Inorg. Chem. 2002, 41, 6432-6439

Aluminum Orthovanadate (AIVO₄): Synthesis and Characterization by ²⁷AI and ⁵¹V MAS and MQMAS NMR Spectroscopy

Ulla Gro Nielsen,[†] Astrid Boisen,[‡] Michael Brorson,[‡] Claus J. H. Jacobsen,[‡] Hans J. Jakobsen,[†] and Jørgen Skibsted^{*,†}

Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark, and Haldor Topsøe A/S, Nymøllevej 55, DK-2600 Lyngby, Denmark

Received June 14, 2002

Polycrystalline samples of AlVO₄ have been prepared by two methods of synthesis and characterized by ²⁷Al and ⁵¹V MAS NMR spectroscopy at 14.1 T. The MAS NMR spectra clearly reveal that essentially pure samples with minor impurities of V₂O₅ and alumina have been obtained. From these samples, ²⁷Al quadrupole coupling parameters and isotropic chemical shifts as well as the magnitudes and relative orientations of the ⁵¹V quadrupole coupling and chemical shift tensors have been determined with high precision for AlVO₄. These data have been obtained from a combined analysis of multiple-quantum (MQ) MAS NMR spectra and MAS NMR spectra of the central and satellite transitions. The ²⁷Al and ⁵¹V NMR data show that the asymmetric unit for AlVO₄ contains three isolated VO₄ tetrahedra, one pentacoordinated Al site, and two AlO₆ octahedra. This is in agreement with the supposition that AlVO₄ is isostructural with FeVO₄ and with a recent structure refinement for AlVO₄ based on powder X-ray diffraction (XRD) data. The favorable agreement between the refined crystal structure from powder XRD and the NMR parameters is apparent from a convincing correlation between experimental ⁵¹V quadrupole tensor elements and calculated ⁵¹V electric field gradient tensor elements obtained by the point-monopole approach. An assignment of the ²⁷Al NMR data is obtained from similar calculations of the ²⁷Al electric field gradients and by estimation of the distortion of the AlO₆ octahedra.

Introduction

Vanadium oxides impregnated on the surface of alumina supports are industrially important catalysts used in a number of catalytic reactions including selective oxidation of hydrocarbons.^{1–3} Similarly, vanadium oxides on titania supports are used for selective catalytic reduction of NO_x .⁴ Such catalysts are of increasing importance in the efforts to efficiently use the limited resources of fossil fuels and to meet environmental legislation. In the optimization of the catalytic properties (e.g., activity, selectivity, and lifetime) for these catalysts and for identification of the active sites on their surfaces, it is of paramount importance to obtain information about the chemical composition and local structure of the vanadium species on the surface. Generally, this information may be achieved by NMR, ESR, Raman, or IR spectroscopy alone or in combination with X-ray diffraction (XRD) or absorption techniques such as EXAFS and XANES.⁵ However, most of these methods require the establishment of correlations between structural and spectroscopic parameters in order to obtain structural information about the surface species. These correlations are usually derived from studies of model compounds with known crystal structures including inorganic vanadates and aluminates as well as metalloorganic compounds. Researchers employing solid-state NMR spectroscopy have established a number of relationships between NMR parameters and structural data, for example, between the ²⁷Al isotropic chemical shift ($\delta_{iso}(^{27}AI)$) and the coordination state for Al

^{*}To whom correspondence should be addressed. E-mail: jskib@ chem.au.dk. Fax: +45 8619 6199. Phone: +45 8942 3900.

[†] University of Aarhus.

[‡] Haldor Topsøe A/S.

Le Coustumer, L. R.; Taouk, B.; Le Meur, M.; Payen, E.; Guelton, M.; Grimblot, J. J. Phys. Chem. 1988, 92, 1230.

⁽²⁾ Eon, J. G.; Olier, R.; Volta, J. C. J. Catal. 1994, 145, 318.

 ⁽³⁾ Khodakov, A.; Olthof, B.; Bell, A. T.; Iglesia, E. J. Catal. 1999, 181, 205.

⁽⁴⁾ Topsøe, N.-Y. CATTECH 1997, 1, 125.

⁶⁴³² Inorganic Chemistry, Vol. 41, No. 24, 2002

⁽⁵⁾ Dunn, J. P.; Stenger, H. G., Jr.; Wachs, I. E. Catal. Today 1999, 51, 301.

in inorganic oxides⁶⁻⁸ and between the ⁵¹V chemical shift anisotropy (CSA) and the degree of condensation for the VO₄³⁻ anions in inorganic vanadates.⁹⁻¹⁴

The only stable compound in the $Al_2O_3 - V_2O_5$ system is aluminum orthovanadate (AlVO₄), and this phase may be considered an important model compound for V-O-Al bonding in relation to studies of vanadia impregnation on alumina surfaces. However, AlVO₄ is rather difficult to synthesize which is partly due to the fact that AlVO₄ undergoes a peritectic reaction at 765 °C, preventing its synthesis by high-temperature methods.¹⁵ Probably, for this reason, the synthesis of AlVO₄ crystals of sufficient size for structure determination by single-crystal XRD has not been reported. Powder XRD studies of AlVO₄ have provided the space group (triclinic, $P\overline{1}$, Z = 6) and unit cell parameters while IR studies indicate that the structure contains isolated VO4³⁻ units, AlO4 tetrahedra, and AlO6 octahedra.^{16,17} Moreover, from a Raman spectroscopic investigation,¹⁸ it was proposed that AlVO₄ is isostructural with FeVO₄ for which the crystal structure has been reported from single-crystal XRD.19 Most recently, AlVO4 has been used as a test compound in the evaluation of a new method for structure determination based on simulated annealing combined with nonlinear least-squares Rietveld refinement.²⁰ Using this method, a powder XRD profile for AlVO₄ was refined in the space group $P\overline{1}$, and fractional atomic coordinates were reported.²⁰ The refined structure (Figure 1), which closely resembles the structure reported for FeVO₄, contains three distinct VO43- tetrahedra, two AlO6 octahedra, and a pentacoordinated AlO₅ unit.

In this work, we present new procedures for the synthesis of AlVO₄. The resulting polycrystalline samples are characterized by ²⁷Al and ⁵¹V MAS and multiple-quantum (MQ) MAS NMR spectroscopy. This includes a precise determination of the ²⁷Al quadrupole coupling parameters and isotropic chemical shifts for three Al sites. Moreover, the magnitudes and relative orientations of the ⁵¹V quadrupole coupling and CSA tensors for three VO₄³⁻ tetrahedra in AlVO₄ are determined from ⁵¹V MAS and triple-quantum (3Q) MAS NMR experiments. Finally, relationships between

- (6) Müller, D.; Gessner, W.; Behrens, H.-J.; Scheler, G. Chem. Phys. Lett. 1981, 79, 59.
- (7) Smith, M. E. Appl. Magn. Reson. 1993, 4, 1.
- (8) Jansen, S. R.; Hintzen, H. T.; Metselaar, R.; de Haan, J. W.; van de Ven, L. J. M.; Kentgens, A. P. M.; Nachtegaal, G. H. J. Phys. Chem. B 1998, 102, 5969.
- (9) Lapina, O. B.; Mastikhin, V. M.; Shubin, A. A.; Krasilnikov, V. N.; Zamareaev, K. I. Prog. Nucl. Magn. Reson. Spectrosc. 1992, 24, 457.
- (10) Eckert, H.; Wachs, I. E. J. Phys. Chem. 1989, 93, 6796.
 (11) Hayakawa, S.; Yoko, T.; Sakka, S. Bull. Chem. Soc. Jpn. 1993, 66,
- (11) Hayaman, D., Tono, T., Buhan, D. Dun, Orem. Dec. opt. 1972, 00, 3393.
 (12) Skibsted, J.; Jacobsen, C. J. H.; Jakobsen, H. J. Inorg. Chem. 1998,
- (12) Skitskei, J., Jacobski, C. J. H., Jakobski, H. J. Morg. Chem. 1996, 37, 3083.
 (13) Nielsen, U. G.; Jakobsen, H. J.; Skibsted, J. Inorg. Chem. 2000, 39,
- 2135. 2135.
- (14) Nielsen, U. G.; Jakobsen, H. J.; Skibsted, J. J. Phys. Chem. B 2001, 105, 420.
- (15) Touboul, M.; Popot, A. J. Therm. Anal. 1986, 31, 117.
- (16) Baran, E. J.; Bottom, I. L. Monatsh. Chem. 1977, 108, 311.
- (17) Yamaguchi, O.; Uegaki, T.; Miyata, Y.; Shimizu, K. J. Am. Ceram. Soc. 1987, 70, C-198.
- (18) Hardcastle, F. D.; Wachs, I. E. J. Phys. Chem. 1991, 95, 5031.
- (19) Robertson, B.; Kostiner, E. J. Solid State Chem. 1972, 4, 29.
- (20) Coelho, A. A. J. Appl. Crystallogr. 2000, 33, 899.

Figure 1. Polyhedral representation of the structure for AlVO₄ shown by a projection along the *a* axis and based on the crystallographic data from the refined structure from powder XRD.²⁰ The light tetrahedra illustrate the isolated VO₄ units while the dark polyhedra show the coordination for aluminum.

the ²⁷Al/⁵¹V NMR data and the proposed structure for AlVO₄ from powder XRD are discussed.

Experimental Section

Synthesis of $AIVO_4$. All reagents were of analytical purity grade and were used without further purification. Two samples of $AIVO_4$ were synthesized using the methods described here.

Sample I. A 5.286 g (14 mmol) portion of aluminum nitrate nonahydrate (Al(NO₃)₃·9H₂O) was mixed with 1.282 g (7.0 mmol) of vanadium(V) oxide (V₂O₅) in a platinum crucible. A 5 mL portion of concentrated nitric acid was added, and the suspension was stirred for 1 h. The suspension was dried for 24 h (110 °C) and subsequently calcined at 650 °C for 5 days.

Sample II. A 3.1965 g (0.0176 mole) portion of V_2O_5 was dissolved in 25 mL of a saturated aqueous solution of tetramethylammonium hydroxide ((CH₃)₄NOH). Al(NO₃)₃•9H₂O [15.13 g (0.0403 mol)] dissolved in 50 mL of H₂O was slowly added to the vanadium solution. The pH of the resulting solution was adjusted to 14 by adding additional tetramethylammonium hydroxide solution and subsequently filtered. A 6 M solution of HNO₃ was added dropwise to the filtrate until a pH value of 7 was reached. The yellow precipitate was isolated, dried, and finally calcined at 650 °C for 20 h.

NMR Measurements. Solid-state ²⁷Al (156.3 MHz) and ⁵¹V (157.7 MHz) MAS NMR experiments were performed at 14.1 T on a Varian Unity INOVA-600 spectrometer using home-built CP/ MAS NMR probes for 4 and 5 mm o.d. rotors. The ²⁷Al and ⁵¹V single-pulse MAS NMR experiments employed a spectral width of 4 MHz, an rf pulse width of 0.5 μ s for $\gamma B_1/2\pi \approx 55$ kHz, and a relaxation delay of 1 s. Baseline distortions were suppressed by linear prediction of the first few data points of the FID followed by baseline correction using the Varian VNMR software. The ²⁷Al and ⁵¹V 3QMAS NMR experiments employed a home-built variable-temperature broadband MAS NMR probe for 4 mm o.d. rotors. 3QMAS spectra were acquired using the two-pulse sequence²¹ with a 24 step phase-cycling scheme and pulse widths for the 3Q excitation and conversion pulses corresponding to 180° (105°) and 60° (35°) liquid pulses²² for ²⁷Al (⁵¹V), respectively, for an rf field strength of $\gamma B_1/2\pi = 105$ kHz. The indirect dimension was incremented in 128 t_1 steps, and spectral widths of 50 kHz

⁽²¹⁾ Massiot, D.; Touzo, B.; Trumeau, D.; Coutures, J. P.; Virlet, J.; Florian, P.; Grandinetti, P. J. Solid State Nucl. Magn. Reson. **1996**, *6*, 73.

⁽²²⁾ Amoureux, J.-P.; Fernandez, C.; Frydman, L. Chem. Phys. Lett. 1996, 259, 347.

 (^{27}Al) and 150 kHz (^{51}V) were used in both dimensions. All NMR experiments employed exact magic-angle setting and spinning speeds in the range 10–15 kHz with a stability of ± 2 Hz, obtained using a Varian Inc. rotor-speed controller. Isotropic ^{27}Al and ^{51}V chemical shifts are relative to a 1.0 M aqueous solution of AlCl₃· 6H₂O and neat VOCl₃, respectively.

Spectral Analysis. Simulations, least-squares fittings, and error analysis of the experimental ²⁷Al and ⁵¹V MAS and 3QMAS NMR spectra were performed on a SUN ULTRA-5 workstation using the STARS software package.^{23–26} Optimization of integrated to simulated spinning sideband (ssb) intensities for the central and satellite transitions included effects from nonuniform detection (i.e., the quality factor of the probe).²³ Determination of the ⁵¹V CSA parameters from the manifolds of ssbs in the isotropic (F1) dimension of the ⁵¹V 3QMAS NMR spectra employed the method recently described elsewhere.^{27–29} The chemical shift parameters are defined as

$$\delta_{\rm iso} = \frac{1}{3} (\delta_{xx} + \delta_{yy} + \delta_{zz}), \, \delta_{\sigma} = \delta_{\rm iso} - \delta_{zz}, \, \eta_{\sigma} = \frac{\delta_{xx} - \delta_{yy}}{\delta_{\sigma}} \quad (1)$$

using the convention $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$. The quadrupole coupling parameters (C_Q and η_Q) are related to the principal elements of the electric-field gradient tensor (**V**) by the following equation

$$C_{\rm Q} = \frac{eQV_{zz}}{h}, \eta_{\rm Q} = \frac{V_{yy} - V_{xx}}{V_{zz}}$$
 (2)

for $|V_{zz}| \ge |V_{xx}| \ge |V_{yy}|$. The relative orientation of the quadrupole coupling and chemical shift tensors is described by the Euler angles ψ , χ , and ξ for $0 \le \psi \le 2\pi$ and $0 \le \chi$, $\xi \le \pi/2$,²⁵ which correspond to positive rotations about $\delta_{zz}(\psi)$, the new $\delta_{yy}(\chi)$, and the final $\delta_{zz}(\xi)$ axis.

Results and Discussion

Synthesis. AlVO₄ is the only stable compound in the V₂O₅-Al₂O₃ system, and the thermodynamic properties described later make synthesis of a pure crystalline sample difficult. Touboul and Popot¹⁵ studied the formation of AlVO₄ by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). They observed the crystallization of AlVO₄ at 266 °C, an eutectic equilibrium (liquid \leftrightarrow AlVO₄ + V₂O₅) at 695 °C, and a peritectic equilibrium (liquid + Al₂O₃ \leftrightarrow AlVO₄) at 765 °C.¹⁵ In a study of AlVO₄ solid solutions in the Al₂O₃-rich region of the V₂O₅-Al₂O₃ system, Yamaguchi et al. found that AlVO₄ decomposes to V₂O₅ and α -Al₂O₃ when heated above approximately 775 °C.¹⁷ The formation and decomposition of AlVO₄, obtained by hydrolysis of a solution containing vanadyl ethoxide and

- (23) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. J. Magn. Reson. 1991, 95, 88.
- (24) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. Chem. Phys. Lett. 1992, 188, 405.
- (25) Skibsted, J.; Nielsen, N. C.; Bildsøe, H.; Jakobsen, H. J. J. Am. Chem. Soc. 1993, 115, 7351.
- (26) Skibsted, J.; Vosegaard, T.; Bildsøe, H.; Jakobsen, H. J. J. Phys. Chem. 1996, 100, 14872.
- (27) Wang, S. H.; Xu, Z.; Baltisberger, J. H.; Bull, L. M.; Stebbins, J. F.; Pines, A. Solid State Nucl. Magn. Reson. 1997, 8, 1.
- (28) Nielsen, U. G.; Jakobsen, H. J.; Skibsted, J. Solid State Nucl. Magn. Reson. 2001, 20, 23.
- (29) Nielsen, U. G.; Jakobsen, H. J.; Skibsted, J. Solid State Nucl. Magn. Reson., in press.

aluminum isopropoxide, were monitored by DTA and powder XRD.¹⁷ Other synthetic methods include approaches similar to the procedure employed in this work for sample $I^{15,16}$ and a solution combustion process, where a solution of aluminum nitrate, ammonium metavanadate, ammonium nitrate, and 3-methyl-5-hydrazol is heated rapidly.³⁰ Method II utilizes the fact that both Al₂O₃ and V₂O₅ are soluble in a strong base. Thus, a solution containing these metals can be prepared. By acidification of such a solution, a precursor material was obtained that upon calcination at 650 °C gave the desired AlVO₄ phase free of alkali-ion impurities because tetramethylammonium hydroxide was used as the strong base.

The products resulting from the different methods of synthesis are generally examined by powder XRD^{16,17,30} which usually fails to detect amorphous phases. As an example, sample I is observed to be AlVO₄ with an impurity of less than 5 wt % V_2O_5 using powder XRD. The V_2O_5 impurity, readily identified by ⁵¹V MAS NMR, prevents the determination of precise ⁵¹V NMR parameters for AlVO₄ because the ssbs from this impurity overlap with one of the manifolds of the ssbs for AlVO₄. ²⁷Al MAS NMR spectra of sample I unexpectedly show an additional resonance in the range 45-80 ppm resulting from a minor impurity of amorphous η -alumina; however, this impurity does not affect the analysis of the spectral region for the resonances from AlVO₄. With the aim of minimizing the V_2O_5 impurity, a second sample of AlVO₄ (i.e., sample II) was synthesized. For this sample, no V_2O_5 impurity could be detected by ⁵¹V MAS NMR. However, quite large quantities of alumina impurities, which overlap with the ²⁷Al resonances from AlVO₄, are observed by ²⁷Al MAS NMR for sample II. Thus, samples I and II have been used for the ²⁷Al and ⁵¹V NMR experiments, respectively. We should note that, despite several attempts, it has not yet been possible to synthesize a completely pure crystalline sample of AlVO₄.

²⁷Al MAS and MQMAS NMR. The ²⁷Al MAS NMR spectrum (Figure 2a) of AlVO₄ (sample I) is dominated by the central and satellite transitions from a single ²⁷Al site (i.e., Al(1)) influenced by a fairly weak quadrupole coupling. Least-squares optimization of simulated to integrated spinning sideband (ssb) intensities for the satellite transitions for this site leads to determination of precise values for the quadrupole coupling parameters (C_0 and η_0) and the isotropic chemical shift (δ_{iso}). A simulated spectrum (Figure 2b) based on these parameters (Table 1) reproduces all features in the experimental manifold of ssbs for the Al(1) site. Expansion of the spectral region for the central transitions (Figure 3a) shows a second-order quadrupolar line shape in the region 5-30 ppm, originating from an ²⁷Al site (i.e., Al(2)) with a strong quadrupole coupling. $C_{\rm Q}$, $\eta_{\rm Q}$, and $\delta_{\rm iso}$ are readily determined for this site by simulation of the second-order quadrupolar line shape. Furthermore, examination of the spectral region from -30 to 0 ppm reveals that the narrow center band for the Al(1) site is superimposed on a much broader resonance, originating from one or more ²⁷Al sites.

⁽³⁰⁾ Ekambaram, S.; Patil, K. C. J. Alloys Compd. 1995, 217, 104.

Figure 2. (a) ²⁷Al MAS NMR spectrum (14.1 T, $v_r = 12.0$ kHz) of AlVO₄ illustrating the manifold of ssbs observed for the satellite transitions. (b) Optimized simulation of the ssbs in part (a) employing the ²⁷Al parameters in Table 1. The right-hand insets show the resolution and line shapes of the individual ssbs for the three ²⁷Al sites in AlVO₄. The central transition for the Al(1) site is cut off at 1/10 of its total height in both spectra.

Table 1. ²⁷Al Quadrupole Coupling Parameters (C_Q , η_Q) and Isotropic Chemical Shifts (δ_{iso}) for AlVO₄

site ^a	$C_{\rm Q}$ (MHz)	$\eta_{ m Q}$	$\delta_{ m iso}$ (ppm)
Al(1)	$\begin{array}{c} 1.64 \pm 0.10 \\ 6.73 \pm 0.10 \\ 5.88 \pm 0.10 \end{array}$	0.30 ± 0.04	-8.9 ± 0.5
Al(2)		0.42 ± 0.02	27.2 ± 0.6
Al(3)		0.58 ± 0.03	-1.1 ± 1.0

^{*a*} Assignment of the ²⁷Al NMR data to the specific Al sites in the crystal structure from powder XRD²⁰ (see text).

An improved resolution of these resonances is achieved in the ²⁷Al 3QMAS NMR spectrum of AlVO₄ illustrated in Figure 4. The contour plot as well as the isotropic (F1) dimension of this spectrum clearly resolve three resonances for AlVO₄. Moreover, a broad, low-intensity resonance is observed at about 5–15 ppm in the F2 dimension which originates from an impurity in the sample. We note that the three ²⁷Al resonances for AlVO₄ and the impurity resonance can alternatively be resolved by ²⁷Al MAS NMR at a very high magnetic field (21.15 T) as recently demonstrated.³¹ The C_0 , η_0 , and δ_{iso} parameters for the Al(3) site, the site

(31) Nielsen, U. G.; Skibsted, J.; Jakobsen, H. J. Chem. Commun. 2001, 2690.

Figure 3. (a) Expansion of the spectral region for the ${}^{27}\text{Al}$ central transitions observed in the ${}^{27}\text{Al}$ MAS NMR spectrum of AlVO₄ at 14.1 T (cf., Figure 2). (b) Optimized simulation of the central transitions for the three ${}^{27}\text{Al}$ sites in AlVO₄ using the parameters in Table 1. Separate simulations of the second-order quadrupolar line shapes for the individual ${}^{27}\text{Al}$ sites are shown for Al(1), Al(2), and Al(3) in parts (c), (d), and (e), respectively. The simulated spectra employ the same vertical scale except for the Al(1) site (c) where the vertical scale is reduced by a factor of 2.

Figure 4. Contour plot for the ²⁷Al 3QMAS NMR spectrum of AlVO₄ (14.1 T, $v_r = 12.0$ kHz). The contours from the three Al sites in AlVO₄ are labeled by Al(1), Al(2), and Al(3) whereas the asterisk indicates the resonance from the impurity phase. The projection onto the F1 axis corresponds to a summation over the 2D spectrum.

overlapping with the Al(1) site in the MAS NMR spectrum (Figure 3a), are determined from line shape analysis of a summation in the F2 dimension over the Al(3) resonance in the 3QMAS spectrum, and they are identical within error limits with the parameters obtained at 21.15 T.³¹ The optimized parameters for the three Al sites in AlVO₄ are summarized in Table 1 and illustrated by the simulations in Figure 3b–e of the center bands for the central transitions. The total simulation (Figure 3b) reproduces well all features of the experimental spectrum for the central transitions,

except for the region at about 5-15 ppm, where the quadrupolar line shape for the Al(2) resonance is slightly distorted as a result of the overlap with the broad resonance from the impurity phase. The broad and featureless appearance of the resonance from the impurity in the 3QMAS spectrum shows that this resonance originates from an amorphous phase, in agreement with the fact that this impurity is not observed by powder XRD. Furthermore, the estimated chemical shift ($\delta = 10-20$ ppm) demonstrates that the impurity contains aluminum in octahedral coordination. Thus, the impurity is most likely an amorphous alumina phase in our sample I of AlVO₄. Using the well-known correlation between $\delta_{iso}(^{27}Al)$ and the Al–O coordination state, 6^{-8} the resonances for Al(1) and Al(3) are assigned to octahedrally coordinated aluminum, and the resonance from Al(2) is assigned to a pentacoordinated aluminum site. This observation is in agreement with the crystal structure reported by Coelho²⁰ and thereby supports the expectation that AIVO₄ and FeVO₄ are isostructural. AlVO₄ has earlier been studied by ²⁷Al MAS NMR by Ekambaram and Patil,³⁰ who only observed a single resonance at 7.1 T. This observation may reflect the fact that the central transitions for the Al(2) and Al(3) sites strongly overlap with the narrow center band from Al(1) in MAS NMR spectra at 7.1 T^{31}

⁵¹V MAS and MQMAS NMR. The ⁵¹V MAS NMR spectrum ($\nu_r = 10.5$ kHz) of the complete manifold of ssbs from the central and satellite transitions for AlVO4 is shown in Figure 5a. Expansion of the spectral region for the central transitions and of selected ssbs from the satellite transitions (Figure 5a) shows a distinct resolution of resonances from three different vanadium sites. The individual ssbs from the three ⁵¹V sites are almost completely separated, a situation which is achieved at 14.1 T only when spinning speeds in the range 10 kHz $\leq v_r \leq 11$ kHz or above 20 kHz are employed. Obviously, the optimum resolution of the manifolds of ssbs from the three sites is obtained for $v_{\rm r} \gtrsim 20$ kHz; however, for such spinning speeds, the spectral effects from the small ⁵¹V CSAs are almost completely eliminated. Furthermore, we note that at 14.1 T the manifolds of ssbs from the satellite transitions for ${}^{51}V$ (157.7 MHz) and ${}^{27}A1$ (156.3 MHz) overlap only slightly in the outer regions and only for the ²⁷Al and ⁵¹V sites with strongest quadrupole coupling. However, at lower magnetic fields, the small difference in Larmor frequencies for ⁵¹V and ²⁷Al results in a significant overlap of the ssbs from the satellite transitions for these two spin isotopes which complicates the analysis of the ⁵¹V MAS NMR spectra. The manifolds of ssbs for the three ⁵¹V sites are observed over a spectral range of 1.2 MHz and are dominated by three intense center bands from the three central transitions. This indicates that the three ⁵¹V sites possess moderate-sized quadrupole couplings and small CSAs, which are characteristic features for VO₄³⁻ units in orthovanadates.^{12,29} Least-squares fitting of simulated to experimental ssb intensities for the individual manifolds of ssbs, employing the same theoretical approach as used in studies of other inorganic vanadates,¹²⁻¹⁴ has been employed for the spectrum in Figure 5a. For one of the ⁵¹V sites (i.e., V(2)), this procedure gives a straightforward determination

Figure 5. (a) ⁵¹V MAS NMR spectrum (14.1 T, $v_r = 10.5$ kHz) of the central and satellite transitions for AlVO₄ shown on a kilohertz scale relative to the isotropic peak for V(2). (b) Optimized simulation of the three overlapping manifolds of ssbs in part (a) employing the ⁵¹V NMR parameters in Table 2 and including second-order quadrupolar effects to account for the line shapes of the ssbs. The right-hand insets show the spectral region for the isotropic peaks (on a ppm scale relative to VOCl₃) while the left-hand insets illustrate that the ssbs from the satellite transitions are almost completely separated for the three ⁵¹V sites.

of the quadrupole coupling and CSA (δ_{σ} and η_{σ}) parameters as well as the Euler angles (ψ , χ , and ξ), relating the principal axis systems for the two tensorial interactions. However, for the manifolds of ssbs from the V(1) and V(3) sites, the leastsquares fitting arrives at a minimum in the rms function for two parameter sets corresponding to identical $C_{\rm Q}$, $\eta_{\rm Q}$, and η_{σ} values but δ_{σ} parameters with opposite sign and different values for the Euler angles. A similar ambiguity in the determination of the sign for the δ_{σ} parameter has recently been observed for LaVO4.29 In that work, a reliable determination of δ_{σ} was obtained by analysis of the ssb manifold observed in the isotropic dimension of a ⁵¹V 3QMAS NMR spectrum, utilizing the fact that the CSA interaction is magnified by a factor of 3 in this dimension. The same approach is used here employing the ⁵¹V 3QMAS NMR spectrum shown in Figure 6. The ⁵¹V 3QMAS NMR spectrum of AlVO₄ is dominated by the manifolds of ssbs originating from the three center bands in the isotropic dimension. However, ssb manifolds of lower intensity are also observed for the first-order ssbs in the isotropic

Figure 6. Contour plot of the ⁵¹V 3Q MAS NMR spectrum of AlVO₄ (14.1 T, $v_r = 10.5$ kHz). The projection onto the anisotropic dimension (F2) is a summation. V(1), V(2), and V(3) indicate the isotropic peaks in this dimension for the three ⁵¹V sites.

dimension. A reconstruction of these ssb manifolds in the isotropic dimension, employing the approach by Wang et al.,²⁷ gives subspectra for the three ⁵¹V sites that are strongly dominated by the CSA interaction. Including effects from only the CSA interaction in least-squares fits to these subspectra gives an unambiguous determination of the sign for δ_{σ} as well as the magnitudes for δ_{σ} and η_{σ} for the V(1) and V(3) sites (cf., Table 2). It is noted that the CSA parameters cannot be determined in a similar manner for the V(2) site, because the small quadrupole coupling for this site ($C_0 = 2.35$ MHz) results in modulations of the firstorder quadrupole coupling interaction which significantly contribute to the ssb intensities in the isotropic dimension.³² The CSA data determined from the 3QMAS spectrum are subsequently used as fixed parameters in least-squares optimizations for the determination of the ψ , χ , and ξ Euler angles from the manifolds of ssbs for the V(1) and V(3) sites in the ⁵¹V MAS NMR spectrum (Figure 5a).

The analysis described here gives the magnitudes and relative orientations of the quadrupole coupling and CSA tensors for the three ⁵¹V sites in AlVO₄ listed in Table 2, which should be considered the optimum data resulting from the combined analysis of the ⁵¹V 3QMAS and MAS NMR spectra. The optimized parameters are illustrated by a total simulation (Figure 5b) of the three overlapping manifolds of ssbs and by the simulated spectra for the individual ⁵¹V sites illustrated in Figure 7. Eckert and Wachs¹⁰ have earlier studied AlVO₄ by ${}^{51}V$ MAS NMR at 7.1 and 11.7 T. Although the strong overlap of ssbs for the central transitions from the three ⁵¹V sites prevented a determination of the CSA parameters, they reported δ_{iso} values of -661, -745, and -775 ppm for the three sites from analysis of the centers of gravity for the central transitions at the two magnetic fields. These isotropic chemical shifts are in excellent agreement with those determined in this work (cf., Table 2). AlVO₄ has most recently been investigated by Kalinikin et al.³³ who reported an estimate of the magnitude of the CSA interaction corresponding to $\Delta \delta \approx 100$ ppm for all three

vanadium sites from ⁵¹V MAS NMR at 9.4 T; however, no quadrupole coupling parameters were determined. In addition, they reported isotropic chemical shift values of -661, -740, and -772 ppm, in good agreement with those given in Table 2.

Relationships between the ²⁷Al and ⁵¹V NMR Parameters and Structural Data. The ⁵¹V NMR data for AlVO₄ (Table 2) show that each of the three ⁵¹V sites possesses small chemical shift anisotropies ($|\delta_{\sigma}| \approx 80-120$ ppm), η_{σ} $\approx 0.7-0.9$, and fairly small quadrupole couplings. Furthermore, the Euler angles $(\psi, \chi, \text{ and } \xi)$ are identical within error limits for the three ⁵¹V sites. Nearly identical values for δ_{σ} , η_{σ} , and χ have recently been observed for ⁵¹V in isostructural ortho-, pyro-, and metavanadates.¹²⁻¹⁴ Thus, the similarity of these parameters for AlVO₄ shows that the environments of the VO4³⁻ anions are quite similar for this compound. Moreover, a comparison of the CSAs and quadrupole couplings with those reported for ortho-, pyro-, and metavanadates⁹⁻¹⁴ strongly suggests that AlVO₄ contains three orthovanadate units (i.e., isolated VO_4^{3-} tetrahedra), in agreement with the refined crystal structure from powder **XRD**.²⁰

Relationships between the ⁵¹V data and the refined crystal structure are further investigated by estimation of the ⁵¹V electric field gradients (EFGs) using point-monopole calculations in combination with the structural data from powder XRD. These types of calculations, which also have been used in the analysis of ²³Na and ¹³³Cs quadrupole coupling parameters,^{26,34} have recently proven useful in the assignment of ⁵¹V NMR data to specific vanadium sites for pyro- and metavanadates containing multiple ⁵¹V sites.^{13,14,35} In the approach used in these studies, the point-monopole calculations only consider the oxygen atoms within the first coordination sphere of the V⁵⁺ ion and employ effective charges for these anions obtained as $q_{\text{eff}} = (-2 + \Sigma f_{ij})e$. Here, f_{ii} is the covalence of the oxygen(*i*)-cation(*j*) bond calculated from the bond-valence equations of Brown and Shannon³⁶ and the chemical-bond data of Brown and Altermatt.37 This procedure and the structural data from powder XRD²⁰ give the calculated ⁵¹V EFG tensor elements listed in Table 3 for AlVO₄. The calculated EFG elements are correlated with the principal elements of the ⁵¹V quadrupole coupling tensors, derived from C_Q and η_Q in Table 2 according to

$$Q_{zz}^{\exp} = C_{Q}, Q_{yy}^{\exp} = -\frac{1}{2}(1 - \eta_{Q})C_{Q}, Q_{xx}^{\exp} = -\frac{1}{2}(1 + \eta_{Q})C_{Q}$$
(3)

and assuming $C_Q > 0$. The plot of the experimental quadrupole tensor elements as a function of the calculated principal elements of the ⁵¹V EFG tensors (Figure 8) demonstrates a linear correlation between these parameters.

(37) Brown, I. D.; Altermatt, D. Acta Crystallogr., Sect. B 1985, 41, 244.

⁽³²⁾ Marinelli, L.; Frydman, L. Chem. Phys. Lett. 1997, 275, 188.

⁽³³⁾ Kalinkin, P.; Kovalenko, O.; Lapina, O.; Khabibulin, D.; Kundo, N. J. Mol. Catal. A 2002, 178, 173.

⁽³⁴⁾ Koller, H.; Engelhardt, G.; Kentgens, A. P. M.; Sauer, J. J. Phys. Chem. 1994, 98, 1544.

⁽³⁵⁾ Nielsen, U. G.; Jakobsen, H. J.; Skibsted, J.; Norby, P. J. Chem. Soc., Dalton Trans. 2001, 21, 3214.

⁽³⁶⁾ Brown, I. D.; Shannon, R. D. Acta Crystallogr., Sect. A **1973**, 29, 266.

Table 2. ⁵¹V Quadrupole Coupling (C_Q , η_Q), Chemical Shift Parameters (δ_σ , η_σ , δ_{iso}), and Relative Orientation (ψ , χ , ξ) of the Two Tensors for the ⁵¹V Sites in AlVO₄^{*a*}

site ^a	$C_{\rm Q}$ (MHz)	$\eta_{ m Q}$	$\delta_{ m iso}(m ppm)$	η_σ	ψ (deg)	χ (deg)	ξ (deg)	$\delta_{ m iso}(m ppm)$
V(1) V(2) V(3)	4.05 ± 0.05 2.35 ± 0.03 3.08 ± 0.02	0.84 ± 0.02 0.93 ± 0.02 0.62 ± 0.02	87 ± 8 -120 ± 6 -82 ± 7	0.74 ± 0.17 0.72 ± 0.10 0.88 ± 0.11	$114 \pm 30 \\ 137 \pm 30 \\ 130 \pm 30$	$29 \pm 23 \\ 27 \pm 7 \\ 25 \pm 12$	$88 \pm 31 \\ 58 \pm 30 \\ 15 \pm 20$	-660.5 ± 1 -743.6 ± 1 -775.7 ± 1

^{*a*} For a definition of the ⁵¹V NMR parameters, see the Experimental Section. ^{*b*} Assignment of the ⁵¹V NMR parameters to the specific ⁵¹V sites in the crystal structure from powder XRD²⁰ based on calculated ⁵¹V EFG tensor elements (see text).

Figure 7. Simulated ⁵¹V MAS NMR spectra (14.1 T, $v_r = 10.5$ kHz) illustrating the individual manifold of ssbs for the (a) V(1), (b) V(2), and (c) V(3) sites in AlVO₄ and corresponding to the optimized ⁵¹V parameters in Table 2. Summation of the manifolds of ssbs in parts (a), (b), and (c) gives the simulated spectrum for AlVO₄ shown in Figure 5b. All spectra are shown on the same vertical scale; however, the center band for the V(1) site is cut off at half-height.

Linear regression analysis of the data in Figure 8 gives the equation

$$Q_{ii}^{\text{exp}} = 3.33 V_{ii}^{\text{calc}} (10^{20} \text{ V m}^{-2})$$
 (4)

with the correlation coefficient R = 0.991. The excellent correlation between Q_{ii}^{exp} and V_{ii}^{calc} shows that the ⁵¹V quadrupole coupling parameters (Table 2) are in favor of the overall structure reported from powder XRD. Furthermore, the correlation provides an assignment of the ⁵¹V NMR

Table 3. Calculated Principal Elements ($\mathbf{V}_{ii}^{\text{calc}}$)(×10²⁰ V m⁻²) of the ⁵¹V Electric Field Gradient Tensors for the Vanadium Sites in AlVO₄^a

site ^a	$V_{xx}^{ m calc}$	$V_{yy}^{ m calc}$	$V_{zz}^{ m calc}$
V(1)	-1.066	-0.237	1.301
V(2)	-0.644	-0.048	0.692
V(3)	-0.772	-0.147	0.919

^{*a*} Calculated values from point-monopole calculations (see text) using the structural data reported from powder XRD.²⁰

Figure 8. Linear correlation between the ⁵¹V quadrupole coupling tensor elements (Q_{ii}^{calc}) and calculated EFG tensor elements (V_{ii}^{calc}) from point-monopole calculations (Table 3) for the three ⁵¹V sites in AlVO₄. The straight line shows the results of linear regression (cf., eq 4).

parameters in Table 2 to the specific crystallographic vanadium positions in the crystal structure for AlVO₄ reported from powder XRD.²⁰ However, the coefficient of 3.33 relating the EFG tensor to the quadrupole coupling tensor deviates somewhat from the corresponding coefficients determined for divalent metal pyrovanadates (2.34)¹⁴ and metavanadates (2.45).¹³ Employing the previously reported ⁵¹V quadrupole coupling parameters for the orthovanadates Mg₃(VO₄)₂, Zn₃(VO₄)₂, BiVO₄, and LaVO₄^{12,29} gives a linear correlation between the experimental quadrupole coupling tensor elements and the calculated principal elements of the ⁵¹V EFG tensors corresponding to the equation

$$Q_{ii}^{\exp} = 2.46 V_{ii}^{\text{calc}} (10^{20} \text{ V m}^{-2})$$
 (5)

with the correlation coefficient R = 0.98. The coefficient in eq 5 is in excellent agreement with those determined for the divalent metal pyro- and metavanadates, considering the simplicity of the point-monopole approach. The larger value observed for AlVO₄ (eq 4) may reflect the fact that the refined structure by Coelho²⁰ gives V–O bond distances which are either shorter or longer than those reported for the VO₄ tetrahedra in the isostructural compound FeVO₄.¹⁹ For example, the refined structure of AlVO₄ gives V–O bond distances of 1.56, 1.59, 1.80, and 1.82 Å for the V(1) site

whereas the corresponding distances for the V(1) site in FeVO₄ are 1.65, 1.66, 1.78, and 1.79 Å. These bond lengths for FeVO₄ are very similar to those determined for VO₄ tetrahedra in other orthovanadates whereas the V-O bond distances for AIVO₄ deviate significantly from these values. This indicates that the atomic coordinates determined for AlVO₄ from powder XRD are not as accurate as those reported for FeVO₄ from single-crystal diffraction. Recently, we have observed that precise structural parameters are required to obtain a reliable correlation between ⁵¹V quadrupole coupling tensors and calculated ⁵¹V EFG tensors.³⁵ Thus, we expect that the difference in coefficients in eqs 4 and 5 indicates that the structural data reported for AlVO₄ are of lower precision as compared to the single-crystal XRD structures reported for FeVO₄ and for the orthovanadates Mg₃(VO₄)₂, Zn₃(VO₄)₂, BiVO₄, and LaVO₄. Thus, eq 5 represents an improved correlation between ⁵¹V quadrupole coupling tensor elements and calculated principal elements of the ⁵¹V EFG tensors for orthovanadates as compared to the correlation (eq 4) observed for AlVO₄.

An assignment of the ²⁷Al resonances to the specific crystallographic sites in the powder XRD structure is obtained from similar point-monopole calculations of the ²⁷Al EFGs. The ²⁷Al resonance with $\delta_{iso} = 27.2$ ppm originates from a pentacoordinated Al site, and thus, this resonance is assigned to the Al(2) site in the crystal structure of Coelho.²⁰ Point-monopole calculations of the ²⁷Al EFGs for Al(1) and Al(3) give the unique EFG tensor elements $V_{zz}^{\text{calc}} = 0.70 \times$ 10^{20} V m⁻² and $V_{zz}^{calc} = 1.48 \times 10^{20}$ V m⁻², respectively. Thus, the ²⁷Al resonances with quadrupole couplings $C_Q =$ 1.64 MHz and $C_Q = 5.88$ MHz are assigned to the Al(1) and Al(3) sites, respectively, in the crystal structure from powder XRD.²⁰ Alternatively, the distortion of the AlO_6 octahedra can be described by the mean deviation (D) of the O–Al–O bond angles (θ_i) from the ideal value (θ_0 = 90° or 180°) for a perfect octahedron defined by

$$D = \frac{1}{15} \sum_{i=1}^{15} |\theta_i - \theta_o|$$
(6)

This parameter has earlier been employed in interpretations of ¹⁷O and ²⁷Al quadrupole coupling constants,^{38,39} assuming that increasing *D* is reflected by an increase in C_Q . Calculation of *D* for the two octahedrally coordinated Al sites in

the structure from powder XRD gives the values $D = 4.9^{\circ}$ and $D = 7.0^{\circ}$ for Al(1) and Al(3), respectively. Thus, this approach results in the same assignment of the ²⁷Al NMR resonances as obtained by the point-monopole calculations.

Conclusions

Polycrystalline samples of AlVO₄, containing only small quantities of V_2O_5 and alumina impurities, have been prepared using two different methods of synthesis. The characterization of these samples by ²⁷Al and ⁵¹V MAS NMR of the central and satellite transitions and by MQMAS NMR has shown that the asymmetric unit for AlVO₄ includes three isolated VO₄ tetrahedra, one pentacoordinated Al site, and two AlO₆ octahedra. These observations support the supposition that AlVO₄ and FeVO₄ are isostructural compounds and are in agreement with the refined crystal structure for AlVO₄ from powder XRD.²⁰ The MAS and MOMAS NMR spectra have allowed the determination of precise values for the anisotropic parameters characterizing the ²⁷Al quadrupole couplings and the magnitudes and relative orientations of the ⁵¹V quadrupole coupling and chemical shift tensors. These parameters have been assigned to the specific Al and V sites in the crystal structure obtained from powder XRD, employing point-monopole calculations of the ⁵¹V and ²⁷Al electric field gradient tensors. A convincing correlation between these calculated data and the experimental elements for the ⁵¹V quadrupole coupling tensors illustrates an excellent coherence between the proposed crystal structure from powder XRD²⁰ and the NMR data determined in this work.

Acknowledgment. The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, University of Aarhus, sponsored by the Danish Natural Science Research Council, the Danish Technical Science Research Council, Teknologistyrelsen, Carlsbergfondet, and Direktør Ib Henriksens Fond, is acknowledged. J.S. thanks the Danish Natural Science Research Council for financial support (J. No. 0001237).

Supporting Information Available: Crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0204023

⁽³⁸⁾ Turner, G. L.; Chung, S. E.; Oldfield, E. J. Magn. Reson. 1985, 64, 316.

⁽³⁹⁾ Skibsted, J.; Henderson, E.; Jakobsen, H. J. Inorg. Chem. 1993, 32, 1013.