Inorg. Chem. 2002, 41, 6507-6513

Synthesis, Structure, and Reactivity of Some *N*-Phosphorylphosphoranimines

Jon J. Longlet, Satish G. Bodige, William H. Watson, and Robert H. Neilson*

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129

Received June 26, 2002

A large series of new *N*-phosphorylphosphoranimines that bear potentially reactive functional groups on both phosphorus centers were prepared by silicon–nitrogen bond cleavage reactions of *N*-silylphosphoranimines. Thus, treatment of the *N*-silylphosphoranimines, Me₃SiN=P(Me)(R)X (R = Me, Ph; X = OCH₂CF₃ and R = Me, X = OPh), with phosphoryl chlorides, RP(=O)Cl₂ (R' = Cl, Me, Ph), readily afforded the corresponding *N*-phosphoryl derivatives, R'P(=O)(Cl)–N=P(Me)(R)X, in high yields. Subsequent reaction with 1 or 2 equiv of the silylamine, Me₃SiNMe₂, resulted in ligand exchange at the phosphoryl (P=O) group to give the *P*-dimethylamino analogues, R'P(=O)(NMe₂)N=P(Me)(R)X (R' = Cl, NMe₂, Me, Ph; R = Me, Ph; X = OCH₂CF₃, OPh). These new *N*-phosphorylphosphoranimines (and one thiophosphoryl analogue) were obtained as thermally stable, distillable liquids and were characterized by NMR (¹H, ¹³C, and ³¹P) spectroscopy and elemental analysis. One member of the series, Cl₂P(=O)N=P(Me)(Ph)OCH₂CF₃ (**4**), was also studied by single-crystal X-ray diffraction which revealed that the formal P(O)—N single bond [1.55(1) Å] is shorter than the formal N=PR₂X double bond [1.60(1) Å]. Such structural features are compared to those of similar compounds and discussed in relationship to the unexpected thermolysis pathways observed for these *N*-phosphorylphosphoranimines, none of which produced poly-(phosphazenes).

Introduction

The thermal condensation polymerization of many *N*-silylphosphoranimines, for example, Me₃SiN=P(Me)(R)X (R = Me, Ph; X = OCH₂CF₃, OPh), is well-established as an efficient synthetic route to poly(alkyl/aryl-phosphazenes), $[N=P(Me)(R)]_n$.^{1,2} In a related process, developed by De Jaeger,³ poly(dichlorophosphazene) (**2**) can be prepared by condensation polymerization (eq 1) of the *N*-phosphoryl-phosphoranimine **1**.

$$Cl \xrightarrow{P} N = P \xrightarrow{P} Cl \xrightarrow{\Delta} (l) \xrightarrow{P} N = P \xrightarrow{P} Cl \xrightarrow{\Delta} P(O)Cl_3 \xrightarrow{P} N = P \xrightarrow{P} n \xrightarrow{P} n$$
(1)

In this context, we were interested in the possibility of using this type of process to prepare substituted poly-(phosphazenes) from suitable *N*-phosphorylphosphoran-

10.1021/ic025823z CCC: \$22.00 © 2002 American Chemical Society Published on Web 10/31/2002

imines⁴ bearing alkyl/aryl substituents. Some related *N*-phosphorylphosphoranimines have been reported and structurally characterized,^{5,6} but generally, they do not contain the requisite functional groups on phosphorus. The reactivity of the Si—N bond in *N*-silylphosphoranimines toward nonmetal halides has been utilized to prepare many other Si—N=P⁷ and B—N=P⁸ derivatives. It seemed appropriate, therefore, to investigate the possible synthesis of P—N=P systems in a similar manner. We report here on the synthesis, structural characterization, and reactivity of a large series of new

- (6) Allcock, H. R.; Ngo, D. C.; Parvez, M.; Visscher, K. B. Inorg. Chem. 1994, 33, 2090.
- (7) Wettermark, U. G.; Neilson, R. H. Inorg. Chem. 1987, 26, 929.

Inorganic Chemistry, Vol. 41, No. 24, 2002 6507

 $[\]ast$ To whom correspondence should be addressed. E-mail: R.Neilson@tcu.edu.

 ⁽a) Wisian-Neilson, P.; Neilson, R. H. J. Am. Chem. Soc. 1980, 102, 2848. (b) Neilson, R. H.; Hani, R.; Wisian-Neilson, P.; Meister, J. J.; Roy, A. K.; Hagnauer, G. L. Macromolecules 1987, 20, 910. (c) Neilson, R. H.; Wisian-Neilson, P. Chem. Rev. 1988, 88, 541.

⁽²⁾ For general reviews of phosphazene chemistry, see: (a) Allcock, H. R. *Phosphorus-Nitrogen Compounds*; Academic: New York, 1972.
(b) Mark, J. E.; Allcock, H. R.; West, R. *Inorganic Polymers*; Prentice Hall: New Jersey, 1992. (c) Wisian-Neilson, P. In *Encyclopedia of Inorganic Chemistry*, *Vol.* 6; King, R. B., Ed.; John Wiley & Sons: Chichester, England, 1994; p 3371. (d) Allcock, H. R. *Chem. Eng. News* 1985, 63 (11), 22.

^{(3) (}a) D'Halluin, G.; De Jaeger, R.; Chambrette, J. P.; Potin, P. Macromolecules 1992, 25, 1254.

⁽⁴⁾ For a recent review containing synthetic routes to some related P-N=P systems, see: Cristau, H. J.; Taillefer, M.; Rahier, N. J. Organomet. Chem. 2002, 646, 94.

⁽⁵⁾ Cameron, A. F.; Cameron, I. R.; Keat, R. Acta Crystallogr., Sect. B 1979, 35, 1373.

N-phosphorylphosphoranimines that bear useful functional groups on both phosphorus centers.

Results and Discussion

Synthesis of *N*-Phosphorylphosphoranimines. Phosphoryl chloride, P(O)Cl₃, reacted smoothly in a 1:1 mole ratio with appropriate *N*-silylphosphoranimines (eq 2) in Et₂O or CH₂Cl₂ solution at 0 °C to afford the new *N*-phosphorylphosphoranimines 3-5. These P—N=P products were formed quantitatively (as indicated by ³¹P NMR spectroscopy of the reaction mixtures) and were isolated in good yields as high boiling liquids by vacuum distillation. They were fully characterized by NMR spectroscopy and elemental analyses. Compounds **3** and **4** solidified on standing, and crystals of **4** suitable for X-ray diffraction analysis (see description later) were obtained.

$$Cl \longrightarrow P - Cl + Me_{3}Si \longrightarrow R \xrightarrow{Me} - Me_{3}SiCl \longrightarrow Cl \longrightarrow R$$

$$Cl \longrightarrow P - X \xrightarrow{-Me_{3}SiCl} Cl \longrightarrow R \xrightarrow{-Me_{3}SiCl} (2)$$

$$Cl \longrightarrow P - X \xrightarrow{-Me_{3}SiCl} (2)$$

$$Cl \longrightarrow P - X \xrightarrow{-Me_{3}SiCl} (2)$$

$$Cl \longrightarrow R \xrightarrow{-Me_{3}SiCl}$$

The structures of compounds 3-5 were easily confirmed by multinuclear NMR (¹H, ¹³C, and ³¹P) spectroscopy. They all exhibit two doublets in the ³¹P NMR spectrum with a 2-bond P-P coupling constant of 16-18 Hz. The dichlorophosphoryl center [C1₂P(O)-] appears as an upfield doublet (ca. -5 to -9 ppm) while the phosphoranimine center $[-N=PR_2X]$ appears as a downfield doublet (ca. 40–54 ppm). The presence of two phosphorus atoms in each molecule is also readily apparent in the ¹³C NMR spectra. For example, the *P*-methyl signals for **3** and **5** [e.g., **3**: δ 15.4 (dd, PCH₃, ${}^{1}J_{PC} = 92.0$, ${}^{3}J_{PC} = 4.6$)] and the aryl P–C signal in **4** [δ 124.1 (dd, P- C_{aryl} , ${}^{1}J_{PC} = 139.8$, ${}^{3}J_{PC} = 10.1$)] are observed as doubled doublets because of spin coupling to both the adjacent and remote phosphorus atoms. All other substituents, notably the trifluoroethoxy groups in 3 and 4, were observed with the expected peak multiplicities and intensities in the ¹H and ¹³C NMR spectra.

Interestingly, attempts to replace two chlorine atoms on the phosphoryl center by using 2 equiv of the *N*-silylphosphoranimines were unsuccessful and gave only the same monosubstituted products. The P–Cl bonds, however, were reactive toward other silicon–nitrogen reagents. The *N*-(dichlorophosphoryl)phosphoranimines **3–5** reacted smoothly at 0 °C with the simple silylamine, Me₃SiNMe₂, in either 1:1 (eq 3) or 2:1 (eq 4) stoichiometry to afford the respective *P*-dimethylamino derivatives **6–9**. The presence of the dimethylamino groups on the phosphoryl center served to decrease the boiling points and increase the thermal stability of these products relative to their *N*-(dichlorophosphoryl)phosphoranimine analogues. A significant downfield shift $(\Delta \delta \sim 20-25 \text{ ppm})$ for the phosphoryl signal and an increase in the P–P coupling constant ($\Delta^2 J_{PP} \sim 3-9 \text{ Hz}$) were observed in the ³¹P NMR spectra of **6–9**. Additional signals in both the ¹H [e.g., **7**: δ 2.49 (d, N*Me*, $J_{PH} = 14.2$)] and ¹³C [δ 16.4 (dd, N*Me*, $^2 J_{PC} = 94.2$, $^4 J_{PC} = 4.0$)] NMR spectra confirmed the presence of the dimethylamino groups.

The same *N*-silylphosphoranimines as used in eq 2 also reacted smoothly with methyl- and phenylphosphoryl chlorides to give the corresponding chloro(methyl) (10-12) and chloro(phenyl) (13-14) substituted *N*-phosphorylphosphoranimines (eq 5). The lower molecular weight compounds 10 and 11 were readily purified by fractional distillation and gave satisfactory elemental analyses. Some thermal decomposition occurred when compounds 12 and 13 were distilled at high temperature under vacuum. Accordingly, distillation of diphenyl substituted analogue 14 was not attempted. Nevertheless, all of these derivatives provided clean NMR spectra that were fully consistent with the proposed structures.

The ³¹P NMR spectra revealed a marked downfield shift for the phosphoryl center ($\Delta \delta \sim 20-35$ ppm) in **10–14** relative to the dichlorophosphorylphosphoranimine analogues **3–5**. A noticeable decrease in the P–P coupling constants ($\Delta^2 J_{PP} \sim 10$ Hz) was also apparent for compounds **10** and **11**, while no P–P coupling was observed for compound **12**. The ¹H and ¹³C NMR spectra of compounds **10–12** contained doubled doublet patterns [e.g., **10**: ¹H NMR δ 1.79 (dd, *CH*₃P=O, ²*J*_{PH} = 17.2, ⁴*J*_{PH} = 2.2); ¹³C NMR δ 24.7 (dd, *CH*₃P=O, ¹*J*_{PC} = 131.3, ³*J*_{PC} = 9.0)] for the phosphoryl (P=O) methyl group, with spin coupling to two different phosphorus centers. Other NMR signals for the substituents attached to the P=N center were similar to those observed for analogous dichlorophosphoryl systems **3–5**.

$$Me_{3}Si - N = P - X \qquad \xrightarrow{R'P(O)Cl_{2}} \qquad Cl - P - N = P - X \qquad (5)$$

$$10: R = Me, R' = Me, X = OCH_{2}CF_{3}$$

$$11: R = Ph, R' = Me, X = OCH_{2}CF_{3}$$

$$12: R = Me, R' = Me, X = OCH_{2}CF_{3}$$

$$12: R = Me, R' = Ph, X = OCH_{2}CF_{3}$$

$$14: R = Ph, R' = Ph, X = OCH_{2}CF_{3}$$

As was the case with the dichlorophosphoryl compounds (eqs 3 and 4), these monochloro analogues also reacted

⁽⁸⁾ Shaw, Y. S.; Scheide, G. M.; Davis, C. E.; Mukherjee, P.; Neilson, R. H. Phosphorus, Sulfur Silicon Relat. Elem. **1989**, 41, 141. (b) Neilson, R. H.; Azimi, K.; Zhang, G.; Kucera, W. R.; Longlet, J. L. Phosphorus, Sulfur Silicon Relat. Elem. **1994**, 87, 157. (c) Azimi, K.; Neilson, R. H. J. Cluster Sci., submitted for publication.

N-Phosphorylphosphoranimines

smoothly with the silylamine, Me_3SiNMe_2 , to afford the corresponding P–NMe₂ derivatives (eq 6). In these reactions, the chloro(methyl)phosphorylphosphoranimines **10–13** were prepared as described and then treated with the silylamine in a one-pot procedure without distilling the P–Cl intermediates.

$$Cl \longrightarrow P = N = P = X \qquad \xrightarrow{Me_2NSiMe_3} \qquad \xrightarrow{Me_2NSiMe_3} \qquad \xrightarrow{Me_2N = P = N = P = X} \qquad (6)$$

$$10 - 13 \qquad 15: R = Me, R' = Me, X = OCH_2CF_3$$

$$16: R = Ph, R' = Me, X = OCH_2CF_3$$

$$17: R = Me, R' = Me, X = OPh$$

$$18: R = Me, R' = Ph, X = OCH_2CF_3$$

The desired dimethylamino derivatives 15-18 were obtained in good yields as thermally stable, distillable liquids (18 solidified on standing) that were fully characterized by NMR spectroscopy and elemental analyses. The ¹H and ¹³C NMR spectra showed the expected signals for the dimethylamino group as noted for the other P–NMe₂ compounds already described.

To investigate a possible extension of this type of chemistry to the thiophosphoryl (P=S) analogues, one reaction was studied. Treatment of the *N*-silylphosphoranimine, Me₃SiN=PMe₂OCH₂CF₃, with thiophosphoryl chloride, P(S)C1₃, (eq 7) readily gave *N*-(dichlorothiophosphoryl)-phosphoranimine **19** in good yield as a stable, distillable liquid. The ³¹P NMR spectrum of this product contains two doublets at 38.9 (P=S) and 54.4 ppm (P=N) with a ²J_{PP} value of 12.2 Hz. In further confirmation of the structure, the ¹³C NMR contains a doubled doublet for the *P*-methyl carbons [δ 15.6 (dd, PCH₃, ¹J_{PC} = 91.8, ³J_{PC} = 4.4)].

$$Cl \xrightarrow{P}_{l} Cl + Me_{3}Si \xrightarrow{N}_{e} \xrightarrow{Me}_{P} X \xrightarrow{-Me_{3}SiCl} Cl \xrightarrow{S}_{l} \xrightarrow{Me}_{P} X (7)$$

$$Cl \xrightarrow{M}_{l} V \xrightarrow{N}_{e} \xrightarrow{Me}_{P} X (7)$$

$$Cl \xrightarrow{Me}_{l} X = OCH_{2}CF_{3}$$

The NMR spectral data for several of these new *N*-phosphorylphosphoranimines provided additional information about their structures and stereochemistry. Compounds **11**, **14**, and **16** each have two asymmetric centers at the P=O and P=N phosphorus atoms, respectively. As a result, two sets of data, one for each diastereomer, are observed in the ¹H, ¹³C, and ³¹P NMR spectra. For example, the ³¹P NMR spectrum of **11** consists of doublets at 42.2 (P=N) and 29.5 (P=O) ppm with a ²*J*_{PP} value of 6.8 Hz for one isomer and doublets at 41.5 (P=N) and 29.3 (P=O) ppm with a ²*J*_{PP} value of 7.1 Hz for the other diastereomer. Similar spectra were observed for compounds **14** and **16**. The two diastereomers of compounds **11**, **14**, and **16** were observed in approximately equal proportions by ³¹P NMR spectroscopy. No attempts were made to separate the isomers.

In addition, several compounds (6, 10, 12, 13, 15, and 17) that have asymmetry only at the phosphoryl (P=O) center exhibit magnetically nonequivalent N=P Me_2 groups. These diastereomeric groups are generally observed as two different signal patterns in the ¹³C NMR spectrum and

Table 1. Crystal Data for N-Phosphorylphosphoranimine 4

empirical formula fw crystal dimensions (mm ³) crystal syst space group lattice parameters	C ₉ H ₁₀ O ₂ P ₂ Cl ₂ NF ₃ 353.03 0.35 × 0.35 × 0.40 monoclinic P2 ₁ /c (#14) a = 11.187(3) Å b = 10.955(2) Å c = 11.872(2) Å
	$V = 1454.9(0) \Lambda^3$
7 value	$V = 1434.9(9) \text{ A}^{2}$
Z value	1045
	1043
$R = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} $	0.119
$R_{\rm w} = [\sum w(F_{\rm o} - F_{\rm c})^2 / \sum wF_{\rm o}^2]^{1/2}$	0.113
diffractometer	Rigaku AFC6S
radiation	Cu Ka ($\lambda = 1.54178$ Å)

Table 2. Intramolecular Distances^a Involving the Non-Hydrogen Atoms for Compound 4

atom	atom	distance	atom	atom	distance
Cl1	P1	2.016(7)	F3	C2	1.12(3)
Cl2	P1	2.035(8)	O2	C1	1.45(3)
P1	01	1.45(1)	C1	C2	1.57(3)
P1	N1	1.55(1)	C4	C5	1.38(3)
P2	O2	1.59(1)	C4	C9	1.36(4)
P2	N1	1.60(1)	C5	C6	1.37(3)
P2	C3	1.79(3)	C6	C7	1.34(4)
P2	C4	1.79(2)	C7	C8	1.35(3)
F1	C2	1.19(4)	C8	C9	1.37(3)
F2	C2	1.41(5)			

^a Distances are in angstroms (Å) with standard deviations in the least significant figure given in parentheses.

Table 3. Intramolecular Bond Angles^a Involving the Non-HydrogenAtoms for Compound 4

atom	atom	atom	angle	a	tom	atom	atom	angle
Cl1	P1	C12	100.3(3)		F1	C2	F2	111(3)
Cl1	P1	01	110.4(7)		F1	C2	F3	116(5)
Cl1	P1	N1	108.1(6)		F1	C2	C1	109(3)
C12	P1	01	108.4(7)		F2	C2	F3	110(4)
C12	P1	N1	110.6(9)		F2	C2	C1	101(3)
01	P1	N1	117.7(7)		F3	C2	C1	109(2)
O2	P2	N1	113.2(8)		P2	C4	C5	119(2)
O2	P2	C3	101.3(7)		P2	C4	C9	121(1)
O2	P2	C4	106.6(7)		C5	C4	C9	120(2)
N1	P2	C3	117.9(9)		C4	C5	C6	119(3)
N1	P2	C4	106.8(8)		C5	C6	C7	120(2)
C3	P2	C4	110(1)		C6	C7	C8	121(2)
P2	O2	C1	121(2)		C7	C8	C9	119(3)
P1	N1	P2	137(1)		C4	C9	C8	120(2)
O2	C1	C2	106(2)					

^{*a*} Angles are in degrees with estimated standard deviations in the least significant figure given in parentheses.

sometimes in the ¹H NMR spectrum. Similarly, as a result of asymmetry at the other phosphorus (P=N) center, compound **8** exhibits diastereotopic NMe₂ groups in the ¹H and ¹³C NMR spectra.

Structure of *N*-Phosphorylphosphoranimines. While most of the new phosphoranimines reported here are liquids, compounds **3**, **4**, **13**, and **18** were obtained as low-melting solids. In the case of $Cl_2P(=O)-N=P(Ph)(Me)OCH_2CF_3$ (**4**), recrystallization from Et₂O afforded crystals suitable for X-ray diffraction. The resulting crystallographic data, selected bond lengths, and bond angles are summarized in Tables 1, 2, and 3, respectively, and the molecular structure is depicted in Figure 1.

Figure 1. ORTEP representation of compound 4. Thermal ellipsoids are drawn at the 50% probability level.

The X-ray diffraction study of **4** revealed the expected tetrahedral geometry at both 4-coordinate phosphorus centers and a central P—N—P bond angle of $137(1)^{\circ}$. The P—N bond distances are somewhat more interesting and, in the structures shown, are compared to data previously reported⁵ for two similar compounds **20** and **21**. In the two dichlorophosphoryl derivatives **4** and **20**, the formal P(O)—N single bond is found to be shorter than the formal P=M double bond of the phosphoranimine group. This is in contrast to diphenyl-phosphoryl analogue **21** which exhibits more expected bond lengths of 1.603(5) and 1.553(5) Å for the formal single and double bonds, respectively.

This apparent discrepancy in expected bond lengths is attributed⁵ to electronic effects of the substituents on the phosphoryl center. The electronegative chlorine atoms withdraw electron density from phosphorus, thus enhancing any possibile π delocalization within the P–N–P unit. A similar shortening is also observed for the P=O double bond lengths in **4** and **20** compared to **21**. The fact that the P–N bond order to the phosphoryl center is somewhat greater than that in the phosphoranimine moiety in compounds such as

4 may help to account for the unexpected thermal degradation pathways (see later) that were observed for some of these *N*-phosphorylphosphoranimines.

Thermolysis Reactions of N-phosphorylphosphoran**imines.** As noted earlier, the De Jaeger process³ (eq 1) for preparing poly(dichlorophosphazene) involves the thermal condensation polymerization of N-(dichlorophosphoryl)-Ptrichlorophosphoranimine 1. We were interested in ascertaining whether these new alkyl/aryl substituted N-phosphorylphosphoranimines would exhibit similar thermolysis chemistry. Thus, the thermal decomposition reactions of selected N-phosphorylphosphoranimines were carried out in sealed, evacuated tubes that were heated to ca. 180-200 °C for several hours or days. In the case of the *P*-trifluoroethoxy compounds (eq 8), a volatile product generated, in high yield, during the heating period was identified as CF₃CH₂Cl by ¹H and ¹³C NMR spectroscopy as well as GC/MS. Unfortunately, the solid residues that formed during thermolysis were only slightly soluble and showed numerous broad, undefined peaks in the ³¹P NMR spectra.

$$Cl + P - N = P - O + CH_2CF_3 \xrightarrow{\Delta} CF_3CH_2Cl + ?$$
(8)

$$3: R = Me, R' = Cl$$

$$4: R = Ph, R' = Cl$$

$$11: R = Ph, R' = Me$$

$$12: R = R' = Ph$$

The *P*-phenoxy compounds (eq 9) underwent a different, but equally surprising, fragmentation process upon thermolysis. In this case, the only characterizable product was the phosphine oxide $Me_2P(O)OPh^9$ which was identified by ¹H, ¹³C, and ³¹P NMR spectroscopy as well as GC/MS. Interestingly, the remaining fragment should have the composition of the phosphazene, [NP(R)R']_n. The dark solid products of these reactions, however, were insoluble in common solvents and were not further characterized. No cyclic or polymeric phosphazenes could be conclusively identified in the reaction mixture.

$$\begin{array}{c} & & & Me & & \\ R - P - N = P & OPh & \Delta & Me & P & OPh & + ? \\ R' & Me & & Me & Me \end{array}$$
5: R = R' = Cl
9: R = R' = NMe₂
12: R = Cl, R' = Me

This particular thermolysis pattern is very interesting because it suggests that the thermal decomposition of $C1_2P$ -(O)N=PCl₃ may not be as simple as indicated in eq 1. The results of the X-ray diffraction study of compound **4** may also be relevant here (eq 10). The observation of a short P-N bond to the phosphoryl center suggests a substantial contribution of resonance structure **B**. To whatever extent this may occur, it could facilitate bond formation between the phosphoryl oxygen and the phosphoranimine phosphorus

⁽⁹⁾ Abraham, K. M.; Van Wazer, J. R. J. Inorg. Nucl. Chem. 1975, 37, 541.

N-Phosphorylphosphoranimines

and help to account for the otherwise unexpected formation of the phosphine oxide, Me₂P(O)OPh.

Further studies related to the possible polymerization of these and related *N*-phosphoryl-, *N*-boryl-, and *N*-silyl-phosphoranimine systems are in progress.

Experimental Section

Materials and General Procedures. The starting phosphoranimines, Me₃SiN=P(Me)(R)OR' (R = Me, Ph; R' = CH₂CF₃, Ph), were prepared according to published procedures.¹⁰ Ether and CH₂-CI2 were distilled under N2 from CaH2 immediately prior to use. The reagents P(O)CI₃, MeP(O)CI₂, PhP(O)CI₂, P(S)Cl₃, and Me₃-SiNMe₂ were obtained from commercial sources and used without further purification. Proton, ${}^{13}C{}^{1}H$, and ${}^{31}P{}^{1}H$ NMR spectra were obtained on a Varian XL-300 spectrometer using CDC13 or C₆D₆ as a lock solvent. Positive ¹H and ¹³C NMR chemical shifts and ³¹P NMR shifts are downfield from the external references Me₄-Si and H₃PO₄, respectively. Elemental analyses were performed by E&R Microanalytical Laboratory, Inc., Corona, NY. GC/MS was done using a Hewlett-Packard 5890 gas chromatograph and 5989A mass spectrometer system. All reactions and manipulations were carried out under a nitrogen atmosphere and/or by using standard vacuum line techniques.

X-ray Crystallography. Diffraction data of **4** were collected at room temperature on a Rigaku AFC6S diffractometer with graphite-monochromated Cu K α radiation, $\lambda = 1.54178$ Å. Crystallographic data are summarized in Table 1. The structure was solved using direct methods¹¹ and refined using the Texsan program package.¹² All non-hydrogen atoms were refined aniosotropically, while H atoms were constrained with a riding model. Selected bond distances and angles are listed in Tables 2 and 3, respectively. Further details regarding the crystal data and refinement, as well as full tables of bond lengths and angles for the structure of **4**, were deposited in CIF format at the Cambridge Crystallographic Data Centre and are available as Deposit Number 188270.

Preparation of *N***-(Dichlorophosphoryl)phosphoranimines,** Cl₂P(O)-N=P(Me)(R)X. 3: $\mathbf{R} = \mathbf{Me}, \mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. A threeneck, 100 mL flask was equipped with a magnetic stir bar, N₂ inlet, and a rubber septum. It was charged with Et₂O (50 mL) and P(O)-Cl₃ (7.67 g, 50.0 mmol) and then cooled to 0 °C. The phosphoranimine, Me₃SiN=P(Me)₂OCH₂CF₃ (11.9 g, 48.1 mmol), was added dropwise via syringe to the stirred solution. After stirring for 0.5 h at 0 °C, the reaction mixture was allowed to warm to room temperature and was then stirred for an additional 1.5 h. The volatile components were removed under reduced pressure. Distillation gave product **3** as a colorless liquid that solidified to a white solid in the receiving flask. Yield: 78%. Bp: 122–125 °C (0.08 mmHg). Mp: 32–34 °C. ¹H NMR: δ 1.82 (d, PCH₃, J_{PH} = 13.9), 4.37 (dq, OCH₂, J_{PH} = 9.7, J_{FH} = 8.1). ¹³C NMR: δ 15.4 (dd, PCH₃, ¹J_{PC} = 92.0, ³J_{PC} = 4.6), 61.9 (dq, OCH₂, J_{PC} = 6.6, J_{FC} = 37.8), 122.2 (dq, CF₃, J_{PC} = 8.8, J_{FC} = 276.1). ³¹P NMR: δ -6.7 (d, P=O, J_{PP} = 18.3), 53.9 (d, P=N, J_{PP} = 18.3). Anal. Calcd for C₄H₈Cl₂F₃NO₂P₂: C, 16.46; H, 2.76. Found: C, 16.12; H, 3.01.

4: $\mathbf{R} = \mathbf{Ph}$, $\mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. The same procedure using P(O)-Cl₃ and Me₃SiN=P(Me)(Ph)OCH₂CF₃ gave **4** as a colorless liquid that solidified to a white solid in the receiving flask. Yield: 91%. Bp: 135–140 °C (0.03 mmHg). Mp: 42–44 °C. ¹H NMR: δ 2.11 (d, PCH₃, $J_{PH} = 14.5$), 4.0–4.5 (m, OCH₂), 7.5–7.8 (m, PPh). ¹³C NMR: δ 15.1 (d, PCH₃, $J_{PC} = 93.2$), 61.8 (dq, OCH₂, $J_{PC} = 6.1$, $J_{FC} = 38.1$), 122.1 (dq, CF₃, $J_{PC} = 11.0$, $J_{FC} = 277.5$), 124.1 (dd, PPh, ¹ $J_{PC} = 139.8$, ³ $J_{PC} = 10.1$), 129.3 (d, o-Ph, $J_{PC} = 14.3$), 131.2 (d, m-Ph, $J_{PC} = 12.1$), 134.4 (d, p-Ph, $J_{PC} = 2.9$). ³¹P NMR: δ –5.1 (d, P=O, $J_{PP} = 17.7$), 41.0 (d, P=N, $J_{PP} = 17.7$). Anal. Calcd for C₉H₁₀Cl₂F₃NO₂P₂: C, 30.53; H, 2.85. Found: C, 30.49; H, 2.98.

5: R = **Me**, **X** = **OPh.** The same procedure using P(O)Cl₃ and Me₃SiN=PMe₂OPh gave **5** as a colorless liquid. Yield: 73%. Bp: 165–169 °C (0.03 mmHg). ¹H NMR: δ 1.77 (d, PCH₃, J_{PH} = 14.3), 7.0–7.3 (m, OPh). ¹³C NMR: δ 16.0 (dd, PCH₃, ¹J_{PC} = 93.3, ³J_{PC} = 5.0), 150.1 (d, OPh, J_{PC} = 10.1), 121.7 (d, *o*-Ph, J_{PC} = 4.3), 126.8 (d, *m*-Ph, J_{PC} = 1.6), 130.0 (s, *p*-Ph). ³¹P NMR: δ –8.7 (d, *P*=O, J_{PP} = 16.5), 48.1 (d, *P*=N, J_{PP} = 16.5). Anal. Calcd for C₈H₁₁Cl₂NO₂P₂: C, 33.59; H, 3.88. Found: C, 32.82; H, 3.95.

Preparation of N-[(Dimethylamino)phosphoryl]phosphoranimines, $Cl(Me_2N)P(O)N=P(Me)(R)X$ (6) and $(Me_2N)_2P(O)N=$ P(Me)(R)X (7–9). 6: R = Me, $X = OCH_2CF_3$. A 1-neck, 100 mL flask was equipped with a magnetic stir bar, rubber septum, and a N₂ inlet needle. It was charged with CH₂Cl₂ (35 mL) and P(O)Cl₃ (6.75 g, 44.0 mmol) and then cooled to 0 °C. The phosphoranimine, Me₃SiN=P(Me)₂OCH₂CF₃ (10.7 g, 43.3 mmol), was added dropwise via a syringe to the stirred solution. After stirring for 0.5 h at 0 °C, the reaction mixture was allowed to warm to room temperature and was then stirred for an additional 0.5 h. The volatile components were removed under reduced pressure, leaving crude product 3, [C1₂P(O)N=PMe₂OCH₂CF₃]. Fresh CH₂-Cl₂ (35 mL) was added, and the solution was cooled to 0 °C. The silylamine, Me₃SiNMe₂ (4.96 g, 42.3 mmol), was then added via syringe, and the mixture was stirred for 0.5 h while warming to room temperature. The volatile components were removed under reduced pressure. Distillation gave product 6 as a colorless liquid. Yield: 77%. Bp: 100-105 °C (0.05 mmHg). ¹H NMR: δ 1.75 (d, PCH_3 , $J_{PH} = 14.3$), 1.76 (d, PCH_3 , $J_{PH} = 14.3$), 2.56 (d, NMe_2 , $J_{\rm PH} = 15.5$), 4.39 (dq, OCH₂, $J_{\rm PH} = 9.6$, $J_{\rm FH} = 8.2$). ¹³C NMR: δ 16.0 (d, PCH₃, $J_{PC} = 94.7$), 16.1 (d, PCH₃, $J_{PC} = 94.2$), 36.9 (s, NCH₃), 62.0 (dq, OCH₂, $J_{PC} = 6.4$, $J_{FC} = 37.3$), 122.6 (dq, CF₃, $J_{\rm PC} = 8.7, J_{\rm FC} = 277.7$). ³¹P NMR: δ 15.3 (d, *P*=O, $J_{\rm PP} = 24.7$), 54.8 (d, P=N, $J_{PP} = 24.7$). Anal. Calcd for C₆H₁₄ClF₃N₂O₂P₂: C, 23.98; H, 4.69. Found: C, 24.37; H, 4.64.

7: $\mathbf{R} = \mathbf{Me}, \mathbf{X} = \mathbf{OCH_2CF_3}$. The same procedure, using **3** and Me₃SiNMe₂ in a 1:2 mole ratio, gave **7** as a colorless liquid. Yield: 55%. Bp: 74–78 °C (0.03 mmHg). ¹H NMR: δ 1.59 (d, PCH₃, J_{PH} = 14.2), 2.49 (d, NCH₃, J_{PH} = 10.2), 4.36 (dq, OCH₂, J_{PH} = 9.5, J_{FH} = 8.5). ¹³C NMR: δ 16.4 (d, PCH₃, ¹J_{PC} = 94.2, ³J_{PC} = 4.0), 36.8 (d, NCH₃, J_{PC} = 3.2), 61.0 (dq, OCH₂, J_{PC} = 5.8, J_{FC} = 37.2), 122.9 (dq, CF₃, J_{PC} = 8.3, J_{FC} = 277.6). ³¹P NMR: δ 16.8 (d, P=O, J_{PP} = 20.8), 48.7 (d, P=N, J_{PP} = 20.8). Anal. Calcd for C₈H₂₀F₃N₃O₂P₂: C, 31.08; H, 6.52. Found: C, 31.25; H, 6.33.

8: $\mathbf{R} = \mathbf{Ph}$, $\mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. The same procedure, using 4 and Me₃SiNMe₂ in a 1:2 mole ratio, gave 8 as a colorless liquid.

 ^{(10) (}a) Wisian-Neilson, P.; Neilson, R. H. Inorg. Chem. 1980, 19, 1875.
 (b) Wisian-Neilson, P.; Neilson, R. H. Inorg. Synth. 1989, 25, 69.

 ⁽¹¹⁾ Sheldrick, G. M. SHELX86. Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1986.
 (12) T. T. Scrubberger, A. L. Barder, M. Martin, J. M. Martin, 1991.

⁽¹²⁾ Texsan-Texray Structure Analysis Package, Version 1.701; Molecular Structure Corporation: The Woodlands, TX, March, 1995.

Yield: 79%. Bp: 125–135 °C (0.05 mmHg). ¹H NMR: δ 1.89 (d, *PCH*₃, *J*_{PH} = 14.5), 2.60 (d, *NCH*₃, *J*_{PH} = 10.3), 2.61 (d, *NCH*₃, *J*_{PH} = 10.3), 4.0–4.6 (m, *OCH*₂), 7.4–7.9 (m, *PPh*). ¹³C NMR: δ 16.4 (d, *PCH*₃, *J*_{PC} = 92.5), 37.0 (d, *NCH*₃, *J*_{PC} = 7.5), 37.0 (d, *NCH*₃, *J*_{PC} = 7.6), 61.2 (dq, *OCH*₂, *J*_{PC} = 5.4, *J*_{FC} = 37.3), 122.9 (dq, *CF*₃, *J*_{PC} = 10.7, *J*_{FC} = 277.6), 129.7 (dd, *PPh*, ¹*J*_{PC} = 141.0, ³*J*_{PC} = 7.7), 128.7 (d, *o-Ph*, *J*_{PC} = 13.9), 131.1 (d, *m-Ph*, *J*_{PC} = 11.0), 132.8 (d, *p-Ph*, *J*_{PC} = 2.8). ³¹P NMR: δ 16.5 (d, *P*=O, *J*_{PP} = 22.1), 36.3 (d, *P*=N, *J*_{PP} = 22.1). Anal. Calcd for C₁₃H₂₂F₃N₃O₂P₂: C, 42.06; H, 5.97. Found: C, 41.96; H, 6.08.

9: $\mathbf{R} = \mathbf{Me}, \mathbf{X} = \mathbf{OPh}$. The same procedure, using **5** and Me₃-SiNMe₂ in a 1:2 mole ratio, gave **9** as a colorless liquid. Yield: 62%. Bp: 136–142 °C (0.03 mmHg). ¹H NMR: δ 1.73 (d, *PCH*₃, $J_{PH} = 13.9$), 2.46 (d, *NCH*₃, $J_{PH} = 10.4$), 7.1–7.3 (m, *OPh*). ¹³C NMR: δ 16.7 (dd, *PCH*₃, ¹ $J_{PC} = 93.4$, ³ $J_{PC} = 3.6$), 36.9 (d, *NCH*₃, $J_{PC} = 3.2$), 150.4 (d, *OPh*, $J_{PC} = 9.5$), 121.1 (d, *o-Ph*, $J_{PC} = 4.4$), 124.7 (s, *m-Ph*), 129.4 (s, *p-Ph*). ³¹P NMR: δ 15.9 (d, *P*=0, $J_{PP} = 25.1$), 42.8 (d, *P*=N, $J_{PP} = 25.1$). Anal. Calcd for C₈H₁₁Cl₂-NO₂P₂: C, 47.52; H, 7.64. Found: C, 47.55; H, 7.74.

Preparation of N-[Chloro(methyl)phosphoryl]phosphoranimines, Cl(Me)P(O)N=P(Me)(R)X (10-12), and N-[Chloro-(phenyl)phosphoryl]phosphoranimines, Cl(Ph)P(O)N=P(Me)-(**R**)**X** (13–14). 10: $\mathbf{R} = \mathbf{Me}, \mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. A 1-neck, 100 mL flask, equipped with a magnetic stir bar, rubber septum, and a N₂ inlet needle, was charged with Et₂O (50 mL) and MeP(O)CI₂ (6.38 g, 48.0 mmol). The solution was cooled to 0 °C, and the phosphoranimine, Me₃SiN=PMe₂OPh (9.10 g, 37.7 mmol), was added dropwise via syringe. The reaction mixture was allowed to stir at 0 °C for 0.5 h and then at room temperature for 0.5 h. The volatile components were removed under reduced pressure. Distillation gave compound 10 as a colorless liquid. Yield: 76%. Bp: 113–115 °C (0.05 mmHg). ¹H NMR: δ 1.79 (dd, *CH*₃P=O, ²*J*_{PH} = 17.2, ${}^{4}J_{PH}$ = 2.2), 1.71 (d, PCH₃, J_{PH} = 14.3), 4.3-4.4 (m, OCH₂). ¹³C NMR: δ 24.7 (dd, CH₃P=O, ¹J_{PC} = 131.3, ³J_{PC} = 9.0), 16.1 (dd, PCH₃, ${}^{1}J_{PC} = 93.3$, ${}^{3}J_{PC} = 4.7$), 16.0 (dd, PCH₃, ${}^{1}J_{PC} = 90.1, {}^{3}J_{PC} = 4.8), 61.6 (dq, OCH_2, J_{PC} = 6.2, J_{FC} = 37.7),$ 122.5 (dq, CF_3 , $J_{PC} = 8.6$, $J_{FC} = 277.5$). ³¹P NMR: δ 29.7 (d, $P=O, J_{PP} = 8.7), 54.4 (d, P=N, J_{PP} = 8.7).$ Anal. Calcd for C₅H₁₁-ClF₃NO₂P₂: C, 22.12; H, 4.08. Found: C, 22.27; H, 4.27.

11: $\mathbf{R} = \mathbf{Ph}, \mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. The same procedure using MeP-(O)Cl₂ and Me₃SiN=P(Me)(Ph)OCH₂CF₃ gave 11 as a colorless liquid. Yield: 41%. Bp: 150–160 °C (0.05 mmHg). ¹H NMR: δ 1.94 (d, $CH_3P=0$, $J_{PH} = 17.1$), 1.95 (d, $CH_3P=0$, $J_{PH} = 17.1$), 2.01 (d, PCH_3 , $J_{PH} = 14.7$), 2.02 (d, PCH_3 , $J_{PH} = 14.7$), 4.0-4.6 (m, OCH₂), 7.5–7.9 (m, PPh). ¹³C NMR: δ 23.3 (dd, CH₃P=O, ${}^{1}J_{PC} = 130.6, {}^{3}J_{PC} = 5.2), 24.7 \text{ (dd, } CH_{3}P=O, {}^{1}J_{PC} = 130.5, {}^{3}J_{PC}$ = 5.1), 15.6 (dd, PCH₃, ${}^{1}J_{PC} = 91.7$, ${}^{3}J_{PC} = 1.7$), 15.9 (dd, PCH₃, ${}^{1}J_{PC} = 91.5, {}^{3}J_{PC} = 2.2), 61.4 (dq, OCH_2, J_{PC} = 5.8, J_{FC} = 37.5),$ 61.6 (dq, OCH₂, $J_{PC} = 5.7$, $J_{FC} = 37.3$), 122.3 (dq, CF_3 , $J_{PC} =$ 10.8, $J_{\text{FC}} = 277.6$), 122.3 (dq, CF_3 , $J_{\text{PC}} = 11.3$, $J_{\text{FC}} = 277.5$), 126.7 $(dd, PPh, {}^{1}J_{PC} = 137.8, {}^{3}J_{PC} = 8.9), 126.8 (dd, PPh, {}^{1}J_{PC} = 139.7,$ ${}^{3}J_{PC} = 8.8$), 131.0 (d, *o-Ph*, $J_{PC} = 11.8$), 131.0 (d, *o-Ph*, $J_{PC} =$ 11.5), 129.0 (d, *m*-*Ph*, $J_{PC} = 13.7$), 133.6 (d, *p*-*Ph*, $J_{PC} = 2.6$). ³¹P NMR: δ 29.5 (d, *P*=O, *J*_{PP} = 6.8), 29.3 (d, *P*=O, *J*_{PP} = 7.1), 42.2 (d, P=N, $J_{PP} = 6.8$), 41.5 (d, P=N, $J_{PP} = 7.1$). Anal. Calcd for $C_{10}H_{13}ClF_3NO_2P_2$: C, 36.00; H, 3.93. Found: C, 35.83; H, 3.36.

12: R = **Me**, **X** = **OPh.** The same procedure using MeP(O)Cl₂ and Me₃SiN=PMe₂OPh gave **12** as a colorless liquid. Yield: 71%. Bp: 165–175 °C (0.03 mmHg). ¹H NMR: δ 1.74 (dd, *CH*₃P=O, ²*J*_{PH} = 17.0, ⁴*J*_{PH} = 2.0), 1.81 (d, *PCH*₃, *J*_{PH} = 14.9), 7.1–7.3 (m, OPh). ¹³C NMR: δ 24.9 (dd, *CH*₃P=O, ¹*J*_{PC} = 130.4, ³*J*_{PC} = 8.1), 16.1 (dd, *PCH*₃, ¹*J*_{PC} = 93.2, ³*J*_{PC} = 5.2), 16.0 (dd, *PCH*₃, ¹*J*_{PC} = 92.3, ³*J*_{PC} = 4.4), 149.6 (d, OPh, *J*_{PC} = 9.8), 120.9 (d, *o*-Ph, *J*_{PC} =

4.3), 125.5 (s, *m-Ph*), 129.7 (s, *p-Ph*). ³¹P NMR: δ 27.9 (s, *P*=O), 47.7 (s, *P*=N). A satisfactory elemental analysis of **12** was not obtained because of slight decomposition during distillation.

13: R = **Me**, **X** = **OCH₂CF₃**. The same procedure using PhP-(O)Cl₂ and Me₃SiN=PMe₂OCH₂CF₃ gave **13** as a colorless liquid. Yield: 82%. Bp: 155–160 °C (0.03 mmHg). Mp: 47–50 °C. ¹H NMR: δ 1.84 (d, PCH₃, J_{PH} = 14.2), 1.84 (d, PCH₃, J_{PH} = 14.3), 4.4–4.5 (m, OCH₂), 7.3–8.0 (m, PPh). ¹³C NMR: δ 16.3 (d, PCH₃, J_{PC} = 93.4), 16.4 (d, PCH₃, J_{PC} = 93.1), 61.8 (dq, OCH₂, J_{PC} = 6.2, J_{FC} = 37.6), 122.5 (dq, CF₃, J_{PC} = 8.8, J_{FC} = 277.7), 136.5 (dd, PPh, ¹J_{PC} = 177.4, ³J_{PC} = 9.6), 128.1 (d, *o*-Ph, J_{PC} = 16.3), 130.2 (d, *m*-Ph, J_{PC} = 11.6), 131.8 (d, *p*-Ph, J_{PC} = 3.3). ³¹P NMR: δ 19.3 (s, *P*=O), 56.0 (s, *P*=N). A satisfactory elemental analysis of **13** was not obtained because of slight decomposition during distillation.

14: $\mathbf{R} = \mathbf{Ph}, \mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. The same procedure using PhP-(O)Cl₂ and Me₃SiN=P(Me)(Ph)OCH₂CF₃ gave 14 as a pale yellow solid that decomposed on attempted distillation. ¹H NMR: δ 2.10 (d, PCH_3 , $J_{PH} = 14.6$), 2.11 (d, PCH_3 , $J_{PH} = 14.4$), 4.1–4.6 (m, OCH₂), 7.4–8.0 (m, PhP=O and PhP=N). ¹³C NMR: δ 16.1 (dd, PCH_3 , ${}^{1}J_{PC} = 92.2$, ${}^{3}J_{PC} = 1.6$), 16.4 (dd, PCH_3 , ${}^{1}J_{PC} = 91.7$, ${}^{3}J_{PC}$ = 1.6), 61.8 (dq, OCH_2 , J_{PC} = 5.6, J_{FC} = 37.6), 62.0 (dq, OCH_2 , $J_{\rm PC} = 5.7, J_{\rm FC} = 37.6$), 122.5 (dq, $CF_3, J_{\rm PC} = 11.3, J_{\rm FC} = 276.2$), 136.7 (dd, *Ph*P=O, ${}^{1}J_{PC} = 176.4$, ${}^{3}J_{PC} = 9.4$), 136.8 (dd, *Ph*P=O, ${}^{1}J_{PC} = 176.2, \, {}^{3}J_{PC} = 9.2), \, 127.1 \, (dd, PhP=N, \, {}^{1}J_{PC} = 140.2, \, {}^{3}J_{PC}$ = 9.3), 127.2 (dd, *Ph*P=N, ${}^{1}J_{PC}$ = 140.2, ${}^{3}J_{PC}$ = 8.8), 127.2 (dd, *o-Ph*P=O, ${}^{2}J_{PC} = 11.7$, ${}^{4}J_{PC} = 3.9$), 130.3 (d, *o-Ph*P=N, $J_{PC} =$ 11.4), 128.2 (d, *m-Ph*P=O, J_{PC} = 16.5), 129.1 (d, *m-Ph*P=N, J_{PC} = 14.0), 131.8 (d, *p*-*Ph*, J_{PC} = 3.3), 133.8 (d, *p*-*Ph*, J_{PC} = 2.9). ³¹P NMR: δ 19.0 (s, P=O), 19.2 (s, P=O), 43.4 (s, P=N), 43.9 (s, P=N).

Preparation of N-[(Dimethylamino)phosphoryl]phosphoranimines, R'(Me₂N)P(O)N=P(Me)(R)X (15–18). 15: R = R' = Me, **X** = OCH₂CF₃. Using the same procedure as that described for the preparation of the *P*-dimethylamino derivatives **6–9**, the *P*-chloro derivative **10** was treated with Me₃SiNMe₂ in a 1:1 mole ratio. Distillation afforded **15** as a colorless liquid. Yield: 84%. Bp: 80–85 °C (0.05 mmHg). ¹H NMR: δ 1.16 (dd, *CH*₃P=O, ²*J*_{PH} = 14.9, ⁴*J*_{PH} = 1.9), 1.60 (d, *PCH*₃, *J*_{PH} = 14.3), 2.48 (d, N*CH*₃, *J*_{PH} = 10.6), 4.3–4.4 (m, O*CH*₂). ¹³C NMR: δ 13.0 (dd, *CH*₃P= O, ¹*J*_{PC} = 119.8, ³*J*_{PC} = 7.6), 16.5 (dd, *PCH*₃, ¹*J*_{PC} = 96.2, ³*J*_{PC} = 3.6), 16.5 (dd, *PCH*₃, ¹*J*_{PC} = 90.5, ³*J*_{PC} = 4.0), 36.7 (d, *NCH*₃, *J*_{PC} = 3.1), 61.1 (dq, O*CH*₂, *J*_{PC} = 5.5, *J*_{FC} = 37.2), 122.9 (dq, *CF*₃, *J*_{PC} = 8.7, *J*_{FC} = 277.5). ³¹P NMR: δ 29.7 (d, *P*=O, *J*_{PP} = 8.7), 54.4 (d, *P*=N, *J*_{PP} = 8.7). Anal. Calcd for C₇H₁₇F₃N₂O₂P₂: C, 30.01; H, 6.12. Found: C, 30.11; H, 5.91.

16: $\mathbf{R} = \mathbf{Ph}$, $\mathbf{R'} = \mathbf{Me}$, $\mathbf{X} = \mathbf{OCH}_2\mathbf{CF}_3$. Likewise, *P*-chloro derivative 11 was treated with Me₃SiNMe₂ in a 1:1 mole ratio. Distillation afforded 16 as a colorless liquid. Yield: 64%. Bp: 125-130 °C (0.05 mmHg). ¹H NMR: δ 1.27 (dd, *CH*₃P=O, ²*J*_{PH} = 15.0, ${}^{4}J_{\rm PH} = 1.6$), 1.29 (dd, $CH_{3}P=0$, ${}^{2}J_{\rm PH} = 15.0$, ${}^{4}J_{\rm PH} = 1.6$), 1.85 (d, $CH_{3P=N}$, $J_{PH} = 14.5$), 1.86 (d, $CH_{3P=N}$, $J_{PH} = 14.5$), 2.55 (d, NCH₃, $J_{PH} = 10.5$), 2.56 (d, NCH₃, $J_{PH} = 10.5$), 4.0–4.6 (m, OCH₂), 7.4–7.8 (m, PPh). ¹³C NMR: δ 13.4 (d, CH₃P=O, J_{PC} = 120.0), 13.5 (d, $CH_3P=0$, $J_{PC} = 119.8$), 16.4 (d, $CH_3P=N$, $J_{PC} =$ 94.3), 16.5 (d, $CH_3P=N$, $J_{PC} = 92.2$), 36.7 (d, NCH_3 , $J_{PC} = 8.6$), 36.7 (d, NCH₃, $J_{PC} = 8.5$), 61.1 (dq, OCH₂, $J_{PC} = 5.3$, $J_{FC} = 37.4$), 61.1 (dq, OCH₂, $J_{PC} = 5.4$, $J_{FC} = 37.4$), 122.8 (dq, CF₃, $J_{PC} =$ 10.8, $J_{\rm FC} = 277.5$), 126.7 (dd, PPh, ${}^{1}J_{\rm PC} = 137.8$, ${}^{3}J_{\rm PC} = 8.9$), 129.3 (dd, PPh, ${}^{1}J_{PC} = 139.0$, ${}^{3}J_{PC} = 6.7$), 129.4 (dd, PPh, ${}^{1}J_{PC} =$ 139.0, ${}^{3}J_{PC} = 6.7$), 128.6 (d, *o-Ph*, $J_{PC} = 13.9$), 128.7 (d, *o-Ph*, J_{PC} = 13.8), 131.0 (d, *m-Ph*, J_{PC} = 11.5), 131.0 (d, *m-Ph*, J_{PC} = 9.5), 132.7 (s, *p*-*Ph*), 132.8 (s, *p*-*Ph*). ³¹P NMR: δ 25.9 (d, *P*=O, *J*_{PP} =

6.5), 26.0 (d, P=0, $J_{PP} = 6.1$), 36.2 (d, P=N, $J_{PP} = 6.5$), 36.5 (d, P=N, $J_{PP} = 6.1$). Anal. Calcd for $C_{12}H_{19}F_3N_2O_2P_2$: C, 42.11; H, 5.60. Found: C, 42.17; H, 6.07.

17: R = **R'** = **Me**, **X** = **OPh.** Likewise, *P*-chloro derivative **12** was treated with Me₃SiNMe₂ in a 1:1 mole ratio. Distillation afforded **17** as a colorless liquid. Yield: 65%. Bp: 135–140 °C (0.04 mmHg). ¹H NMR: δ 1.12 (dd, *CH*₃P=O, ²*J*_{PH} = 15.0, ⁴*J*_{PH} = 1.7), 1.72 (d, *CH*₃P=N, *J*_{PH} = 13.6), 1.76 (d, *CH*₃P=N, *J*_{PH} = 13.5), 2.47 (d, N*CH*₃, *J*_{PH} = 10.6), 7.1–7.3 (m, O*Ph*). ¹³C NMR: δ 13.5 (dd, *CH*₃P=O, ¹*J*_{PC} = 119.6, ³*J*_{PC} = 5.9), 16.9 (dd, *CH*₃P=N, ¹*J*_{PC} = 91.2, ³*J*_{PC} = 2.6), 17.0 (dd, *CH*₃P=N, ¹*J*_{PC} = 94.9, ³*J*_{PC} = 3.6), 36.7 (d, N*CH*₃, *J*_{PC} = 3.0), 150.4 (d, O*Ph*, *J*_{PC} = 9.4), 121.1 (d, *o*-*Ph*, *J*_{PC} = 4.5), 124.8 (s, *m*-*Ph*), 130.0 (s, *p*-*Ph*). ³¹P NMR: δ 15.9 (d, *P*=O, *J*_{PP} = 25.1), 42.8 (d, *P*=N, *J*_{PP} = 25.1). Anal. Calcd for C₁₁H₂₀N₂O₂P₂: C, 48.18; H, 7.35. Found: C, 48.46; H, 7.54.

18: R = **Me**, **R'** = **Ph**, **X** = **OCH₂CF₃**. Likewise, *P*-chloro derivative **13** was treated with Me₃SiNMe₂ in a 1:1 mole ratio. Distillation afforded **18** as a colorless liquid that solidified to a white solid in the receiving flask. Yield: 88%. Bp: 135–140 °C (0.05 mmHg). Mp: 68–72 °C. ¹H NMR: δ 1.62 (d, *PCH₃*, *J*_{PH} = 14.0), 1.68 (d, *PCH₃*, *J*_{PH} = 14.3), 2.49 (d, *NCH₃*, *J*_{PH} = 10.5), 4.3–4.4 (m, *OCH₂*), 7.3–7.7 (m, *PPh*). ¹³C NMR: δ 16.9 (dd, *PCH₃*, ¹*J*_{PC} = 92.7, ³*J*_{PC} = 3.4), 16.7 (dd, *PCH₃*, ¹*J*_{PC} = 94.8, ³*J*_{PC} = 4.3), 36.8 (d, *NCH₃*, *J*_{PC} = 8.8, *J*_{FC} = 277.7), 135.3 (dd, *PPh*, ¹*J*_{PC} = 153.9, ³*J*_{PC} = 6.0), 127.7 (d, *o-Ph*, *J*_{PC} = 13.0), 130.6 (d, *m-Ph*, *J*_{PC} = 9.0), 129.8 (d, *p-Ph*, *J*_{PC} = 2.9). ³¹P NMR: δ 16.9 (d, *P*=O, *J*_{PP} = 12.2), 50.4 (d, *P*=N, *J*_{PP} = 12.2). Anal. Calcd for C₁₂H₁₉F₃N₂O₂P₂: C, 42.11; H, 5.60. Found: C, 42.15; H, 5.69.

Preparation of *N***-(Dichlorothiophosphoryl)phosphoranimine** (**19).** A 3-neck, 100 mL flask, equipped with a magnetic stir bar, N_2 inlet, and rubber septum, was charged with Et₂O (50 mL) and P(S)C1₃ (10.2 g, 60.0 mmol). The solution was cooled to 0 °C, and the phosphoranimine, Me₃SiN=PMe₂OCH₂CF₃ (14.4 g, 58.2 mmol), was added dropwise via syringe. After stirring for 0.5 h at 0 °C, the reaction mixture was allowed to warm to room temperature and was then stirred for an additional 20 h. The volatile components were removed under reduced pressure. Distillation gave product **19** as a pale yellow liquid. Yield: 54%. Bp: $120-125 \,^{\circ}C$ (0.05 mmHg). ¹H NMR: δ 1.89 (d, PCH₃, $J_{PH} = 14.2$), 4.44 (dq, OCH₂, $J_{PH} = 9.7$, $J_{FH} = 8.1$). ¹³C NMR: δ 15.6 (dd, PCH₃, ¹ $J_{PC} = 91.8$, ³ $J_{PC} = 4.4$), 62.3 (dq, OCH₂, $J_{PC} = 6.9$, $J_{FC} = 38.0$), 122.3 (dq, CF_3 , $J_{PC} = 9.0$, $J_{FC} = 277.7$). ³¹P NMR: δ 38.9 (d, P=S, $J_{PP} = 12.2$), 54.4 (d, P=N, $J_{PP} = 12.2$). Anal. Calcd for C₄H₈Cl₂F₃-NOP₂S: C, 15.60; H, 2.62. Found: C, 15.70; H, 2.72.

Thermolysis of (*N*-Phosphoryl)-*P*-trifluoroethoxyphosphoranimines (3, 4, 11, and 14). In a typical experiment, a neat sample of compound 4 (3.4 g, 9.6 mmol) was sealed in an evacuated, thickwalled glass ampule and heated in an oven at 195 °C for 21 h. After first cooling to room temperature, the contents of the ampule were cooled to -196 °C, and the ampule was opened and quickly attached to a vacuum line. The ampule was allowed to warm to room temperature, and the volatile fraction was collected in a trap cooled to -196 °C. This product was identified as CF₃CH₂Cl (8.4 mmol, 87% yield) by ¹H and ¹³C NMR spectroscopy as well as GC/MS. Similar results were obtained when compound **3**, **11**, or **14** was heated under the same conditions.

Thermolysis of (N-Phosphoryl)-*P*-**phenoxyphosphoranimines** (5, 9, and 12). Using the same procedure as described for the thermolysis of 4, a neat sample of compound 12 (3.0 g, 10.7 mmol) was heated at 200 °C for 144 h. The contents of the ampule turned a dark brown color during the heating process, and some dark solid was formed. After cooling to room temperature, CH₂Cl₂ was added to extract the soluble products. The remaining solid was insoluble in all common solvents and was not further characterized. Solvent was removed from the CH₂Cl₂ extract leaving a thick brown liquid. This was identified as mainly Me₂P(O)OPh by ¹H and ¹³C NMR spectroscopy as well as GC/MS. Small amounts (ca. 5-10%) of other, unidentified products were also present. Similar results were obtained when compounds 5 and 9 were heated under the same conditions.

Acknowledgment. We thank the Robert A. Welch Foundation and the TCU Research Fund for generous financial support of this work.

IC025823Z