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The phosphoranimine, Cl3PdNSiMe3, was prepared using a new,
high-yield (>80%), one-pot synthesis via oxidation of the chloro-
phosphine, Cl2PN(SiMe3)2 with SO2Cl2 in ether. Cl3PdNSiMe3 is
a valuable monomeric precursor in the synthesis of well-defined
polyphosphazenes.

The phosphoranimine Cl3PdNSiMe3
1 has attracted atten-

tion in our group2,3 as a precursor to perhalogenated
phosphoraniminato complexes. In 1995 we showed in
collaboration with Allcock and co-workers that this species
could be polymerized at ambient temperatures via a living
cationic procedure in the presence of Lewis acid initiators
such as PCl5 providing poly(dichlorophosphazene) with
controlled molecular weights and narrow polydispersities.4

This polymerization strategy represents a significant advance
over the most commonly utilized pre-existing route, which
involves thermal (250°C) ring-opening polymerization of
[NPCl2]3. The latter procedure allows no control over the
degree of polymerization and affords broad molecular weight
distributions.5 In addition, Cl3PdNSiMe3 can be polymerized
in various solvents, and the living nature of this route has
been exploited to synthesize a variety of polymer architec-
tures (e.g., di- and triblock, graft, star, and random copoly-
mers) incorporating both organic and inorganic compo-
nents.6,7 Aryl/alkyl,8 alkoxy,9 and halogenated10 polyphos-

phazenes with broad molecular weight distributions have also
been prepared at elevated temperature by the chain growth
condensation polymerization of related phosphor-
animine monomers.

Trichloro(trimethylsilyl)phosphoranimine, Cl3PdNSiMe3,
was first synthesized by Niecke and Bitter from PCl5 and
LiN(SiMe3)2 in 1973.1 The reaction was carried out at 10
°C, and a yield of 20% was reported. We later discovered
that lowering the reaction temperature to-78 °C reproduc-
ibly improved the yield to 20-40%, with occasional yields
of 60%.2 However there are problems associated with this
synthesis which have limited the use of this potentially
versatile reagent. For example, PCl5 is known to initiate the
polymerization of Cl3PdNSiMe3; hence the formation of
significant amounts of oligomeric and polymeric byproducts
{e.g., [NPCl2]3 and [NPCl2]n} during the synthesis is
unavoidable. Another side product, ClN(SiMe3)2, is also
routinely produced and cannot be separated from Cl3Pd
NSiMe3 by distillation. The chloroamine, ClN(SiMe3)2,
drastically inhibits polymerization, and additional purification
steps have to be performed before the phosphoranimine can
be used as a polymer precursor.11 Allcock and co-workers
have recently described an alternate synthesis of Cl3Pd
NSiMe3 from PCl5 and N(SiMe3)3 and report a 40% yield
after removal of the above-mentioned byproducts.11

Wisian-Neilson and Neilson have reported the facile
synthesis of related phosphoranimines BrR2PdNSiMe3 via
halogenation of phosphorus(III) precursors, R2PN(SiMe3)2,
using bromine.12 Motivated by this work, we decided to
explore whether a similar strategy could be used to synthesize
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Cl3PdNSiMe3, thus eliminating the need for PCl5. Initial
attempts to chlorinate Cl2PN(SiMe3)2 (made in situ from PCl3

and LiN(SiMe3)2) with hexachloroethane, Cl3C-CCl3, failed
to produce any observable reaction. However, when we chose
the stronger chlorinating agent SO2Cl2,13 a smooth reaction
with the phosphine occurred to give quantitative formation
of Cl3PdNSiMe3 (by 31P{1H} NMR: δ ) -53.0 ppm),
ClSiMe3 and gaseous SO2 as a byproduct.

All reaction procedures,14 including the in situ formation
of Cl2PN(SiMe3)2, can be performed within the mild tem-
perature regime of 0°C to room temperature, and the use of

volatile ether as a solvent facilitates the removal of large
amounts of solvent (and ClSiMe3) without significant loss
of less volatile Cl3PdNSiMe3 (bp ) 24 °C, 0.1 mmHg2).
Provided the workup of Cl3PdNSiMe3 is performed within
the same day as its synthesis, isolated yields greater than
80% are routinely obtained with only trace amounts of
ClSiMe3 as the sole impurity (<2% by 1H NMR). This
reaction has been carried out on a large scale affording over
60 g of pure phosphoranimine in less than 1 day using
common Schlenk techniques.

In summary, we report a promising new method for the
preparation of Cl3PdNSiMe3 starting with PCl3. As PCl5 is
not used, losses in yield due to subsequent cationic polym-
erization are minimized. In addition, no chloroamine impuri-
ties are formed; these are difficult to remove and hinder
subsequent polymerization. Furthermore, low reaction tem-
peratures (<0 °C) are unnecessary. We anticipate that this
new procedure will facilitate further development of the
living cationic polymerization route to polyphosphazenes and
other chemistry involving this species.
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