Inorg. Chem. 2002, 41, 6553-6559

norganic Chemistry

Pd(0) and Pt(0) Metallocryptands Encapsulating a Spinning Mercurous Dimer

Vincent J. Catalano* and Mark A. Malwitz

Department of Chemistry, University of Nevada, Reno, Nevada 89557

Bruce C. Noll

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309

Received July 8, 2002

The deep-red, air-stable complexes $[Pt_2Hg_2(P_2phen)_3](PF_6)_2$, **1**, or $[Pd_2Hg_2(P_2phen)_3](PF_6)_2$, **2**, $(P_2phen is 2,9-bis-$ (diphenylphosphino)-1,10-phenanthroline) are most conveniently prepared by the stoichiometric reaction of either Pt(dba)₂ or Pd₂(dba)₃·CHCl₃ (dba is dibenzylideneacetone) with P₂phen and a single drop of elemental mercury in refluxing dichloromethane under an atmosphere of nitrogen. The ³¹P{¹H} NMR spectrum (CD₃CN) of 1 shows a single sharp resonance at 43.1 ppm for the phosphorus atoms of the P₂phen ligand with both ¹⁹⁵Pt ($^{1}J_{P-Pt} = 4350$ Hz) and ¹⁹⁹Hg (${}^{2}J_{P-Hq} = 620$ Hz) satellites indicating the Hg₂²⁺ unit is dynamic. Compound **2** has a similar resonance at 44.9 ppm with ¹⁹⁹Hg satellites (${}^{2}J_{P-Hg} = 638$ Hz). The ¹⁹⁹Hg NMR (CD₂Cl₂, vs Hg(OAc)₂) spectrum of **2** shows a heptet pattern at 833 ppm while for 1 a heptet superimposed on a doublet of heptets is observed at 770.8 ppm. The ¹⁹⁵Pt NMR spectrum of 1 displays a quartet at -3071 ppm with ¹⁹⁹Hg satellites and a ¹J_{Pt-Hg} value of 1602 Hz. Characterization of 1 and of 2(BF₄)₂ by single-crystal X-ray diffraction studies confirms the metallocryptand structure consisting of three phosphine-imine ligands forming a D_3 symmetric cage with a Hg₂²⁺ ion in its center coordinated to two phenanthroline rings with the Hq-Hq bond (1, 2.7362(6); 2(BF₄)₂, 2.6881(4) Å) oriented perpendicular to the vector between the trigonally coordinated Pt(0) or Pd(0) atoms on each end. The Pt-Hg separations in 1 average 2.8143(6) Å while in 2(BF₄)₂ the average Pd–Hg separation is 2.7698(5) Å. Excitation into the low energy excitation bands of 1 (475 nm) and 2 (430 nm) produces weak emissions centered at 593 nm with shoulders at 530 and 654 nm in 1 and centered at 524 nm with a shoulder at 545 nm in 2.

Introduction

The investigation of interactions between closed-shell, heavy metal ions or atoms continues to gather increasing attention.¹ Numerous examples of heavy metal ions such as Au(I), Ag(I), Tl(I), or Pb(II) or metal atoms such as Pt(0), Pd(0), or Hg(0) associating with each other or with other similar species have been reported.^{2–4} Elucidating the nature of these attractive interactions has been the subject of considerable theoretical effort and only recently has the role of dispersion forces as the primary attractive force in metallophilic attractions been clarified.⁵ Additionally, relativistic effects may also play a significant role in aurophilic attractions.⁶

Scheme 1

The importance of these noncovalent attractions is clearly demonstrated in our work^{7–11} employing metallocryptands as probes of metal–metal interactions (Scheme 1). The internal pockets of these cages are suitably sized to effectively encapsulate metal guests without imposing steric restrictions from the ligands, and by a simple twisting of

Inorganic Chemistry, Vol. 41, No. 25, 2002 6553

^{*} To whom correspondence should be addressed. E-mail: vjc@unr.edu. Fax: (775) 784-6804.

⁽¹⁾ Gade, L. H. Angew. Chem., Int. Ed. **2001**, 40, 3573–3575.

⁽²⁾ Pyykkö, P. Chem. Rev. 1997, 97, 597-636.

^{10.1021/}ic020439n CCC: 22.00 $^{\odot}$ 2002 American Chemical Society Published on Web 10/05/2002

Table 1. Intermetallic Separations and Angles of $[M_2M'(P_2phen)_3]^{n+1}$ Metallocryptands

d ¹⁰ metal, M	guest, M'	separation, Å	M–M'–M angle, deg	av ∆d,ª Å	ref
Pd(0)	Pb(lI)	2.7095(6)	178.75(1)	-0.121	8
Pt(0)	Pb(lI)	2.7469(6)	178.75(1)	-0.093	8
Pt(0)	Tl(I)	2.7907(9) 2.7919(9)	175.27(3)	-0.053	9
Pd(0)	Tl(I)	2.7914(6)	160.62(3)	-0.041	9
Au(I)	Hg(0)	2.7847(4) 2.7807(4)	170.48(1)	+0.007	7
Au(I)	Tl(I)	2.9171(5) 2.9109(5)	174.5(1)	+0.029	10

^{*a*} Determined as the difference between the metal-metal separation as measured by X-ray crystallography and the predicted single-bond separation taken from a standard source.²⁷

the overall helical structure, the intermetallic separations can be varied. For the P₂phen-based metallocryptands (P₂phen is 2,9-bis(diphenylphosphino)-1,10-phenanthroline), the greatest attraction is observed in the $Pd(0)-Pb(II)-Pd(0)^8$ system (Table 1) where an attractive ion-induced dipole interaction predominates. The longest metal-metal interaction is observed in the $Au(I)-Tl(I)-Au(I)^{10}$ species where the added electrostatic repulsion of the similarly charged metals negates much of the aurophilic attraction of the Tl(I) ion. As expected, the monovalent Tl(I) ion is held less strongly than the isoelectronic, divalent Pb(II) ion in the Pd(0) and Pt(0)metallocryptands, and the Au(I)-Hg(0)-Au(I) species with the polarizable metal in the middle falls intermediate in this series. In all of these complexes, only a single metal atom or ion is encapsulated, and this metal resides in the center of the cavity formed by the three P₂phen ligands and does not interact strongly with the phenanthroline nitrogen donor atoms.

- (3) (a) Hamel, A.; Mitzel, N. W.; Schmidbaur, H. J. Am. Chem. Soc. 2001, 123, 5106-5107. (b) Hayashi, A.; Olmstead, M. M.; Attar, S.; Balch, A. L. J. Am. Chem. Soc. 2002, 124, 5791-5795. (c) Burini, A.; Bravi, R.; Fackler, J. P., Jr.; Galassi, R.; Grant, T. A.; Omary, M. A.; Pietroni, B. R.; Staples, R. J. Inorg. Chem. 2000, 39, 3158-3165. (d) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Pyykkö, P.; Runeberg, N. Eur. J. Inorg. Chem. 2002, 3, 750-753. (e) Fernández, E. J.; Laguna, A. J. Am. Chem. Soc. 2002, 124, 5942-5943. (f) Crespo, O.; Fernández, E. J.; Jones, P. G.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pérez, J.; Laguna, A. J. Am. Chem. Soc. 2002, 124, 5942-5943. (f) Crespo, O.; Fernández, E. J.; Jones, P. G.; Laguna, A.; López-de-Luzuriaga, J. M.; Olmos, E. Chem. Commun. 1998, 2233-2234. (g) Burini, A.; Fackler, J. P., Jr.; Galassi, R.; Grant, T. A.; Omary, M. A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Staples, R. J. J. Am. Chem. Soc. 2000, 122, 11264-11265.
- (4) Catalano, V. J.; Bennett, B. L.; Muratidis, S.; Noll, B. C. J. Am. Chem. Soc. 2001, 123, 173–174.
- (5) (a) Pyykkö, P.; Straka, M. Phys. Chem. Chem. Phys. 2000, 2, 2489–2493. (b) Runeberg, N.; Schütz, M.; Werner, H.-J. J. Chem. Phys. 1999, 110, 7210–7215.
- (6) (a) Pyykkö, P.; Mendizabal, F. *Inorg. Chem.* **1998**, *37*, 3018–3025.
 (b) Pyykkö, P.; Mendizabal, F. *Chem.—Eur. J.* **1997**, *3*, 1458–1465.
 (c) Pyykkö, P.; Runeberg, N.; Mendizabal, F. *Chem.—Eur. J.* **1997**, *3*, 1451–1457.
- (7) Catalano, V. J.; Malwitz, M. A.; Noll, B. C. Chem. Commun., 2001, 581–582.
- (8) Catalano, V. J.; Bennett, B. L.; Noll, B. C. Chem. Commun. 2000, 1413–1414.
- (9) Catalano, V. J.; Bennett, B. L.; Yson, R.; Noll, B. C. J. Am. Chem. Soc., 2000, 122, 10056–10062.
- (10) Catalano, V. J.; Bennett, B. L.; Kar, H. M.; Noll, B. C. J. Am. Chem. Soc., 1999, 121, 10235–10236.
- (11) Catalano, V. J.; Kar, H. M.; Bennett, B. L. Inorg. Chem. 2000, 39, 121–127.

The successful encapsulation of Hg(0) into the cavity of the Au(I) metallocryptand⁷ led us to investigate whether the isoelectronic Pt(0)-Hg(0)-Pt(0) or Pd(0)-Hg(0)-Pd(0) species could be made. The absence of charge in this molecule would preclude any ion-induced dipole interaction, and any metallophilic attractions would then be purely dispersive in nature. Unfortunately, attempts to produce a Pt(0)-Hg(0)-Pt(0) or Pd(0)-Hg(0)-Pd(0) metallocryptand failed; however, here we report the unexpected redox chemistry of this attempt leading to the first encapsulation of a mercurous dimer (Hg₂²⁺) into a metallocryptand and its unprecedented multimetallic bonding mode.

Experimental Section

All preparations were carried out under a N₂ atmosphere with the use of standard Schlenk techniques. Acetonitrile and dichloromethane were purified by passage through a column of activated alumina using a Grubbs apparatus.¹² Solvents utilized in preparations were deoxygenated by three freeze-pump-thaw cycles prior to use. P₂phen,⁹ Pt(dba)₂,¹³ and Pd₂(dba)₃•CHCl₃¹⁴ were prepared from literature procedures. Where needed, elemental mercury was purified by simple bulb-to-bulb distillation under vacuum prior to use. NMR chemical shift reference materials were the following: ¹⁹⁹Hg, Hg(OAc)₂ in *d*₆-DMSO; ¹⁹⁵Pt, H₂PtCl₆ in D₂O; ³¹P, 85% H₃PO₄. Cyclic voltammetric experiments were carried out using a BAS CW50 instrument with the following cell configuration: Pt or glassy carbon working electrodes, Pt wire auxiliary electrode, Ag/AgCl reference in a modified Lugin electrode. Solutions were prepared with 0.1 M TBAP as electrolyte in nitrogen-purged MeCN and referenced to internal Cp₂Fe. Combustion analysis was carried out by Desert Analytics, Tucson, AZ. UV-vis spectra were obtained using a Hewlett-Packard 8453 diode array spectrometer (1 cm path-length cells). Emission data were recorded using a Spex Fluoromax steady-state fluorometer.

Preparation of [Pt₂Hg₂(P₂phen)₃](PF₆)₂, 1. Under nitrogen, a 100 mL Schlenk flask was charged with 0.081 g (0.1220 mmol) of Pt(dba)₂, 0.100 g (0.1823 mmol) of 2,9-bis(diphenylphosphino)-1,10-phenanthroline (P₂phen), and 40 mL of deoxygenated CH₂-Cl₂. After this mixture was stirred for 10 min, a drop of elemental mercury was added, and the mixture was heated to reflux overnight. The resulting brick-red solution was then opened to air and filtered through Celite, and volatiles were removed with a rotary evaporator. To the remaining red oil was added an excess amount of NH₄PF₆ and 20 mL of CH₃CN. This mixture was placed in an ultrasonic cleaner for ca. 5 min after which the volatiles were removed. The remaining reddish-brown solid was dissolved in CH₂Cl₂ and filtered through Celite. Flash chromatography (alumina, $2.5 \text{ cm} \times 15 \text{ cm}$), eluting first with CH₂Cl₂ until yellow dba is removed and then with CH₃OH, affords a reddish-brown solid after removal of solvent. Precipitation of the reddish-brown solid by addition of Et₂O to a saturated CH₂Cl₂ solution affords 0.106 g (0.0389 mmol) of **1** as a reddish-brown solid (64%). Anal. Calcd (C119H94Cl2F12Hg2N6P8-Pt₂): C, 48.51; H, 3.22; N, 2.85. Found: C, 48.98; H, 2.82; N, 3.25. ¹H NMR (300 MHz, CD₃CN, 25 °C): $\delta = 8.41$ (d, J = 8.06Hz), 8.14 (s), 7.60 (d, J = 8.06 Hz), 7.32 (m), 6.96 (m), 6.94 (m), 6.72 (m), 6.25 (m), 5.80 (m). ³¹P{¹H} NMR (121 MHz, CD₃CN,

- (12) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518–1520.
- (13) Cherwinski, W. J.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans. 1974, 1405–1409.
- (14) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253–266.

Pd(0) and Pt(0) Metallocryptands

25 °C): $\delta = 43.1$ (s, ${}^{1}J_{P-Pt} = 4350$ Hz, ${}^{2}J_{P-Hg} = 620$ Hz). ${}^{195}Pt$ NMR (106.95 MHz, CD₂Cl₂, external reference H₂PtCl₆ in D₂O, 25 °C): $\delta = -3071$ (q, ${}^{1}J_{Pt-P} = 4350$ Hz, ${}^{1}J_{Pt-Hg} = 1602$ Hz). 199 Hg NMR (89.385 MHz, CD₂Cl₂, external reference Hg(OAc)₂ in d_6 -DMSO, 25 °C): $\delta = 770.8$ (hept, ${}^{2}J_{Hg-P} = 620$ Hz, dhept, ${}^{1}J_{Hg-Pt} = 1602$ Hz).

Preparation of [Pd₂Hg₂(P₂phen)₃](PF₆)₂, 2. Prepared analogously to **1**. Yield: 61%. ¹H NMR (300 MHz, CD₃CN, 25 °C): $\delta = 8.48$ (d, J = 8.05 Hz), 8.15 (s), 7.58 (d, J = 8.05 Hz), 7.32 (m), 7.01 (m), 6.94 (m), 6.726 (m), 6.25 (m), 5.79 (m). ³¹P{¹H} NMR (121 MHz, CD₃CN, 25 °C): $\delta = 44.9$ (s, ² $J_{P-Hg} = 638$ Hz). ¹⁹⁹Hg NMR (89.392 MHz, CD₂Cl₂, external reference Hg(OAc)₂ in d₆-DMSO, 25 °C): $\delta = 833$ (hept, ² $J_{Hg-P} = 638$ Hz).

 $[Pd_2Hg_2(P_2phen)_3](BF_4)_2$, $2(BF_4)_2$ was prepared quantitatively by metathesis of 2 with excess NaBF₄ and crystallized by slow addition of benzene to a 1,2-dichloroethane solution of the complex.

X-ray Crystallography. Suitable crystals were coated with light petroleum oil, mounted on a glass fiber, and placed in the nitrogen cold stream of a Siemens SMART diffractometer. Unit cell parameters were determined by least-squares analysis of 9125 reflections with $2.40^{\circ} < \theta < 31.2^{\circ}$ for **1** and 7529 reflections with $2.24^{\circ} < \theta < 27.73^{\circ}$ for **2**. A total of 99964 reflections were collected in the range $1.77^{\circ} < \theta < 27.5^{\circ}$, yielding 24741 unique reflections ($R_{int} = 0.068$) for **1**, while a total of 151998 reflections were collected in the range $1.27^{\circ} < \theta < 27.5^{\circ}$, yielding 22568 unique reflections ($R_{int} = 0.105$) for **2**. The data were corrected for absorption and Lorentz and polarization effects. Crystal data are given in Table 3. Scattering factors and corrections for anomalous dispersion were taken from a standard source.¹⁵

Calculations were performed using the Siemens SHELXTL Version 5.10 system of programs refining on F^2 . The structures were solved by direct methods. Complexes 1 and $2(BF_4)_2$ crystallize in the monoclinic space group, P2(1)/n. Complex 1 crystallizes with the cation, two hexafluorophosphate anions (one is positionally disordered about the fluorine atoms), one 1,2-dichloroethane molecule, and one and one-half benzene solvate molecules. Likewise, $2(BF_4)_2$ crystallizes with the cation, two tetrafluoroborate anions (one is disordered about the fluorine atoms), three-quarters of a 1,2-dichloroethane molecule and one-half of a benzene solvate. There are no unusual contact between these moieties. The refinements of these data were unremarkable. Simple models of the disorder provided satisfactory refinements.

Results

The deep-red, air-stable complexes $[Pt_2Hg_2(P_2phen)_3]$ - $(PF_6)_2$, **1**, or $[Pd_2Hg_2(P_2phen)_3](PF_6)_2$, **2**, are most conveniently prepared by the stoichiometric reaction of either $Pt(dba)_2$ or $Pd_2(dba)_3$ (dba is dibenzylideneacetone) with P_2phen and a single drop of commercial, triply distilled, elemental mercury in refluxing dichloromethane under an atmosphere of nitrogen. Metathesis with NH_4PF_6 produces **1** and **2** in moderate yields. In this method, the necessary redox chemistry to form Hg_2^{2+} likely results from an oxidative addition reaction between the solvent and the zerovalent metal followed by a second redox process with Hg(0) to generate the mercurous dimer. Surprisingly, the anaerobic reaction of the same materials in refluxing acetonitrile produced the same products upon workup, however, at lower yields, suggesting that the redox chemistry in this

Figure 1. Downfield region of the 121.7 MHz ³¹P{¹H} NMR spectra of 1 (spectrum A) in CD₃CN at 25 °C showing coupling to ¹⁹⁵Pt ($I = \frac{1}{2}$, 33.8% abundant) and ¹⁹⁹Hg ($I = \frac{1}{2}$, 16.8% abundant) and of **2** (spectrum B) showing coupling to ¹⁹⁹Hg. Coupling to the isotopomer containing two ¹⁹⁹Hg atoms (triplet, 2.8% abundant) is denoted by the asterisks.

experiment may be attributed to the serendipitous oxidation of Pd(0) or Pt(0) by impurities in the commercial elemental mercury, presumably HgO. The same reaction (CH₃CN) using freshly distilled Hg(0) produces deep-red solutions that show no phosphorus-mercury coupling by ³¹P{¹H} NMR spectroscopy, nor do they contain **1** or **2**. Both **1** and **2** can be prepared by reacting divalent Pd(NCC₆H₅)₂Cl₂ or Pt(1,5cyclooctadiene)Cl₂ with P₂phen in the presence of freshly distilled Hg(0) in refluxing acetonitrile. Interestingly, the direct addition of Hg₂(NO₃)₂ to P₂phen and the appropriate d¹⁰ metal starting material does not produce **1** or **2**.

As shown in Figure 1, the ³¹P{¹H} NMR spectrum of **1** shows a single sharp resonance at 43.1 ppm for the phosphorus atoms of the P₂phen ligand with both ¹⁹⁵Pt (¹*J*_{P-Pt} = 4350 Hz) and ¹⁹⁹Hg (²*J*_{P-Hg} = 620 Hz) satellites and the appropriate resonance for the PF₆⁻ counterions at -143.5 ppm (heptet ¹*J*_{P-F} = 704 Hz). Both ¹⁹⁹Hg and ¹⁹⁵Pt have $I = \frac{1}{2}$ and are 16.8% and 33.8% naturally abundant, respectively. Simple integration of these resonances shows that the Hg satellites comprise approximately 34% of the total signal confirming the presence of two Hg atoms. Likewise, the overall 2+ charge is confirmed by comparison of the integration of the PF₆⁻ signal and direct observation of two anions in the X-ray crystallography (vide infra). The

³¹P{¹H} NMR spectrum for **2** is similar to that of **1** with a single resonance for the P₂phen ligands at 44.9 ppm with ¹⁹⁹Hg satellites (${}^{2}J_{P-Hg} = 638$ Hz). The observation of a single magnetic environment for the phosphorus atoms of the P₂phen ligands suggests that the Hg₂²⁺ core is dynamic and is rapidly rotating about the Pt-Pt or Pd-Pd vectors at room temperature. Lowering the temperature to -90 °C broadens the P₂phen resonance of **1** and **2**, but no splitting is observed.

The 89.4 MHz ¹⁹⁹Hg NMR spectrum (vs Hg(OAc)₂ in d_{6} -DMSO) of 2 (Figure 2, top) shows the requisite heptet pattern at 833 ppm while for 1 a heptet (major isotopomer, no ¹⁹⁵Pt present) superimposed on a doublet of heptets (intermediate isotopomer, one ¹⁹⁵Pt present) is observed at 770.8 ppm (Figure 2, middle). Because of the low signal-to-noise of this spectrum, the outer lines of the doublet of heptets are not resolved nor is the minor isotopomer containing two ¹⁹⁵Pt atoms. Because of the large number of lines, the ¹⁹⁹Hg-¹⁹⁵Pt coupling is difficult to determine in this spectrum; however, this interaction is easily measured in the 106.9 MHz ¹⁹⁵Pt NMR spectrum (Figure 2, bottom) that displays a quartet at -3071 ppm with ¹⁹⁹Hg satellites and a ¹J_{Pt-Hg} value of 1602 Hz. The ¹H NMR spectra of **1** or **2** show only a single ligand environment with nine resonances easily assigned to the protons of the P_2 phen ligands. As observed in other P₂phen-based metallocryptands, there are two environments for the phenyl rings, one axial and one equatorial to the d¹⁰d¹⁰ metal-metal axis.

Crystals of **1** suitable for X-ray diffraction analysis were grown by the slow diffusion of benzene into a 1,2dichloroethane solution of the complex and crystallize in the monoclinic space group P2(1)/n. The PF₆⁻ salt of **2** did not produce satisfactory crystals; however, metathesis to the BF₄⁻ salts produced deep-red, high quality crystals by slow diffusion of benzene into a 1,2-dichloroethane solution of the complex. **2**(**BF**₄)₂ also crystallizes in the monoclinic space group P2(1)/n.

A thermal ellipsoid drawing of the cation of **1** is presented in Figure 3 while the cationic portion of 2 is shown in Figure 4. Selected bond distances and angles are presented in Table 2. The overall geometry of the complexes is helical; however, the bulk material is racemic as dictated by the centrosymmetric space group, and both helices are present. Both 1 and 2 contain a Hg_2^{2+} unit coordinated to the phenanthroline portion of two P₂phen ligands and oriented nearly perpendicularly to the d¹⁰····d¹⁰ metal-metal vector (Figure 5). The formal metal-metal bond of Hg22+ moiety is evident with short Hg(1)-Hg(2) separations of 2.7362(6) and 2.6881(4) Å for 1 and 2, respectively. The mercurous dimer interacts strongly and nearly symmetrically with the trigonally coordinated capping metals with Pt(1)-Hg(1), Pt(1)-Hg(2), Pt(2)-Hg(1), and Pt(2)-Hg(2) separations of 2.8045(5), 2.8258(6), 2.8447(6), and 2.7823(5) Å, respectively, and Hg(1)-Pt(1)-Hg(2) and Hg(1)-Pt(2)-Hg(2) angles of 58.152(13)° and 58.178(13)° in **1**. In **2**, the corresponding metrical parameters are very similar with Pd(1)-Hg(1), Pd(1)-Hg(2), Pd(2)-Hg(1), and Pd(2)-Hg(2) separations of 2.7936(6), 2.7475(5), 2.7419(5), and 2.7960(6) Å and

Figure 2. Spectrum A: the 89.4 MHz ¹⁹⁹Hg NMR spectrum (vs Hg-(OAc)₂ in *d*₆-DMSO) of **2** shows coupling to six equivalent phosphorus atoms (²*J*_{P-Hg} = 638 Hz). Spectrum B: the 89.4 MHz ¹⁹⁹Hg NMR spectrum of **1** displaying a heptet (**I**) for the non-¹⁹⁵Pt containing isotopomer (43.8% naturally, abundant) and the inner lines of a doublet of heptets (Δ , **▲**) for the isotopomer containing one ¹⁹⁵Pt atom (44.8% naturally abundant) with ²*J*_{P-Hg} = 620 Hz and ¹*J*_{Hg-Pt} = 1602 Hz. The remaining isotopomer containing two ¹⁹⁵Pt atoms (11.4% naturally abundant) is not observed. Spectrum C: 106.9 MHz ¹⁹⁵Pt NMR spectrum of **1** showing coupling to three equivalent phosphorus atoms (¹*J*_{Pt-P} = 4350 Hz) and ¹⁹⁹Hg satellites (¹*J*_{Pt-Hg} = 1602 Hz).

Figure 4. Thermal ellipsoid plot of the cationic portion of **2** with hydrogen atoms and all but the ipso carbon of the phenyl rings omitted for clarity. The axial phenyl rings are attached to C(37), C(61), C(85) on the left and to C(55), C(73), and C(97) on the right.

Hg(1)-Pd(1)-Hg(2) and Hg(1)-Pd(2)-Hg(2) angles of $58.035(11)^{\circ}$ and $58.068(11)^{\circ}$, respectively.

In both complexes, the d¹⁰ metal resides in a distorted trigonal coordination environment. In **1**, Pt(1) and Pt(2) are displaced out of their respective phosphine planes toward the Hg₂²⁺ dimer by 0.563 and 0.587 Å, and in **2**, Pd(1) and Pd(2) are likewise displaced by 0.587 and 0.576 Å, respectively. These distortions shorten the Pt(1)····Pt(2) distance in **1** to 4.878(1) Å and the Pd(1)····Pd(2) distance to 4.806-(1) Å in **2**. These values are considerably shorter than the P····P separations of the P₂phen ligands which average 6.771-(3) Å in **1** and 6.805(3) Å in **2**. The short d¹⁰····d¹⁰ separations are achieved by twisting the two PtP₃ and PdP₃ units in the respective compounds. In **1**, the average intraligand torsion angle (P-Pt(1)-Pt(2)-P) is 87.2° while in **2** the analogous torsional angles are slightly larger with an average value of 91.4°.

The electronic absorption spectra (CH_2Cl_2) of **1** and **2** show broad, nearly featureless absorption bands that tail into the visible with shoulders discernible at 320 and 370 nm in **1**

Table 2. Bond Distances (Å) and Angles (deg) for 1 and 2

The Li Bond Distances (if) and Migles (deg) for I and 2						
	$1, \mathbf{M} = \mathbf{P}\mathbf{t}$	2 , $M = Pd$				
M(1)-Hg(1)	2.8045(5)	2,7936(6)				
M(1) - Hg(2)	2.8258(6)	2.7475(5)				
M(2) - Hg(1)	2.8447(6)	2.7419(5)				
M(2) - Hg(2)	2.7823(5)	2.7960(5)				
$H_{\sigma}(1) - H_{\sigma}(2)$	2,7362(6)	2.6881(4)				
M(1) - P(1)	2.3017(17)	2.3304(15)				
M(1) - P(3)	2.2990(17)	2.3644(16)				
M(1) - P(5)	2.3246(18)	2.3633(17)				
M(2) - P(2)	2.3078(17)	2.3611(16)				
M(2) - P(4)	2.3175(17)	2.3379(16)				
M(2) - P(6)	2.3338(18)	2.3730(16)				
$H_{\sigma}(1) - N(1)$	2.468(5)	2.344(5)				
$H_{g}(1) - N(2)$	2.398(5)	2.453(5)				
$H_{g}(2) - N(3)$	2.401(5)	2.483(5)				
$H_{g}(2) - N(4)$	2 500(5)	2 360(5)				
M···M	4.878(1)	4.806(1)				
$P(1) \cdots P(2)$	6 758(3)	6 779(2)				
$P(3) \cdots P(4)$	6776(3)	6.781(2)				
$P(5) \cdots P(6)$	6779(3)	6.854(2)				
1(0) 1(0)	1 M = Pt	2 M = Pd				
$\mathbf{D}(1) = \mathbf{M}(1) = \mathbf{D}(2)$	1, 10 20(()	120.67(6)				
P(1) = M(1) = P(3) P(1) = M(1) = P(5)	120.20(0) 112.59(6)	120.07(0) 100.58(6)				
P(1) = M(1) = P(3) P(2) = M(1) = P(5)	115.36(0)	109.38(0)				
P(3) = M(1) = P(3) P(2) = M(2) = P(4)	108.84(0)	111.37(0) 110.22(6)				
P(2) = M(2) = P(4)	115.98(6)	119.55(0)				
P(2) - M(2) - P(6) P(4) - M(2) - P(6)	115.20(0)	115.85(0)				
P(4) - M(2) - P(6)	110.1/(0)	109.45(6)				
M(1) - Hg(1) - Hg(2) $M(1) - H_{2}(2) - H_{2}(1)$	01.313(15)	00.124(12)				
M(1) - Hg(2) - Hg(1)	60.534(10)	61.842(13)				
Hg(1) - M(1) - Hg(2)	58.152(13)	58.055(11)				
M(2) - Hg(1) - Hg(2)	59.770(11)	61.975(13)				
M(2) - Hg(2) - Hg(1)	62.052(13)	59.957(12)				
Hg(1) - M(2) - Hg(2)	58.178(13)	58.068(11)				
N(1) - Hg(1) - N(2)	67.44(19)	68.95(17)				
N(3) - Hg(2) - N(4)	67.82(18)	68.51(17)				
P(1)-M(1)-M(2)-P(2)	2) 83.93(7)	91.92(6)				
P(3)-M(1)-M(2)-P(4)	88.77(6)	91.65(6)				
P(5) - M(1) - M(2) - P(6)	b) 88.98(7)	90.73(6)				
Table 3. Crystallographic Data for 1 and 2						
	1(PF ₆) ₂ ·1.5C ₆ H ₆ · 1,2-C ₂ H ₄ Cl ₂	$\frac{2(BF_4)_2 \cdot 0.5C_6H_6 \cdot }{0.75(1,2\text{-}C_2H_4Cl_2)}$				
formula	C119H90Cl2F12-	C112.5H78B2Cl1.5-				
	$Hg_2N_6P_8Pt_2$	$F_8Hg_2N_6P_6Pd_2$				
fw	2941.99	2540.40				
<i>a</i> , Å	16.995(4)	17.5937(18)				
b, Å	27.707(6)	29.218(3)				
<i>c</i> , Å	23.561(5)	19.122(2)				
β , deg	99.329(4)	90.979(9)				

ι, Α	25.501(5)	19.122(2)
β , deg	99.329(4)	90.979(9)
V, Å ³	10948(4)	9828.3(18)
space group	P2(1)/n	P2(1)/n
Z	4	4
$D_{\text{calcd}}, \text{g/cm}^3$	1.785	1.717
cryst size, mm3	$0.16 \times 0.23 \times 0.34$	$0.13 \times 0.13 \times 0.32$
μ (Mo K α), mm ⁻¹	5.583	3.683
λ, Å	0.71073	0.71073
temp, K	135(2)	143(2)
transm factors	0.28 - 0.47	0.39-0.69
R1, wR2 $(I > 2\sigma(I))$	0.0510, 0.1374	0.0490, 0.1182

and 310 and 340 nm for **2**. Both show ligand-based $\pi - \pi^*$ transitions at 283 nm. The lowest energy band in **1** appears at 475 nm while in **2** this band is shifted to 430 nm. Excitation into these bands produces weak emissions centered at 593 nm with shoulders at 530 and 654 nm in **1** and centered at 524 nm with a shoulder at 545 nm in **2**. The excitation spectra show that these emissions are derived from the lowest energy absorption bands in the respective compounds. Neither **1** nor **2** demonstrated any reversible electrochemistry, nor was a molecular ion found in the

Figure 5. View of the coordination environment around the metals of **2**. The three P_2 phen ligands are composed of P(1)-P(2), P(3)-P(4), and P(5)-P(6).

MALDI-TOF mass spectrum. However, several fragments corresponding to ligand dissociation and Hg_2 loss were discernible.

Discussion

The redox chemistry leading to the formation of 1 and 2 is not completely understood but can be traced to either oxidative processes originating in the capping metals or to an impurity in the commercial grade mercury. It is wellknown that the comproportionation equilibrium reaction of Hg(II) and Hg(0) strongly favors Hg_2^{2+} , ¹⁶ and this dimer is stabilized by nitrogen donor ligands such as PhNH₂ or 1,10phenanthroline. The observations that 1 and 2 can be produced from either a legitimate Pt(II) or Pd(II) reagent or by the reaction of the zerovalent metals with CH_2Cl_2 , producing Pt(II) or Pd(II) in situ, support the role of oxidative addition as a fundamental step in the synthesis. A subsequent transmetalation reaction or electron transfer with Hg(0)completes the final redox step to form Hg_2^{2+} . In the absence of a source of Pt(II) or Pd(II), an impurity, presumably HgO, in the commercial elemental mercury is needed to produce 1 and 2. After purifying the mercury and eliminating sources of Pt(II) and Pd(II), no trace of either 1 or 2 could be found. It is interesting to note that the addition of $Hg_2(NO_3)_2$ to Pd₂(dba)₃ or Pt(dba)₂ in CH₃CN does not produce 1 or 2 suggesting that a stepwise assembly of the metals may be necessary.

The dynamic behavior of the encapsulated Hg_2^{2+} dimer is particularly striking especially when considering the large number of known stable and inert complexes of Hg_2^{2+} with similar nitrogen-containing ligands including pyridine, 2,2'bipyridine, and 1,10-phenanthroline.¹⁷ To render the phosphine environments equal in the ³¹P{¹H} NMR spectrum (likewise, the mercury environments) requires labilization of the Hg–N bonds and subsequent rotation of the Hg2²⁺ dimeric unit about the Pd···Pd or Pt···Pt axes. Assuming this mechanism is correct, Hg–N bond breaking is likely the rate-determining step, and considering that the Hg–N bond strengths are nearly the same for both compounds (average Hg–N separation is 2.442 Å in 1 and 2.410 Å in 2), it is not unexpected that both complexes would exhibit similar dynamic behavior. Given the seemingly small barrier to rotation, variable temperature solid-state ³¹P or ¹⁹⁹Hg NMR spectroscopy might be a better probe of this dynamic behavior. Clearly, further investigation is warranted.

Unlike other Pd(0)- and Pt(0)-based metallocryptands, the ³¹P{¹H} NMR chemical shifts for 1 and 2 (43.1 and 44.9 ppm) are very similar. Typically, the ³¹P resonances in Pd(0)based metallocryptands are shifted 10-15 ppm upfield relative to their Pt(0) counterparts. Considering the large chemical shift dispersion of 199 Hg (>5000 ppm), 18 the 199 Hg resonances of 1 and 2 (770.8 and 833.0 ppm) are also considered very similar and close to the value for aqueous mercurous ion extrapolated to infinite dilution (~800 ppm vs Hg(OAc)₂).¹⁹ However, these resonances are shifted considerably downfield relative to the ¹⁹⁹Hg resonance observed in [Au₂Hg(P₂phen)₃]²⁺ (-1200 ppm) which contains a single Hg(0) atom encapsulated in a Au(I)-cage.⁷ The ¹⁹⁵Pt resonance of 1 (-3071 ppm) is significantly deshielded compared to the loosely related Tl(I)-containing metallocryptands, $[Pt_2Tl(P_2phen)_3]^+(-4119 \text{ ppm})$ and $[Pt_2Tl(P_2$ bpy_{3}^{+} (-4120 ppm), and the archetypal Pt(PPh_{3})_{3} compound (-4583 ppm).²⁰ No analogous ${}^{1}J_{Pt-Hg}$ values for Pt(0) complexes bound side-on to a Hg_2^{2+} unit could be found, but the ${}^{1}J_{\text{Pt-Hg}}$ of 1602 Hz observed in **1** is much smaller than the one-bond coupling constant of 5087 Hz found in [N(CH₂CH₂PPh₂)₃Pt(HgMe)](BPh₄)²¹ which can be viewed as having a formal Pt-Hg bond.

The bonding about the four-metal center is unique, and no analogous compounds with two Pd or Pt atoms coordinated "side-on" to a mercurous dimer could be found. However, there are several triangular adducts of $Fe(CO)_4$ to mercurous dimer complexes that possess short Fe–Hg separations (~2.55 Å) but with much longer Hg–Hg separations (~3.1 Å)^{17b,22} and numerous cluster compounds that contain Hg–Pt bonds^{21,23} with separations ranging 2.531(1)–3.071(3) Å. It is notable in **1** and **2** that the Hg–

- (18) Wrackmeyer, B.; Contreras, R. In Annual Reports on NMR Spectroscopy; Webb, G. A., Ed.; Academic Press: London, 1992; Vol. 24, p 267–329.
- (19) Gillespie, R. J.; Granger, P.; Morgan, K. R.; Schrobligen, G. J. Inorg. Chem. 1984, 23, 887–891.
- (20) Mann, B. E.; Musco, A. J. Chem. Soc., Dalton Trans. 1975, 1673– 1677.
- (21) Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini, A.; Scapacci, G.; Dakternieks, D. J. Chem. Soc., Chem. Commun. 1989, 1686– 1688.
- (22) (a) Baker, R. W.; Pauling, P. J. Chem. Soc., Chem. Commun. 1970, 573-574. (b) Baird, H. W.; Dahl, L. F. J. Organomet. Chem. 1967, 7, 503-514.
- (23) (a) Hao, L.; Manojlovic-Muir, L.; Muir, K. W.; Puddephatt, R. J.; Spivak, G. J.; Vittal, J. J.; Yufit, D. *Inorg. Chim. Acta* **1997**, 265, 65-74. (b) Hao, L.; Vittal, J. J.; Puddephatt, R. J. *Organometallics* **1996**, 15, 3115-3123. (c) Dahmen, K.-H.; Imhof, D.; Venzani, L. M.; Gerfin, T.; Gramlich, V. J. *Organomet. Chem.* **1995**, 486, 37-43. (d) Spivak, G. J.; Vittal, J. J.; Puddephatt, R. J. *Inorg. Chem.* **1998**, 37, 5474-5481. (e) Spivak, G. J.; Hao, L.; Vittal, J. J.; Puddephatt, R. J. J. Am. Chem. Soc. **1996**, 118, 225-226. (f) Casas, J. M.; Falvello, L. R.; Forniés, J.; Gomez, J.; Rueda, A. J. Organomet. Chem. **2000**, 593-594, 421-426.

⁽¹⁶⁾ Greenwood, N. N.; Earnshaw, A. *Chemistry of the Elements*; Pergamon Press: Oxford, 1994.

^{(17) (}a) Kepert, D. L.; Taylor, D. Aust. J. Chem. 1974, 27, 1199–1202.
(b) Mauro, A. E.; Pulcinelli, S. H.; Santos, R. H. A.; Gambardella, M. T. P. Polyhedron 1992, 11, 799–803. (c) Brodersen, K.; Hacke, N. Chem. Ber. 1974, 107, 3260–3265.

Pd(0) and Pt(0) Metallocryptands

Hg bond (2.7362(6) and 2.6881(4) Å) is preserved and is only slightly lengthened compared to the distance of 2.508-(2) Å measured in $Hg_2(NO_3)_2$,²⁴ whereas the addition of Fe(CO)₄ to this core significantly weakens the Hg-Hg bond. The Hg_2^{2+} unit strongly interacts with the d¹⁰ metals as evidenced by the very short separations between the centroid of the Hg_2^{2+} bond and Pd and Pt. In 1, the Hg_2 (centroid)-Pt(1) and Hg2(centroid)-Pt(2) separations are only 2.460 and 2.459 Å while in 2 the $Hg_2(\text{centroid}) - Pd(1)$ and Hg2(centroid)-Pd(2) distances are slightly shorter at 2.423 and 2.421 Å. Considering these short separations and the rapid spinning of the Hg₂²⁺ unit, it is tempting to draw an analogy between this interaction and that of the classic dihydrogen molecule bonded to a transition metal;²⁵ however, a better description might include a delocalized, four-centered molecular orbital approach that allows for strong Pt-Hg and Pd-Hg bonds without sacrificing the Hg-Hg bond. The average Pt-Hg bond length in 1 is 2.8143(6) Å while in 2 the average Pd-Hg bond length measures 2.7698(5) Å, and these values are in good agreement with other Pt-Hg²³ bonds and Pd-Hg bonds.26

The optical properties of **1** and **2** are consistent with those of other Pt(0)- and Pd(0)-based metallocryptands. For example, the deep-red, air-stable $[Pt_2Tl(P_2phen)_3]^+$ and

- (25) Kubas, G. Acc. Chem. Res. 1988, 21, 120-128
- (26) Bennett, M. A.; Contel, M.; Hockless, D. C. R.; Welling, L. L.; Willis, A. C. Inorg. Chem. 2002, 41, 844–855.
- (27) Pauling, L. *The Chemical Bond*; Cornell University Press: Ithaca, NY, 1967.

 $[Pd_2Tl(P_2phen)_3]^+$ are known to be very weakly emissive, and this emission likely originates from a metal-centered transition. Likewise, **1** and **2** exhibit very similar low-energy emissions that originate from allowed transitions that extend into the visible portion of the spectrum. The red shift of this absorption band in **1** compared to **2** also supports the assignment, and this trend was noted previously for analogous compounds.

Complexes **1** and **2** show for the first time the encapsulation of a molecular fragment rather than a single metal atom or ion suggesting that these metallocryptands could be used as templates for the synthesis of small multimetallic clusters. Clearly, there is room for another metal atom, and it is interesting that a third Hg atom is not trapped considering that the Hg₃^{*n*+}-polycations (Hg₃(AlCl₄)₂ and Hg₃(AsF₆)₂) are known.¹⁶ Alternatively, it may also be possible to coordinate a different type of metal species to the vacant phenanthroline site in subsequent reactions. We are currently exploring this idea and the generation of similar clusters using other ligands.

Acknowledgment is made to the National Science Foundation (CHE-0091180), to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for their generous financial support of this research, and to Mr. Renante Yson for his assistance in preparing the graphical material.

Supporting Information Available: Complete X-ray crystallographic data for **1** and **2** (CIF format). This material is available free of charge via the Internet at http://pubs.acs.org.

IC020439N

⁽²⁴⁾ Grdenic, D.; Sikirica, M.; Vickovic, I. Acta Crystallogr. 1975, B31, 2174-2175.