Inorg. Chem. 2002, 41, 1430–1435

Preparation and Structural Characterization of (Me₃SiNSN)₂Se, a New Synthon for Sulfur–Selenium Nitrides

Jari Konu,[†] Arto Maaninen,[†] Katja Paananen,[†] Petri Ingman,[†] Risto S. Laitinen,^{*,†} Tristram Chivers,[‡] and Jussi Valkonen[§]

Departments of Chemistry, University of Oulu, P.O. Box 3000, 90014 University of Oulu, Finland, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4, and University of Jyväskylä, P.O. Box 35, 40351 Jyväskylä, Finland

Received October 10, 2001

The reaction of $(Me_3SiN)_2S$ with SeCl₂ (2:1 ratio) in CH₂Cl₂ at -70 °C provides a route to the novel mixed selenium– sulfur–nitrogen compound $(Me_3SiNSN)_2Se$ (1). Crystals of 1 are monoclinic and belong the space group $P2_1/c$, with a = 7.236(1) Å, b = 19.260(4) Å, c = 11.436(2) Å, $\beta = 92.05(3)^\circ$, V = 1592.7(5) Å³, Z = 4, and T =-155(2) °C. The NSNSeNSN chain in 1 consists of Se–N single bonds (1.844(3) Å) and S=N double bonds (1.521(3)–1.548(3) Å) with syn and anti geometry at the N=S=N units. The N–Se–N bond angle is 91.8(1)°. The EI mass spectrum shows a molecular ion with good agreement between the observed and calculated isotopic distributions. The ¹⁴N NMR spectrum exhibits two resonances at -65 and -77 ppm. Both ¹³C and ⁷⁷Se NMR spectra show single resonances at 0.83 and 1433 ppm, respectively. The reaction of 1 with an equimolar amount of SeCl₂ produces 1,5-Se₂S₂N₄ (**2**) in a good yield, and that of (Me₃SiNSN)₂S with SCl₂ affords S₄N₄ (**3**), but the reactions of (Me₃SiNSN)₂Se with SCl₂ and (Me₃SiNSN)₂S with SeCl₂ result in the formation of a mixture of **2** and **3**. A likely reaction pathway involves the intermediate formation of E₂N₂ fragments (E = S, Se).

Introduction

Bis(trimethylsilylimino)sulfane (Me₃SiN)₂S¹ has played an important role in the development of chalcogen—nitrogen chemistry by providing NSN fragments to a variety of cyclic and acyclic main-group compounds and transition-metal complexes.² For example, (Me₃SiN)₂S has been used to prepare thiazyl compounds of different chain lengths. These compounds mimic the structure of the (SN)_x polymer.¹⁵

- [‡] University of Calgary.
- § University of Jyväskylä.
- (1) Lidy, W.; Sundermeyer, W.; Verbeek, W. Z. Anorg. Allg. Chem. 1974, 406, 228.
- (2) The progress in various aspects of chalcogen-nitrogen chemistry has been reviewed several times during the past two decades.³⁻¹⁴
- (3) Chivers, T. Chem. Rev. 1985, 85, 345.
 (4) Chivers, T. In The Chemistry of Inorganic Homo- and Heterocycles; Haiduc, I., Sowerby, D.B., Eds.; Academic Press: London, 1987; Vol. 2, p 793.
- (5) Oakley, R. T. Prog. Inorg. Chem. 1988, 36, 299.
- (6) Klapötke, T. In *The Chemistry of Inorganic Ring Systems*; Steudel, R., Ed.; Studies in Inorganic Chemistry; Elsevier Science: Amsterdam, 1992; p 409.
- (7) Björgvinsson, M.; Roesky, H. W. Polyhedron 1992, 10, 2353.
- (8) Chivers, T.; Doxsee, D. Comments Inorg. Chem. 1993, 15, 109.
- (9) Chivers, T. Main Group Chem. News 1993, 1, 6.
- 1430 Inorganic Chemistry, Vol. 41, No. 6, 2002

Treating $(Me_3SiN)_2S$ with SCl_2 affords $(Me_3SiNSN)_2S$, the synthetic utility of which can be exemplified by a convenient preparation of $S_4N_4^{-1}$ or by the production of palladium complexes containing S–N chelating ligands.¹⁶ (Me₃-SiNSN)₂S and its derivatives have also served as models in the MO study of the electronic structure of the polymeric $(SN)_x$ chain.¹⁷

Selenium-nitrogen chemistry has seen much slower development than has sulfur-nitrogen chemistry because of the lack of suitable reagents. The selenium analogue of (Me₃-SiN)₂S is unstable¹⁸ and, therefore, of limited utility.¹⁹

- (10) Haas, A.; Kasprowski, J.; Pryka, M. Coord. Chem. Rev. 1994, 130, 301.
- (11) Chivers, T. In *Encyclopedia of Inorganic Chemistry*; King, R. B., Ed.; Wiley & Sons: Chichester, U.K., 1994; Vol. 7, p 4006.
- (12) Chivers, T.; Hilts, R. W. Coord. Chem. Rev. 1994, 137, 201.
- (13) Hill, A. Organomet. Chem. Rev. 1994, 36, 159.
- (14) Tornieporth, I. C.; Klapötke, T. M. In Advances in Molecular Structure Research; Hargittai, M., Hargittai, I., Eds.; JAI Press: Greenwich, CT, 1997; Vol. 3, p 287.
- (15) Rawson, J. M.; Longridge, J. J. Chem. Soc. Rev. 1997, 26, 53 and references therein.
- (16) Kelly, P. F.; Slawin, A. M. Z.; Soriano-Rama, A. J. Chem. Soc., Dalton Trans. 1996, 53.
- (17) Modelli, A.; Venuti, M.; Scagnolari, F.; Contento, M.; Jones, D. J. Phys. Chem. A 2001, 105, 219.
- (18) Fockenberg, F.; Haas, A. Z. Naturforsch. 1986, 41b, 413.

10.1021/ic011045j CCC: \$22.00 © 2002 American Chemical Society Published on Web 02/22/2002

^{*} Corresponding author. E-mail: risto.laitinen@oulu.fi.

[†] University of Oulu.

Preparation and Characterization of (Me₃SiNSN)₂Se

Progress in selenium–nitrogen chemistry is largely due to reagents such as $[(Me_3Si)_2N]_2E$ (E = S, Se).^{20–23}

In this contribution, we describe in detail the preparation of $(Me_3SiNSN)_2Se$ as a part of the systematic investigation of new selenium—nitrogen compounds that may be useful in synthetic applications. The product was characterized by X-ray crystallography, ⁷⁷Se, ¹⁴N, and ¹³C NMR spectroscopy, and mass spectrometry. The reactions of $(Me_3SiNSN)_2Se$ with ECl₂ (E = S,Se) have also been investigated.

Experimental Section

General Procedures. All reactions and manipulations of airand moisture-sensitive reagents were carried out under an argon atmosphere that was passed through P_4O_{10} . SO_2Cl_2 and SCl_2 (Aldrich) were used without further purification. Bis(trimethylsilylimino)sulfane, (Me₃SiN)₂S, was prepared from [(Me₃Si)₂N]₂S with an equimolar amount of SO_2Cl_2 .²⁴ [(Me₃Si)₂N]₂S was prepared from (Me₃Si)₂NH using the method of Wolmershäuser et al.²⁵ and purified by distillation. (Me₃SiNSN)₂S was prepared in hexane by the procedure described by Kelly et al.¹⁶ Selenium dichloride, SeCl₂, was prepared from elemental selenium and SO_2Cl_2 .²⁶ The solvents were dried by distillation under a nitrogen atmosphere prior to use. Dichloromethane was dried over P₄O₁₀, and THF was dried over Na/benzophenone.

Spectroscopic Methods. The ¹³C, ¹⁴N, and ⁷⁷Se NMR spectra were recorded in CH₂Cl₂ on a Bruker DPX 400 spectrometer operating at 100.623, 28.909, and 76.406 MHz, respectively. The spectral widths were 30.30, 14.49, and 99.01 kHz, yielding the respective resolutions of 0.92, 7.08, and 1.51 Hz/data point. The pulse widths were 4.00 μ s for ¹³C, 12.0 μ s for ¹⁴N, and 6.70 μ s for ⁷⁷Se, corresponding to nuclear tip angles of 36, 44, and 46°, respectively. The ¹³C accumulations contained 50–1000 transients, those for ¹⁴N, 9000–30 000, and those for ⁷⁷Se 200–18 000 transients. All spectra were recorded unlocked. The ¹⁴N NMR chemical shifts are reported relative to CH₃NO₂. All ⁷⁷Se NMR spectra are referenced externally to a saturated solution of SeO₂. The chemical shifts are reported relative to neat Me₂Se [δ (Me₂Se) = δ (SeO₂) + 1302.6].

⁷⁷Se MAS-NMR spectra of solid 1,5-Se₂S₂N₄ (**2**) were recorded at 57.328 MHz on a Bruker DSX300 spectrometer. A 7 mm zirconia rotor with a Kel-F cap was used with spin rates of 3.5-4.5 kHz. The spectral width was 80 kHz, and the pulse width was 1.67μ s, corresponding to the nuclear tip angle of 30° . The tip angle and relaxation delay (ca. 1 s) were optimized to reach the best signalto-noise ratio during the accumulation. Typically, 32 000 transients were required to obtain acceptable spectra. All measurements were made at room temperature. The spectra were referenced to diphenyl diselenide that gives two series of signals with isotropic shifts of

- (19) Bestari, K.; Cordes, A. W.; Oakley, R. T.; Young, K. M. J. Am. Chem. Soc. **1990**, 112, 2249.
- (20) Wannagat, U.; Kucketz, H. Angew. Chem. 1962, 74, 117.
- (21) Haas, A.; Kasprowski, J. Chimia 1990, 44, 57.
- (22) Haas, A.; Kasprowski, J.; Angermund, K.; Betz, P.; Kruger, C.; Tsay, Y.-H.; Werner, S. Chem. Ber. 1991, 124, 1895.
- (23) Björgvinsson, M.; Roesky, H. W.; Pauer, F.; Stalke, D.; Sheldrick, G. M. Inorg. Chem. 1990, 29, 5140.
- (24) Maaninen, A.; Siivari, J.; Suontamo, R. J.; Konu, J.; Laitinen, R. S.; Chivers, T. Inorg. Chem. 1997, 36, 2170.
- (25) Wolmershäuser, G.; Brulet, C. R.; Street, G. B. Inorg. Chem. 1978, 17, 3586.
- (26) Maaninen, A.; Chivers, T.; Parvez, M.; Pietikäinen, J.; Laitinen, R. S. Inorg. Chem. 1999, 38, 4093.

425 and 350 ppm.²⁷ The spectral simulation was carried out using the program *WIN-MAS* supplied by Bruker.

EIMS was recorded by using a Kratos MS 80 spectrometer at 12 eV of electron energy.

Preparation of (Me₃SiNSN)₂Se (1). A solution of SeCl₂ in THF (3 mL) was prepared from elemental selenium (0.079 g, 1.00 mmol) and SO₂Cl₂ (0.135 g, 1.00 mmol) and was added immediately into 20 mL of a dichloromethane solution of (Me₃SiN)₂S (0.413 g, 2.00 mmol) at -70 °C under an argon atmosphere. Stirring was continued overnight, during which time the reaction mixture was allowed to warm slowly to room temperature. The resulting mixture was filtered, and the orange solution was evaporated to dryness under vacuum. The reddish-yellow solid was dissolved in hexane and filtered to remove traces of Se₂S₂N₄ that are produced as a byproduct. The orange solution was evaporated under vacuum to 20% of its original volume. Needle-shaped vellow crystals of (Me₃-SiNSN)₂Se (1) were obtained by slow evaporation of the solvent in an argon atmosphere. The yield was 0.225 g (65%). Crystals of 1 were used for the mass spectrometric, $^{13}\text{C},~^{14}\text{N},$ and ^{77}Se NMR spectroscopic, and crystallographic characterization of the product.

Reaction of (Me₃SiNSN)₂Se with SeCl₂. *Caution!* Dry $Se_2S_2N_4$ is explosive under the influence of heat or mechanical stress. The product should be stored and handled under hydrocarbon solvents and its preparation limited to amounts of <1.0 g. A polycarbonate blast shield should be employed, and the experimenter should wear heavy-duty gloves and ear protection.

(Me₃SiNSN)₂Se (0.346 g, 1.00 mmol) was dissolved in dichloromethane (20 mL), and SeCl₂ (0.150 g, 1.00 mmol) in THF (3 mL) was added dropwise at -70 °C. The reaction mixture was stirred overnight and allowed to warm slowly to room temperature to give a dark red, slightly soluble precipitate. The yield of 1,5-Se₂S₂N₄ (**2**) was 0.203 g (73%). NMR: ¹⁴N (CH₂Cl₂, 25°, δ) –238; ⁷⁷Se (CH₂Cl₂, 25 °C, δ) 1417.²⁸ The crystalline solid was used in the ⁷⁷Se MAS-NMR study.

Reaction of (Me₃SiNSN)₂Se with SCl₂. (Me₃SiNSN)₂Se (0.346 g, 1.00 mmol) was dissolved in dichloromethane (20 mL), and SCl₂ (0.103 g, 1.00 mmol) in THF (3 mL) was added dropwise at -70 °C under an argon atmosphere. The reaction mixture was stirred overnight and allowed to warm slowly to room temperature to give a dark red precipitate (0.096 g) and a slightly reddish solution. NMR: ¹⁴N (CH₂Cl₂, 25 °C, δ) –238 and –256 ; ⁷⁷Se (CH₂Cl₂, 25 °C, δ) 1417.

Reaction of (Me₃SiNSN)₂S with SeCl₂. (Me₃SiNSN)₂S (0.298 g, 1.00 mmol) was dissolved in dichloromethane (20 mL), and SeCl₂ (0.150 g, 1.00 mmol) in THF (3 mL) was added dropwise at -70 °C under an argon atmosphere. The reaction mixture was stirred overnight and allowed to warm slowly to room temperature to give a dark red precipitate (0.112 g) and a slightly reddish solution. NMR: ¹⁴N (CH₂Cl₂, 25 °C, δ) –238 and –256; ⁷⁷Se (CH₂Cl₂, 25 °C, δ) 1417.

X-ray Crystallography. Crystal data for $(Me_3SiNSN)_2Se$ (1) are given in Table 1. Diffraction data were collected on a Nonius Kappa CCD diffractometer at -155 °C using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) by recording 360 frames via φ -rotation ($\Delta \varphi = 1^\circ$; two times at 40 s per frame). There were 3013 unique reflections (2.07 < θ < 25.68°), of which 2534 had $I > 2.00\sigma(I)$. The data were corrected for Lorentz and polarization effects, and an empirical absorption correction was applied to the net intensities. The structure was solved by direct methods using

⁽²⁷⁾ Balzer, G.; Duddeck, H.; Fleischer, U.; Röhr, F. *Fresenius' J. Anal. Chem.* **1997**, *357*, 473.
(28) The ¹⁴N and ⁷⁷Se chemical shifts are virtually identical to those reported

⁽²⁸⁾ The ¹⁴N and ⁷⁷Se chemical shifts are virtually identical to those reported earlier.²⁹

Konu et al.

Table 1. Crystal Data and Structure Refinement for $(Me_3SiNSN)_2Se$

empirical formula	C ₆ H ₁₈ N ₄ S ₂ SeSi ₂
fw, g/mol	345.50
cryst syst	monoclinic
a (Å)	7.236(1)
b (Å)	19.260(4)
<i>c</i> (Å)	11.436(2)
β (deg)	92.05(3)
$V(Å^3)$	1592.7(5)
Ζ	4
space group	$P2_{1}/c$
T (°C)	-155(2)
λ (Mo Kα) (Å)	0.71073
$\rho_{\rm calc} ({\rm g/cm^3})$	1.441
$\mu (\mathrm{mm}^{-1})$	2.751
F(000)	704
cryst size (mm ³)	$0.40 \times 0.20 \times 0.20$
R indices $[I > 2\sigma(I)]^a$	0.0354
wR2 (all data) ^{b}	0.0799

^{*a*} R1 = $\Sigma ||F_o| - |F_c|| \Sigma |F_o|$, wR2 = $[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w F_o^4]^{1/2}$, ^{*b*} w = $[\sigma^2 (F_o^2) + (0.0318P)^2 + 1.75P]^{-1}$ where $P = \{\max(F_o^2, 0) + 2F_c^2\}/3$

SHELXS-97³⁰ and refined using *SHELXL*-97.³¹ The scattering factors for the neutral atoms were those incorporated in the programs.

Results and Discussion

Preparation, Spectroscopic Characterization, and Xray Structure of (Me₃SiNSN)₂Se (1). The reaction of (Me₃-SiN)₂S with SeCl₂ in CH₂Cl₂ is a convenient route for the synthesis of (Me₃SiNSN)₂Se (1). The product was obtained as yellow needle-shaped crystals in ca. 65% yield.

$$2(Me_{3}SiN)_{2}S + SeCl_{2} \rightarrow Me_{3}SiNSNSeNSNSiMe_{3} + 2Me_{3}SiCl (1)$$

$$1$$

The mass spectrum of **1** is consistent with the molecular formula of $(Me_3SiNSN)_2Se$. The ion of highest mass (the highest relative intensity of the isotopic distribution pattern was observed at m/z 346) was assigned to the molecular ion on the basis of the comparison between the calculated and observed isotopic distributions, which are in excellent agreement with each other. The fragmentation pattern is also consistent with the molecular formula of **1**.

The ¹³C, ¹⁴N, and ⁷⁷Se NMR spectra of **1** were recorded in CH₂Cl₂. The ¹⁴N NMR spectrum shows two resonances at -65 and -77 ppm that lie in the same region as does the ¹⁴N chemical shift of -54.2 ppm reported for (Me₃SiN)₂S that also contains a N=S=N fragment.³² Only one resonance was observed in both ¹³C and ⁷⁷Se NMR spectra. The ¹³C chemical shift of **1** is 0.83 ppm, and the ⁷⁷Se chemical shift was observed at 1433 ppm. The former resonance is typical for the Me₃Si- group, and the latter lies in the region expected for a selenium(II) atom bound to two nitrogen atoms.³³

- (29) Maaninen, A.; Laitinen, R. S.; Chivers, T.; Pakkanen, T. A. Inorg. Chem. 1999, 38, 3450.
- (30) Sheldrick, G. M. SHELXS-97, program for crystal structure determination; University of Göttingen: Göttingen, Germany, 1997.
- (31) Sheldrick, G. M. SHELXL-97, program for crystal structure refinement; University of Göttingen: Göttingen, Germany, 1997.
- (32) Habben, C.; Meller, A.; Noltemeyer, M.; Sheldrick, G. M. J. Organomet. Chem. 1985, 288, 1.

Figure 1. Molecular structure of (Me₃SiNSN)₂Se. Thermal ellipsoids are drawn at 50% probability level.

Table 2. Selected Bond Lengths and Bond Angles for (Me₃SiNSN)₂Se.

Bond Lengths (Å)				
Se(1) - N(1)	1.844(3)	S(2) - N(2)	1.548(3)	
Se(1) - N(2)	1.844(3)	S(2) - N(4)	1.523(3)	
S(1) - N(1)	1.541(2)	Si(1) - N(3)	1.755(3)	
S(1) - N(3)	1.521(3)	Si(2) - N(4)	1.757(3)	
Bond Angles (deg)				
N(1) - Se(1) - N(2)	91.8(1)	N(2) - S(2) - N(4)	113.4(1)	
Se(1) - N(1) - S(1)	114.3(2)	S(1) - N(3) - Si(1)	128.8(2)	
Se(1) - N(2) - S(2)	112.9(2)	S(2) - N(4) - Si(2)	126.4(2)	
N(1) - S(1) - N(3)	113.9(2)			

The molecular structure of **1** with the atomic numbering scheme is shown in Figure 1. Bond lengths and bond angles are summarized in Table 2. The Se–N distance of 1.844(3) Å is consistent with the single-bond lengths of 1.827(5) and 1.869(2) Å observed for OSN–Se–NSO²² and (Me₃Si)₂N–Se–N(SiMe₃)₂,²³ respectively. The N–Se–N bond angle of 91.8(1)°, however, is significantly smaller than the angle of 108.0(1)° in (Me₃Si)₂N–Se–N(SiMe₃)₂,²³ but it is similar to that of 92.0(2)° in OSN–Se–NSO.²² The steric crowding of the trimethylsilyl groups probably opens the bond angle in (Me₃Si)₂N–Se–N(SiMe₃)₂. The four sulfur–nitrogen bond lengths (1.521(3)–1.548(3) Å) in **1** imply the presence of double bonds³⁴ and are comparable to those observed in (⁴BuNSN)₂S, (1.50(4)–1.56(2) Å).³⁶ The two N=S=N bond

- (35) Anderson, D. G.; Robertson, H. E.; Rankin, D. W. H.; Woollins, J. D. J. Chem. Soc., Dalton Trans. 1989, 859.
- (36) Isenberg, W.; Mews, R.; Sheldrick, G. M. Z. Anorg. Allg. Chem. 1985, 525, 54.

⁽³³⁾ The ⁷⁷Se chemical shifts of 1,5-Se₂S₂N₄ in CS₂ at 1418 ppm²⁹ and [(Me₃Si)₂N]₂Se in CH₂Cl₂ at 1130 ppm²³ have been reported. The four large Me₃Si groups in [(Me₃Si)₂N]₂Se fold around selenium and probably shield the nucleus, explaining why the ⁷⁷Se chemical shift lies at an abnormally high field.

⁽³⁴⁾ The S=N double-bond length of 1.516(6) Å is observed in (ONS)₂Se by X-ray crystallography,²² and that of 1.536(3) Å is observed in (Me₃-SiN)₂S by electron diffraction.³⁵

Figure 2. Stacking of interlocking (Me₃SiNSN)₂Se molecules in the lattice.

angles of 113.4(1) and 113.9(2)° in **1** are also in agreement with those observed in ('BuNSN)₂S, (110.(1) and $114(1)^{\circ}$).³⁶

The SiNSNSeNSNSi chain in **1** is approximately planar and shows syn,anti geometry at the N=S=N units. The molecular structure of $(Me_3SiNSN)_2S$, the sulfur analogue of **1**, is unknown; however, the related chain ('BuNSN)_2S exhibits the same conformational features as does **1**.³⁶ Recent DFT calculations on R-N=S=N-R³⁷ have shown that the syn,anti isomer is indeed the most stable of the three possible isomers, and this conformation is also found for $(Me_3SiN)_2S$ by electron diffraction.³⁵ It is worth noting that the OSNSeN-SO chain is also planar²² and exhibits a conformation similar to that of the NSNSeNSN chain in **1**.

As seen in Figure 2, the packing of the lattice consists of stacks of interlocking molecules with only van der Waals interactions between the stacks. Within the stacks, the closest contacts are found between S(2) and N(2) that link adjacent molecules into pairs (see Figure 1). This interaction, however, is also very weak because the S···N distance of 3.342(3) Å is close to the sum of van der Waals radii of 3.39 Å for sulfur and nitrogen.³⁸

Synthesis and Solid-State ⁷⁷Se NMR Spectrum of 1,5-Se₂S₂N₄. We have previously reported that 1,5-Se₂S₂N₄ (2) can be prepared in high yield by two different routes: (a) from $[(Me_3Si)_2N]_2S$ and SeCl₄ and (b) from $[(Me_3Si)_2N]_2Se$ with equimolar amounts of SCl₂ and SO₂Cl₂.²⁹ We have now observed that 2 can also conveniently be prepared by the treatment of $(Me_3SiNSN)_2Se$ (1) with SeCl₂ in CH₂Cl₂. The product was identified as 1,5-Se₂S₂N₄ by ¹⁴N and ⁷⁷Se NMR spectroscopy.²⁹

$$(\text{Me}_3\text{SiNSN})_2\text{Se} + \text{SeCl}_2 \rightarrow 1,5\text{-}\text{Se}_2\text{S}_2\text{N}_4 + 2\text{Me}_3\text{SiCl} \quad (2)$$
2

Figure 3. ⁷⁷Se MAS spectrum of $Se_2S_2N_4$ at a spinning rate of 4.5 kHz. (a) simulated spectrum and (b) experimental spectrum. Isotropic lines are indicated by A and B.

The base-corrected ⁷⁷Se MAS-NMR spectrum of 1,5-Se₂S₂N₄ at a spinning rate of 4.5 kHz is shown in Figure 3, together with the simulated spectrum. It could be inferred from the simulated spectrum that there are two series of spinning sideband patterns A and B, with the respective isotropic chemical shifts lying at 1455 and 1409 ppm, respectively.³⁹ The line widths of peaks in series A and B are 730 and 1060 Hz, respectively. The isotropic values were confirmed by recording the spectrum at different spinning rates. These solid-state isotropic ⁷⁷Se chemical shifts are consistent with the chemical shift of 1418 ppm recorded for **2** in CS₂ solution.²⁹

The two resonances in the ⁷⁷Se MAS-NMR spectrum can be assigned as follows. 1,5-Se₂S₂N₄ shows a cage structure²⁹ similar to those of S₄N₄⁴⁰⁻⁴² and Se₄N₄.^{43,44} The 1,5-Se₂S₂N₄ molecule, however, can assume two different orientations in the lattice, and the crystal structure of **2** is therefore disordered, with sulfur and selenium statistically distributed over the chalcogen atom sites, resulting in four crystallographically different selenium atom sites.⁴⁵ The selenium atoms in these four chalcogen atom positions can be divided into two groups. The selenium atoms in positions E(1) and E(4) show two independent intermolecular close-contacts to nitrogen atoms, while those in E(2) and E(3) both exhibit only one selenium–nitrogen close-contact (see Figure 4).

- (39) The principal values of the shielding tensors are (A) $\delta_{iso} = 1455$, $\delta_{11} = 1742$, $\delta_{22} = 1525$, and $\delta_{33} = 1099$ and (B) $\delta_{iso} = 1409$, $\delta_{11} = 1701$, $\delta_{22} = 1427$, and $\delta_{33} = 1099$.
- (40) Clark, D. J. Chem. Soc. 1952, 1615.
- (41) Sharma, B. D.; Donohue, J. Acta Crystallogr. 1963, 16, 891.
- (42) DeLucia, M. L.; Coppens, P. Inorg. Chem. **1978**, 17, 2336.
- (43) Bärnighausen, H.; von Volkmann, T.; Jander, J. Acta Crystallogr. **1966**, 21, 571.
- (44) Folkerts, H.; Neumuller, B.; Dehnicke, K. Z. Anorg. Allg. Chem. **1994**, 620, 1011.
- (45) It should be noted that β -Se₄N₄ is isomorphic with **2** and also has four crystallographically different selenium atoms.⁴⁴ It is possible that the disorder observed in the crystal structure of **2**²⁹ is not caused by the two different orientations of the 1,5-Se₂S₂N₄ molecule but is due to the existence of a solid solution between S₄N₄ and Se₄N₄. Crystallographic data alone cannot distinguish between these two alternatives. The mass spectrum as well as the Raman spectrum and normal coordinate analysis, however, have clearly demonstrated the formation of 1,5-Se₂S₂N₄.^{29,46}

 ⁽³⁷⁾ Sandblom, N.; Ziegler, T.; Chivers, T. *Inorg. Chem.* 1998, *37*, 354.
 (38) Emsley, J. *The Elements*, 3rd ed.; Clarendon Press: Oxford, 1998.

Figure 4. Intermolecular chalcogen····nitrogen interactions in 1,5-Se₂S₂N₄ based on the crystallographic data given in reference 29.

The broader B lines are attributed to the interaction of the selenium nucleus with two quadrupolar ¹⁴N nuclei and are therefore assigned to the selenium atoms in positions E(1) and E(4). The narrower A lines are due to selenium atoms in positions E(2) and E(3), both with only one N···Se close contact. The differences in the environments of the selenium atoms within the two groups are very small and are therefore not expected to be resolved in the ⁷⁷Se MAS-NMR spectrum.

Reactions of (Me₃SiNSN)₂E and E'Cl₂ (E, E' = S or Se). The reaction between (Me₃SiNSN)₂S and SCl₂ has been reported to produce S_4N_4 ¹ in a fashion similar to the synthesis of 1,5-Se₂S₂N₄ discussed above.

$$(Me_3SiNSN)_2S + SCl_2 \rightarrow S_4N_4 + 2Me_3SiCl \qquad (3)$$

The reactions of $(Me_3SiNSN)_2Se$ with SCl_2 and $(Me_3SiNSN)_2S$ with $SeCl_2$ were therefore expected to produce the unknown eight-membered selenium—sulfur nitride, SeS_3N_4 . However, both reactions afforded an equimolar mixture of $1,5-Se_2S_2N_4$ and S_4N_4 . Two resonances at -238 and -256ppm were observed in the ¹⁴N NMR spectra of both reaction solutions and can be assigned to $1,5-Se_2S_2N_4^{29}$ and S_4N_4 ,⁴⁷ respectively. The single resonance observed at 1417 ppm in the ⁷⁷Se NMR spectra of both reaction solutions provides further verification of this assignment.

 $(Me_3SiNSN)_2E + E'Cl_2 \rightarrow$ ${}^{1}/_{2}1,5-Se_2S_2N_4 + {}^{1}/_{2}S_4N_4 + 2Me_3SiCl (4)$ (E = S, E' = Se or E = Se, E' = S)

Reaction Pathway. Haas et al.^{22,48} have suggested that the decomposition of $Se(NSO)_2$ produces $1,5-Se_2S_2N_4$ via a cyclic, four-membered intermediate:

The product distributions observed in the reactions of $(Me_3-SiNSN)_2E$ and E'Cl₂ (E, E' = S, Se) (see eqs 2–4) can be explained by a related pathway, as shown in Scheme 1. The reaction seems to be initiated by the cleavage of one Si–N bond in $(Me_3SiNSN)_2E$ by E'Cl₂, with elimination of Me₃-SiCl and formation of ClE'NSNENSNSiMe₃. A similar type of intermediate formation has also been suggested for cyclocondensation of PhNSNSiMe₃:⁴⁹

(47) Chivers, T.; Oakley, R. T.; Scherer, O. J.; Wolmershäuser, G. Inorg. Chem. 1981, 20, 914.

⁽⁴⁶⁾ Maaninen, A.; Konu, J.; Laitinen, R. S.; Chivers, T.; Schatte, G.; Pietikäinen, J.; Ahlgrén, M. Inorg. Chem. 2001, 40, 3539.

Preparation and Characterization of (Me₃SiNSN)₂Se

Step 2 in Scheme 1 involves an intramolecular rearrangement, resulting in the formation of cyclic E'SN₂ and ClENSNSiMe₃. The dimerization of E'SN₂ (step 3) yields E'₂S₂N₄. Elimination of Me₃SiCl from ClENSNSiMe₃ (step 4) creates ESN₂, the dimerization of which yields $E_2S_2N_4$ (step 5). Thus, the reaction of (Me₃SiNSN)₂Se and SeCl₂ affords only 1,5-Se₂S₂N₄, and that of (Me₃SiNSN)₂S and SCl₂ produces only S₄N₄.^{1,50} The dimerization of S₂N₂ to S₄N₄ is known to be catalyzed by nucleophiles.^{5,51}

According to Scheme 1, the reaction of $(Me_3SiNSN)_2Se$ and SeCl₂ could also produce $1,3-Se_2S_2N_4$, depending on the way the four-atomic intermediate SeSN₂ dimerizes. The ¹⁴N and ⁷⁷Se NMR spectra, however, show no evidence of the presence of this isomer. The formation of the 1,3-isomer via steps 3 or 5 would require an eight-membered intermediate that contains an unstable N=Se=N fragment,^{18,52} rendering the formation of 1,3-Se₂S₂N₄ unlikely.

While the mutual dimerization of ESN_2 and $E'SN_2$ leads to the 1,5-isomers of $E_2S_2N_4$ and $E'_2S_2N_4$, respectively, the combination of ESN_2 with $E'SN_2$ should also be possible, affording a hybrid $EE'S_2N_4$. Therefore, the treatment of (Me₃-SiNSN)₂Se with SCl₂ or that of (Me₃SiNSN)₂S with SeCl₂

(52) The ab initio calculations performed on the six-atom ring molecules Se_xS_{4-x}N₂ (x = 0−4)²⁴ have shown that, for a given composition, isomers with a N=Se=N fragment lie at higher energy than do those containing a N=S=N fragment.

could also yield SeS_3N_4 in addition to S_4N_4 and 1,5- $Se_2S_2N_4$. However, only an equimolar mixture of S_4N_4 and 1,5- $Se_2S_2N_4$ is observed. This result can be explained by assuming that step 4 in Scheme 1 is much slower than the dimerization (step 3). In that case, most of $E'SN_2$ will have dimerized to 1,5- $E'_2S_2N_4$ before significant amounts of ESN_2 are formed. The latter intermediate is then left to produce 1,5- $E_2S_2N_4$.

Conclusions

The novel $(Me_3SiNSN)_2Se$ chain compound has been prepared in good yield by the reaction of $(Me_3SiN)_2S$ with SeCl₂. The identification and characterization of this species have been carried out by X-ray crystallography, NMR spectroscopy, and mass spectrometry. While the reactions of $(Me_3SiNSN)_2S$ and SCl₂ or $(Me_3SiNSN)_2Se$ and SeCl₂ provide convenient routes to S₄N₄ and 1,5-Se₂S₂N₄, respectively, those of $(Me_3SiNSN)_2Se$ and SCl₂ or $(Me_3SiNSN)_2S$ and SeCl₂ result in the formation of equimolar mixtures of S₄N₄ and 1,5-Se₂S₂N₄. Neither SeS₃N₄ nor 1,3-Se₂S₂N₄ is observed as a product of these reactions.

Acknowledgment. Financial support from the Academy of Finland and NSERC Canada is gratefully acknowledged.

Supporting Information Available: X-ray crystallographic CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.

IC011045J

⁽⁴⁸⁾ Haas, A.; Pryka, M. Chem. Ber. 1995, 128, 11.

⁽⁴⁹⁾ Cordes, A. W.; Hojo, M.; Koenig, H.; Noble, M. C.; Oakley, R. T.; Pennington, W. T. *Inorg. Chem.* **1986**, *25*, 1137.

⁽⁵⁰⁾ In reaction 2, both ESN₂ and E'SN₂ have the composition SeSN₂, and in reaction 3, both ESN₂ and E'SN₂ have the composition S₂N₂. In reaction 2, both dimerization steps (steps 3 and 5 in Scheme 1) will lead to a final product with the composition Se₂S₂N₄. In reaction 3, both dimerization steps will lead to a final product with the composition S₄N₄.

⁽⁵¹⁾ Goehring, M.; Voigt, D. Z. Anorg. Allg. Chem. 1956, 285, 181.