Inorg. Chem. **2002**, *41*, 1658−1661

Insertion of a Bis(phosphine)platinum Group into the S−**S Bond of** $Mn_2(CO)_{7}(u-S_2)$

Richard D. Adams,* O-Sung Kwon, and Mark D. Smith

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208

Received September 25, 2001

The reaction of $Mn_2(CO)_{7}(\mu \cdot S_2)$, 1, with Pt(PPh₃)₂(PhC₂Ph) yielded the new complex, $Mn_2(CO)_{6}Pt(PPh_3)_{2}(\mu_3 \cdot S)_{2}$, 3, by loss of CO and insertion of a Pt(PPh3)2 group into the S−S bond of **1**. Complex **3** was characterized crystallographically and was found to consist of an open Mn2Pt cluster with one Mn−Mn bond, 2.8154(14) Å, one Mn−Pt bond, 2.9109(10) Å, and two triply bridging sulfido ligands. Compound **3** reacts with CO to form adduct Mn2(CO)6(*µ*-CO)Pt(PPh3)2(*µ*3-S)2, **4**. Compound **4** also contains an open Mn2Pt cluster with two triply bridging sulfido ligands but has only one metal–metal bond, Mn–Mn = 2.638(2) Å. Under nitrogen, compound 4 readily loses CO and reverts back to **3**.

Introduction

We have recently reported the new manganese disulfide $Mn_2(CO)_{7}(\mu-S_2)$, **1**, obtained from the reaction of $Mn_2(CO)_{9}$ -(NCMe) with thiirane.1 Compound **1** is related to the wellknown diiron disulfide, $Fe₂(CO)₆(\mu-S₂)$,² **2**, that was first reported by Hieber in 1958. Compound **2** has been extensively investigated over the years.³⁻¹⁴

Most reactions of $Fe₂(CO)₆(\mu-S₂)$ with metal complexes occur at the disulfide group with insertion of a metal grouping into the S-S bond. For example, the reaction of **²** with certain low-valent palladium and platinum complexes yields the complexes $Fe₂(CO)₆PG(PPh₃)₂(\mu₃-S)₂$ and $Fe₂(CO)₆-$

- * To whom correspondence should be addressed. E-mail: Adams@mail. chem.sc.edu.
- (1) Adams, R. D.; Kwon, O. S.; Smith, M. D. *Inorg. Chem.* **2001**, *40*, 5322.
- (2) Hieber, W.; Gruber, J. *Z. Anorg. Allg. Chem*. **1958**, *296*, 91.
- (3) Whitmire, K. H. Iron Compounds without Hydrocarbon Ligands. In *Comprehensive Organometallic Chemistry II*; Wilkinson, G., Stone, F. G. A., Abel, E., Eds.; Pergamon Press: New York, 1995; Vol. 7, Chapter 1, section 1.11.2.2, p 62 and references therein.
- (4) Westmeyer, M. D.; Rauchfuss, T. B.; Verma, A. K. *Inorg. Chem.* **1996**, *35*, 7140.
- (5) Westmeyer, M. D.; Galloway, C. P.; Rauchfuss, T. B. *Inorg. Chem.* **1994***, 33*, 4615.
- (6) (a) Mathur, P.; Ghosh, S.; Sarkar, A.; Satyanarayana, C. V. V.; Puranik, V. G. *Organometallics* **1997**, *16*, 4392. (b) Mathur, P.; Dash, A. K. *J. Cluster Sci.* **1998**, *9*, 131.

 $Pt(PPh₃)₂(\mu₃-S)₂$ by insertion of the metal into a S-S bond of 2 (eq 1).¹⁰⁻¹⁴

By contrast, the reactions of 2 with $C_5Me_5Co(CO)_2$, C_5H_5 - $Re(CO)₃, C₅H₅Nb(CO)₄$, and $W(CO)₆$ yield products formed by insertion of a metal fragment into the S-S bond with formation of two new metal-metal bonds and cleavage of the Fe-Fe bond (eq 2). $11-13$

For comparison, we have now investigated the reaction of **1**

- (7) Vahrenkamp, H.; Wucherer, E. J. *Angew. Chem., Int. Ed. Engl.* **1981**, *20*, 680.
- (8) Seyferth, D.; Henderson, R. S.; Song, L.-C. *Organometallics* **1982**, *1*, 125.
- (9) Don, M. J.; Richmond, M. G. *Inorg. Chim. Acta* **1993**, *210*, 129.
- (10) Day, V. W.; Lesch, D. A.; Rauchfuss, T. B. *J. Am. Chem. Soc.* **1982***, 104*, 1290.
- (11) Pasynskii, A. A.; Kolobskov, B. I.; Nefedov, S. E.; Eremenko, I. L.; Koltun, E. S. *J. Organomet. Chem.* **1993**, *454*, 229.
- (12) Pasynskii, A. A.; Kolobskov, B. I.; Eremenko, I. L.; Nefedov, S. E.; Katser, S. B.; Porai-koshits, M. A. *Zh. Neorg. Khim.* **1992**, *37*, 563; *Russ. J. Inorg. Chem.* **1995**, *37*, 278 (English version).

1658 Inorganic Chemistry, Vol. 41, No. 6, 2002 10.1021/ic0110023 CCC: \$22.00 [©] 2002 American Chemical Society Published on Web 02/28/2002

Figure 1. ORTEP diagram of $Mn_2(CO)_{6}Pt(PPh_3)_{2}(\mu_3-S)_{2}$, 3, showing 30% probability thermal ellipsoids. Selected interatomic distances (Å) are Mn- $(1)-Mn(2) = 2.8154(14), Mn(1)-S(1) = 2.2821(19), Mn(1)-S(2) =$ 2.273(2), $\text{Mn}(2) - \text{S}(1) = 2.2818(19)$, $\text{Mn}(2) - \text{S}(2) = 2.291(2)$, $\text{Mn}(2) Pt(1) = 2.9109(10), Pt(1) - S(1) = 2.3443(16), Pt(1) - S(2) = 2.3333(15),$ $Mn(1)\cdots Pt(1) = 3.1608(10).$

with $Pt(PPh₃)₂(PhC₂Ph)$. The results of these studies are reported here.

Results

The reaction of 1 with $Pt(PPh_3)_2(PhC_2Ph)$ in CH_2Cl_2 produced the new green compound $Mn_2(CO)_{6}Pt(PPh_3)_{2}(\mu_3-$ S)2, **3**, in 38% yield in 3 h at 25 °C. Compound **3** was isolated by TLC by using a hexane/ CH_2Cl_2 solvent mixture. The infrared spectrum of compound **3** shows three absorptions in the CO region that can be attributed to terminal CO ligands. The ¹H NMR spectrum exhibits multiple resonances at δ = 7.4-7.0 that can be assigned to the phenyl group of the phosphine ligand. The ${}^{31}P{}^{1}H$ } NMR spectrum of compound **3** exhibits a single resonance at 14.24 ppm with ¹⁹⁵Pt satellites ($J_{\text{Pt-P}} = 4316 \text{ Hz}$). Details of the structure of **3** were established by a single-crystal X-ray diffraction analysis, and an ORTEP diagram of its molecular structure is shown in Figure 1. The structure of **3** contains an open PtMn₂ cluster with one Mn-Mn bond $(2.8154(14)$ Å) and one Pt-Mn bond, $Mn(2) - Pt(1) = 2.9109(10)$ Å. The Mn- $(1)-Pt(1)$ distance of 3.1608(1) Å is believed to be nonbonding. The Mn-Mn distance is considerably longer than that observed in $Mn_2(CO)_7(\mu-S_2)$, 2.6745(5) Å,¹ but is significantly shorter than that in $Mn_2(CO)_{10}$, 2.8950(6)^{15a} and $2.9038(6)$ Å,^{15b} which contains no bridging ligands. There are two triply bridging sulfido ligands. The four Mn-S bond distances, $2.273(2)-2.291(2)$ Å, are similar to those found for other sulfidomanganese carbonyl compounds.¹

^{(15) (}a) Martin, M.; Rees, B.; Mitschler, A. *Acta Crystallogr.* **1982**, *B38*, 6. (b) Churchill, M. R.; Amoh, K. N.; Wasserman, H. J. *Inorg. Chem.* **1981**, *20*, 1609.

Figure 2. ORTEP diagram of $Mn_2(CO)$ ₇Pt(PPh₃)₂(μ ₃-S)₂, 4, showing 30% probability thermal ellipsoids. Selected interatomic distances (\hat{A}) are Mn(1)- $Mn(2) = 2.638(2), Mn(1)-S(1) = 2.336(3), Mn(1)-S(2) = 2.338(3),$ $Mn(2)-S(1) = 2.340(3)$, $Mn(2)-S(2) = 2.317(3)$, $Pt(1)-S(1) = 2.346(2)$, $Pt(1)-S(2) = 2.355(3), Mn(1)-C(13) = 2.037(14), Mn(2)-C(13) =$ 2.112(13), Mn(1) $\cdot\cdot\cdot$ Pt(1) = 3.3293(18), Mn(2) $\cdot\cdot\cdot$ Pt(1) = 3.3906(19).

Solutions of **3** quickly turn red when purged with CO at 25 °C. Upon slow evaporation of the solvent by using a purge of CO, red crystals of new compound $Mn_2(CO)_6(\mu$ -CO)Pt- $(PPh₃)₂(\mu₃-S)₂$, **4**, can be obtained in 28% yield. Compound 4 was characterized by a combination of IR, ¹H NMR, ³¹P NMR, and single-crystal X-ray diffraction analysis. The infrared spectrum of compound **4** shows a shoulder peak at 1876 cm⁻¹ that is attributed to a bridging carbonyl ligand. Its 31P{¹ H} NMR spectrum exhibits a single resonance at 18.98 ppm with ¹⁹⁵Pt satellites ($J_{\text{Pt-P}}$ = 3526 Hz). Details of the structure of **4** were established by a single-crystal X-ray diffraction analysis, and its molecular structure is shown in Figure 2. The structure of 4 also consists of an open PtMn₂ cluster, but there is only one metal-metal bond, Mn-Mn $= 2.638(2)$ Å. The Mn-Mn distance is shorter than that in **3**. This may be due to the presence of the carbonyl ligand that bridges the Mn-Mn bond. Both Pt-Mn distances are long and nonbonding in length: $Mn(1)\cdots Pt(1) = 3.3293(18)$ Å, and $Mn(2) \cdot Pt(1) = 3.3906(19)$ Å. These values are very similar to the nonbonding Fe \cdots Pt distances, av = 3.358 Å, found for $Fe_2(CO)_6Pt(PPh_3)_2(\mu_3-S)_2$.¹¹ As in **3**, there are two triply bridging sulfido ligands, but the Mn-S distances in **⁴** are slightly longer than those in **³**. The Pt-S distances are similar to those in **3**. The bridging carbonyl ligand in **4**, $C(13)-O(13)$, is slightly asymmetrical, Mn(1)-C(13) = 2.037(14) Å, and Mn(2)-C(13) = 2.112(13) Å. Interestingly, the bridging CO ligand in **1** is also slightly asymmetrical in character, Mn(1)–C = 2.033(3) Å and Mn(2)–C = 2.084(3) Å. There is no particular reason for this, other than possible crystal packing effects. The coordination about each manganese atom in **4** is approximately octahedral. Under a nitrogen atmosphere, compound **4** readily loses CO in solution and reverts back into compound **3**.

Discussion

The reaction of 1 with $Pt(PPh₃)₂(PhC₂Ph)$ proceeds by the loss of PhC2Ph from the platinum reagent and the addition and insertion of a bis(phosphine)platinum grouping into the ^S-S bond of **¹**. Concomitantly, there is a loss of one CO ligand from the manganese atoms and the formation of a Pt-Mn bond. Through the formation of the Pt-Mn bond, both manganese atoms are able to achieve 18 electron configurations. There are various ways that one can count the electrons in this compound; one of these is represented in the structure **A** shown here.

Note: the sulfido ligands in **A** are counted as neutral fourelectron donors, the Pt-Mn bond is a heteropolar Pt to Mn donor, and the platinum atom has a 16-electron configuration. Interestingly, compound **3** readily reacts with CO at 1 atm/ ²⁵ °C to form the adduct **⁴** by cleavage of the Pt-Mn bond. Interestingly, the reaction is readily reversible, eq 3. In fact, compound **4** can be isolated in pure form only when kept under an atmosphere of CO. Spectroscopically, the reaction appears to be quantitative in both directions, but the isolated yield of **4** is low because of its instability.

The facile addition and elimination of CO to metal carbonyl cluster complexes with concomitant breaking and making of metal-metal bonds has been observed previously.16 While there are similarities in the insertion of bis(phosphine) platinum grouping into the S-S bond of **¹** and **²**, the facile loss of CO to yield **3** is quite different from that of the related iron compounds.

Experimental Section

General Data. All reactions were performed under a nitrogen atmosphere. Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to use. Infrared spectra were recorded on a Nicolet 5DXBO FTIR spectrophotometer. ¹H NMR data were recorded on a Varian Inova 300 spectrometer operating at 300 MHz, and 31P NMR data were recorded on a Varian Inova 400 spectrometer operating at 400 MHz. Elemental analyses were performed by Desert Analytics (Tucson, AZ). $Mn_2(CO)_{7}(\mu$ - S_2 ¹ and Pt(PPh₃)₂(PhC₂Ph)¹⁷ were prepared according to published procedures. Product separations were performed by TLC in air on Analtech 0.25 and 0.5 mm silica gel 60 \AA F_{254} glass plates.

Table 1. Crystallographic Data for Compounds **3** and **4**

	3	4
empirical formula	$Mn_2(CO)_{6}Pt(PPh_3)_{2}$	$Mn_2(CO)$ ₇ $Pt(PPh_3)$ ₂ -
	$(\mu_3-S)_2$	$(\mu_3-S)_2 \cdot (1/2)C_6H_{14}$
fw	1061.69	1132.79
lattice params		
a(A)	11.0995(7)	12.3163(17)
b(A)	16.7179(10)	13.968(2)
c(A)	21.9289(12)	15.052(2)
α (deg)	90	66.559(3)
β (deg)	99.1490(10)	75.851(3)
γ (deg)	90	72.623(3)
$V(\AA^3)$	4017.8(4)	2243.8(6)
space group	$P2_1/n$ (No. 14)	$P1$ (No. 2)
Z	4	2
no. obsd	5924	5171
$(I > 2\sigma(I))$		
no. params	496	521
GOF	0.949	1.004
max shift	0.003	0.001
in final cycle		
residuals: $R1$; $wR2$	0.0449; 0.0834	0.0540; 0.1019

Synthesis of $Mn_2(CO)_{6}Pt(PPh_3)_{2}(\mu_3-S)_{2}$ **, 3.** A 54.7 mg amount (0.14 mmol) of 1 and a 131 mg amount of Pt(PPh₃)₂(PhC₂Ph) (0.14 mmol) were dissolved in 50 mL of distilled CH_2Cl_2 in a 100 mL three-neck round-bottom (r. b.) flask equipped with a stir bar and a nitrogen inlet. This solution was stirred at 25 °C for 3 h. The volatiles were removed in vacuo, and the product was separated by TLC using hexane/CH₂Cl₂ (3/2) solvent mixture as an eluent. 59.2 mg (38% yield) of green $Mn_2(CO)_{6}Pt(PPh_3)_{2}(\mu_3-S)_{2}$, 3, was obtained. Spectral data for **3**: IR v_{CO} (cm⁻¹ in CH₂Cl₂) 2021(s), 1987(vs), 1934(br). ¹H NMR (δ in CD₂Cl₂) 7.4-7.0 (m, 30H). ³¹P NMR (δ in CD₂Cl₂) 14.23. Anal. Calcd: C(%), 47.51; H(%), 2.85. Found: C, 46.59; H, 2.70.

Synthesis of Mn₂(CO)₇Pt(PPh₃)₂(μ **₃-S)₂ (4). A 5.0 mg (0.053)** mmol) amount of $Mn_2(CO)_6Pt(PPh_3)_2(\mu_3-S)_2$, 3, was dissolved in 0.5 mL CH₂Cl₂ and added to 0.5 mL hexane. At 25 °C, CO gas was bubbled through the solution through a hypodermic needle. There was an immediate color change from dark green to red. The solvent was evaporated under a slow CO stream to yield needleshaped red crystals: 1.5 mg (28% yield) of $Mn_2(CO)$ ₇Pt(PPh₃)₂- $(\mu_3$ -S)₂·0.5C₆H₁₄, **4**. Spectral data for **4**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂) 2045(s), 2007(vs), 1944(br), 1875(sh). ¹H NMR (δ in CD₂Cl₂) 7.4-7.0 (m, 30H). ³¹P NMR (δ in CD₂Cl₂) 18.98.

Crystallographic Analyses. A dark green crystal of **3** was grown by slow evaporation of the solvent from a hexane/ CH_2Cl_2 solution of the complex at -17 °C. A red-brown crystal of 4 was grown by slow evaporation of the solvent from a hexane/ CH_2Cl_2 solution of the complex under a slow CO stream at room temperature. The crystals used in data collections were glued onto the end of thin glass fibers. X-ray intensity data for **3** and **4** were measured at 293 K on a Bruker SMART APEX CCD-based diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å). The unit cells were initially determined on the basis of reflections collected from a set of three orthogonal scans. Crystal data, data collection parameters, and results of the analyses are listed in Table 1. The raw intensity data frames were integrated with the SAINT+ program which also applied corrections for Lorentz and polarization effects.¹⁸ Final unit cell parameters are based on the least-squares refinement of all reflections with $I > 5(\sigma)I$ from the data sets. For each analysis, an empirical absorption correction based on the multiple measurement of equivalent reflections was applied using the program SADABS.19

^{(16) (}a) Vahrenkamp, H. *Ad*V*. Organomet. Chem.* **¹⁹⁸³**, *²²*, 169. (b) Adams, R. D.; Yang, L.-W. *J. Am. Chem. Soc.* **1983**, *105*, 235. (c) Nucciarone, D.; Taylor, N. J.; Carty, A. J. *Organometallics* **1988**, *7*, 127.

⁽¹⁷⁾ Blake, D. M.; Roundhill, D. M. *Inorg. Synth.* **1978**, *18*, 120.

⁽¹⁸⁾ *SAINT*+ *Version 6.02a*; Bruker Analytical X-ray System, Inc.: Madison, Wisconsin, 1998.

Insertion of Bis(phosphine)platinum into S-*S Bond*

Compound **3** crystallized in the monoclinic crystal system. Systematic absences in the intensity data were consistent with the space group $P2_1/c$, which was confirmed by successful solution and refinement of the structure. Compound **4** crystallized in the triclinic system. The space group $\overline{P1}$ was assumed and confirmed by successful solution and refinement of the structure. In each structure, all heavy atoms were readily located. Subsequently, all non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atom positions were calculated assuming idealized geometries and refined using a riding model. Both structures were solved by a combination of direct methods and difference Fourier synthesis and refined on *F*² by full-matrix leastsquares using all data. All calculations were performed with the SHELXTL software package by using neutral atom scattering factors.19

Acknowledgment. This research was supported by a Grant from the National Science Foundation, CHE-9909017.

Supporting Information Available: Tables of final atomic coordinates, bond distances and angles, and anisotropic thermal parameters are available for the structural analyses of **3** and **4**. This material is available free of charge via the Internet at http://pubs. acs.org.

IC0110023

⁽¹⁹⁾ Sheldrick, G. M. *SHELXTL Version 5.1*; Bruker Analytical X-ray Systems, Inc.: Madison, Wisconsin, 1997.