ [ClO₂]. However, at these high [ClO₂⁻], the kinetic traces deviate slightly from a second-order fit because of the interference of the OCI^{-}/ClO_2^{-} reaction.²⁸ To avoid this problem, the rates were analyzed by an initial rate method with a five-point smoothing derivative program.^{29,30} From the values of $K_1^{\text{OCI}^-}$, $k_1^{\text{OCI}^-}$, and the slope of the plot [OCI^- / $k_{\text{obsd}}^{\text{2nd}}$ against [ClO₂⁻], the following values were obtained: $k_{-1}^{\overline{OCI}} = 3.6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, $k_{-1}^{\overline{OCI}}/k_2^{\overline{OCI}} = 0.260$, $k_2^{\overline{OCI}} = 1.4 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$. The resolved $k_2^{\overline{OCI}}$ value exceeds the diffusion controlled rate constant value $(7 \times 10^9 \text{ M}^{-1} \text{ s}^{-1})$, which is not reasonable. However, because the k_2^{OCl} value is calculated indirectly from E° (OCl/OCl⁻) and E° (ClO₂/ClO₂⁻), and the E° (OCl/OCl⁻) value was estimated on the basis of some assumptions,21 a small error in this value could cause a deviation of the k_2^{OCl} value. If we set the k_2^{OCl} to 7×10^9

(30) Savitzky, A.; Golay, M. *Anal. Chem.* **¹⁹⁶⁴**, *³⁶*, 1627-1639.

⁽²⁸⁾ Gordon, G.; Tachiyashiki, S. *En*V*iron. Sci. Technol.* **¹⁹⁹¹**, *²⁵*, 468- 474.

⁽²⁹⁾ The program, provided by H. L. Pardue, Department of Chemistry, Purdue University, is based on ref 30.

Table 4. Summary of Rate Constants and Activation Parameters for Hypohalite Ion Catalysis of the Disproportionation of Chlorine Dioxide*^a*

reaction	rate constant	value b $(M^{-1} s^{-1})$	ΔH^{\ddagger} $(kJ \text{ mol}^{-1})$	ΔS^{\ddagger} $(J \text{ mol}^{-1} \text{ K}^{-1})$
$CIO_2 + OBr^{-\frac{k_{1}^{OBr}}{k_{-1}^{OBr}}} CIO_2^{-} + BrO$	k_1^{OBr}	2.05(3)	55(1)	$-49(2)$
	k_{-1}^{OBr}	1.6×10^{7}		
$BrO + ClO2 \xrightarrow{k_2^{OBr}} BrOClO2$	k_2^{OBr}	1.0×10^8		
$CIO_2 + OCI \stackrel{k_1^{OCI}}{\overline{k_2^{OCI}}} CIO_2 + OCI$	$k_1^{\rm OCI}$	0.91(4)	61(3)	$-43(2)$
	$k_{-1}^{\rm OCl}$	3.6×10^{9}		
$CIO + CIO$ ₂ $\xrightarrow{k_2^{\text{OCI}}} CIOCIO$ ₂	$k_{2}^{\rm OCl}$	7×10^9		
^a Conditions: $\mu = 1.0$ M, $[CO_3]_T = 0.10$ M. b 25.0 °C				

 M^{-1} s⁻¹, then $K_1^{OCI^-}$ and $E^{\circ}(\text{OCI} + \text{ClO}_2 \rightarrow \text{ClOClO}_2)$ are calculated to be 5.11 \times 10⁻¹⁰ and -0.549 V, respectively calculated to be 5.11×10^{-10} and -0.549 V, respectively. Correspondingly, *E*°(OCl/OCl-) equals 1.48 V assuming that the value of E° (ClO₂/ClO₂⁻) is accurate. The difference between this value and the reported value is 0.02 V, which is within the error of the literature value for E° (OCl/OCl⁻). On the basis of this argument, we consider the formation of $CIOClO₂$ in eq 13 to be diffusion controlled.

As shown in Figure 3b, the excellent fit of the pH dependence data to eq 19 indicates the lack of an HOCl $(pK_A^{\text{HOC}} = 7.47 \text{ at } 25.0 \text{ °C}$, $\mu = 1.0 \text{ M}^{\text{31}}$ path. The level of $C1O_2$ is too $ClO₂$ ⁻ generated from the disproportionation of $ClO₂$ is too low to inhibit the reaction. In addition, the $HOCI/CIO_2^$ reaction will convert ClO_2^- to ClO_3^- and Cl^{-32}

$$
\frac{k_{\text{obsd}}}{\text{[HOC1]}_{\text{T}}} = 2k_1^{\text{OCl}^-} \frac{K_a^{\text{HOC1}}}{K_a^{\text{HOC1}} + \text{[H}^+]}
$$
(19)

The activation parameters for the reaction were determined (Figure 6b) as the following: $\Delta H_1^{\dagger} = 61 \pm 3$ kJ mol⁻¹,
 $\Delta S_1^{\dagger} = -43 + 2$ J mol⁻¹ K⁻¹. These values are in good $\Delta S_1^{\dagger} = -43 \pm 2$ J mol⁻¹ K⁻¹. These values are in good agreement with the results reported by Csordás et al. 8 The rate constants and the activation parameters obtained in the present study are summarized in Table 4.

Conclusions. The first step of the hypohalite ion catalysis of the disproportionation of $ClO₂$ is the reaction between OX^- and ClO_2 via electron transfer to give OX and ClO_2^- . At 25.0 °C, $k_1^{\text{OBF}}/k_1^{\text{OCl}} = 2.3$, and ClO₂⁻ suppresses the rate
of both reactions. Subsequent steps between the XO and ClO₂ of both reactions. Subsequent steps between the XO and ClO₂ radicals to give XOClO₂ are extremely fast $(k_{2}^{\text{OBF}} = 1.0 \times 10^{8} \text{ M}^{-1} \text{ s}^{-1}$ and the hase 10^8 M⁻¹ s⁻¹ and $k_{\text{QCD}}^{\text{OCI}} = 7 \times 10^9$ M⁻¹ s⁻¹), and the base
hydrolysis of XOClO₂ to give OX⁻ and ClO₂⁻ is also fast hydrolysis of $XOCIO₂$ to give $OX⁻$ and $ClO₃⁻$ is also fast. Catalysis of ClO₂ disproportionation by BrO_2^- is also very effective,⁹ and the rate constant for the first electron-transfer step between BrO_2^- and ClO_2 is 36 M^{-1} s⁻¹ (17 times larger than that of OBr^-).

Acknowledgment. This work was supported by National Science Foundation Grants CHE-9818214, CHE-0139876 and the Purdue Research Foundation. The authors wish to thank one of the reviewers for thoughtful suggestions about the agreement between our work and the pulse radiolysis studies.

Supporting Information Available: Tables and figures with supplemental data and the details for the calculation for the data in Table 3. This material is available free of charge via the Internet at http://pubs.acs.org.

IC020440M

⁽³¹⁾ Gerritsen, C. M.; Margerum, D. W. *Inorg. Chem.*, **¹⁹⁹⁰**, *²⁹*, 2757- 2762.

⁽³²⁾ Jia, Z.; Margerum, D. W.; Francisco, J. S. *Inorg. Chem.* **2000**, *39*, ²⁶¹⁴-2620.