

2002, Volume 41

Nita Sahai* and John A. Tossell: ²⁹Si NMR Shifts and Relative Stabilities Calculated for Hypercoordinated Silicon–Polyalcohol Complexes: Role in Sol–Gel and Biogenic Silica Synthesis

Pages 750-755. Minus signs are missing from many values in Tables 1-4, and some of the formulas in these tables are incorrect. The correct tables are presented here.

Page 750. In the right-hand column of text, in the second new paragraph, the formula referring to Figure 1e should be $[(C_2H_4O_2)_5^PSi_2]^{2-}$.

Page 751. In the left-hand column of text, in the first new paragraph, the formula referring to Figure 1d should be

 $[(C_2H_4O_2)_3^PSiH]^-$ and the formula referring to Figure 1f should be $(C_2H_4O_2)_3^QSiH_2$. In the right-hand column of text, the formula referring to Figure 2e should be $[C_4H_8O_3(OH)^QSi(OH)_3]$ and the shift value for Figure 2f should be -73.8 ppm.

Page 752. The formula in Figure 1a should be $[(C_4H_8O_4)_2^QSi]$, the formula in Figure 1e should be $[(C_2H_4O_2)_5^PSi_2]^{2-}$, and the formula in the caption for Figure 1f should be $[(C_2H_4O_2)_3^QSiH_2]$.

Page 753. In the left-hand column of text, the formula referring to Figure 2j should be $[C_4H_8O_4^HSi(OH)_4]^{2-}$.

Page 754. The formula in the caption for Figure 2j should be $[C_4H_8O_4^HSi(OH)_4]^{2-}$.

Page 755. In footnote 40, the correct spelling of the second author's last name is Pfleiderer.

Table 1. Comparison of NMR Shifts Calculated for Geometries

 Optimized in the Gas-Phase and in Continuum Media Representing

 Water and Toluene^a

		$\delta_{ m calc}$ (ppm)			
model complex	gas phase	SCRF water $(\epsilon = 78.5)$	SCRF toluene $(\epsilon = 2.379)$		
$(C_2H_4O_2)_2^QSi$	-44.0	-44.0	-44.0		
$(C_3H_6O_3)_2^QSi$	-83.4	-82.5	-83.0		
(C ₄ H ₈ O ₄) ₂ ^Q Si	-75.0	-74.0	-74.0		
$[C_2H_4O_2^PSi(OH)_3]^-$	-116.2	-116.9	-117.7		
$[C_4H_8O_4^PSi(OH)_3]^-$	-129.2	-128.3	-128.8		

 a SCRF represents the Onsager self-consistent reaction field continuum solvation model.

Table 2. ²⁹Si NMR Isotropic Shifts and Anisotropic Shifts ($|\sigma_{33} - \sigma_{11}|$) Reported in Parts per Million with Respect to TMS Standard, for Silicon–Polyalcohol Spirocyclic Complexes^{*a*}

model complex	ligand: Si ratio	$\delta_{ m expt}$	δ _{calc} , HF/6-311+G(2d,p)	δ_{calc} , B3LYP/6-311+G(2d,p)	$ \sigma_{33} - \sigma_{11} ,^{b}$ HF/6-311+G(2d,p)		
Effect of Ring Size, ^Q Si							
$(C_2H_4O_2)_2^QSi$	2:1	-43.6°	-44.0	-42.2	46.9		
$(C_3H_6O_3)_2^QSi$	2:1	-81.7^{c-e}	-83.4	-83.4	31.7		
$(C_4H_8O_4)_2^QSi$	2:1	-81.6 ^{c,e}	-75.0	-75.0	8.8		
Effect of Ring Size and Hypercoordination, ^P Si							
$[(C_2H_4O_2)_2^PSiOH]^-$	2:1	-102.7^{e}	-108.9	-100.3	102.7		
$[(C_{3}H_{6}O_{3})_{2}^{P}SiOH]^{-}$	2:1	-130.4^{e}	-140.3	-144.1	133.9		
$[(C_4H_8O_4)_2^PSiOH]^-$	2:1	$-130.8, -131.1^{e}$	-133.3	-133.6	127.9		
Effect of Decreasing Ligand: ^P Si Ratio at Fixed Ring Size							
$[(C_2H_4O_2)_3^{P}SiH]^{-1}$	3:1	$-103, -104, -105^{f}$	-110.2		81.7		
$[(C_2H_4O_2)_5^PSi_2]^{2-}$	5:2	$-103, -104, -105^{f}$	-114.4, -114.4		76.8, 90.9		
Effect of Protonating an $O_{bv}{}^{g}$							
$[(C_2H_4O_2)_3^PSiH_2]_{bidentate} \rightarrow \\ [(C_2H_4O_2)_3^QSiH_2]_{monodentate}$	3:1		-64.7		33.2		
Standard							
^Q Si(CH ₃) ₄ (TMS)			0.0 ($\sigma = 386.0$)	0.0 ($\sigma = 327.9$)	0.0		

^{*a*} Geometries were obtained at the HF/6-31G* level. Experimental values for isotropic shifts are included for error estimation on our calculated values. ^{*b*} Anisotropic shifts reported are the absolute value of the difference between the maximum and the minimum eigenvalues of the shielding tensor. ^{*c*} Reference 35. ^{*d*} Assigned to polymeric Si spirocyclic complex in ref 35. ^{*e*} Values for the analogous dialato complexes. ^{*f*} Reference 21. ^{*g*} O_{br} represents a bridging oxygen.

ADDITIONS AND CORRECTIONS

Table 3. ²⁹Si HF/6-311+G(2d,p) NMR Isotropic Shifts and Anisotropic Shifts ($|\sigma_{33} - \sigma_{11}|$) Reported with Respect to TMS Standard, for Silicon–Polyalcohol Monocyclic Complexes^{*a*}

model complex	δ (ppm)	$ \sigma_{33} - \sigma_{11} ^b$ (ppm)				
Effect of Ring Size. 9Si						
$C_2H_4O_2^QSi(OH)_2$	-57.2	24.5				
$C_3H_6O_3^QSi(OH)_2$	-77.0	42.5				
$C_4H_8O_4^QSi(OH)_2$	-75.2	35.6				
$C_4H_{10}O_4\cdots^QSi(OH)_4$	-71.2	22.0				
Effect of Ring Size and Hypercoordination						
$[C_2H_4O_2^PSi(OH)_3]^-$	-116.9	130.6				
$[C_{3}H_{6}O_{3}^{P}Si(OH)_{3}]^{-}$	-130.4	139.0				
$[C_4H_8O_4^PSi(OH)_3]^-$ (I) Si bonded to O on C ₁ , C ₄	-128.3 ^c	140.8				
$[C_4H_8O_4^PSi(OH)_3]^-$ (II) Si bonded to O on C ₁ , C ₂	-117.3	124.4				
$[C_5H_{10}O_5^{P}Si(OH)_3]^-$	-128.0	137.5				
[C ₄ H ₈ O ₄ ^H Si(OH) ₄] ²⁻ hexacoordinated Si	-179.9 d	8.4				
Effect of Protonating an O _{br}						
$C_2H_4O(OH)^PSi(OH)_3 \text{ (bidentate)} \rightarrow$	-75.0	14.3				
$C_2H_4O(OH)^QSi(OH)_3$ (monodentate)						
$[C_4H_8O_3(OH)^PSi(OH)_3]$ (I, bidentate) \rightarrow	-75.2	21.7				
$[C_4H_8O_3(OH)^{0}Si(OH)_3]$ (I, monodentate)						
$[C_4H_8O_3(OH)^PSi(OH)_3]$ (II, bidentate) \rightarrow	-73.8	17.3				
$[C_4H_8O_3(OH)^{Q}Si(OH)_3]$ (II, monodentate)						
Effect of Chelate Denticity						
$[C_4H_7O_4{}^PSi(OH)_2]^-$ Si bonded to O on C ₁ , C ₂ , C ₄ (tridentate ligand)	-122.4	101.7				
Effect of Polymerization, ^Q Si and ^P Si						
$(C_{3}H_{6}O_{2})_{3}Q_{3}Si_{3}O_{3}$	-96.9	32.8				
$[(C_{3}H_{6}O_{2})_{3}^{Q}Si_{2}O_{2}^{P}SiO(OH)]^{-}$	-87.5, -90.3, -143.1	61.1, 97.2, 42.6				
	(mean = -107.0)					
Sta	andard					
QSi(CH ₃)₄ (TMS)	$0.0 \ (\sigma = 386.0)$	0.0				
~-(~)+(~)						

^{*a*} Geometries were obtained at the HF/6-31G* level. ^{*b*} Anisotropic shifts reported refer to the absolute value of the difference between the maximum and the minimum eigenvalues of the shielding tensor. ^{*c*} This structure was proposed to explain a ²⁹Si resonance seen at -102 to -103 ppm in an experimental study of aqueous silicon–polyalcohol solutions.²² ^{*d*} This structure was proposed to explain a ²⁹Si resonance seen at -145 to -147 ppm.²²

Table 4. Reaction Energies (kcal mol^{-1}) for Polyol–Silicate Complex Formation, at the HF/6-31G* Level in the Gas Phase and in a SCRF Representing Solvation^{*a*}

no.	reaction	$\Delta E_{\rm r}$, gas	$\Delta H^{0}_{r,gas} = \\ \Delta E_{r,gas} + \Delta H_{therm}$	$\Delta E_{ m r,SCRF}$	$\Delta H^{0}_{\rm r,SCRF} = \\ \Delta E_{\rm r,SCRF} + \Delta H_{\rm therm}$
1	$C_4H_{10}O_4 + Si(OH)_4 = C_4H_{10}O_4 \cdots QSi(OH)_4$	-8.91 (-7.34)	-7.78 (-6.21)	-9.10 (-7.53)	-7.97 (-6.40)
2	$C_4H_{10}O_4 + Si(OH)_4 = C_4H_8O_4^QSi(OH)_2 + 2H_2O$	+6.59	+5.96	-11.99	-12.61
3	$C_4H_{10}O_4 + Si(OH)_4 = [C_4H_8O_4^PSi(OH)_3]^- + H_2O + H^+$	+354.84	+351.14	+33.26	+29.56
4	$C_4H_{10}O_4 + Si(OH)_3O^- = [C_4H_8O_4{}^{p}Si(OH)_3]^- + H_2O$	-13.18	-11.36	-21.15	-19.33

^{*a*} Values in parentheses are corrected for basis set superposition error (BSSE). BSSE and thermal contributions were estimated elsewhere.³⁰ (1 Hartree = $627.6 \text{ kcal mol}^{-1}$.)

IC020151Y

10.1021/ic020151y Published on Web 03/12/2002