Inorg. Chem. 2002, 41, 1996–1997

Iron Pentacarbonyl as a Precursor for Molecule-Based Magnets: Formation of Fe[TCNE]₂ ($T_c = 100$ K) and Fe[TCNQ]₂ ($T_c = 35$ K) Magnets

Konstantyn I. Pokhodnya, ^{1a,b} Nate Petersen, ^{1a} and Joel S. Miller*, ^{1a}

Departments of Chemistry, University of Utah, 315 South 1400 East, RM Dock, Salt Lake City, Utah 84112-0850, and The Ohio State University, Columbus, Ohio 43210

Received December 18, 2001

The reaction of tetracyanoethylene (TCNE) and 7,7,8,8-tetracyano*p*-quinodimethane (TCNQ) with Fe(CO)₅ leads to formation of magnetically ordered materials of Fe[TCNE]₂ ($T_c = 100$ K) and Fe[TCNQ]₂ ($T_c = 35$ K) composition, respectively. In contrast, the reaction with 1,2-dichloro-5,6-dicyanobenzoquinone (DDQ) leads to a paramagnetic material.

Magnetic ordering is crucial for several commercial applications, and magnets derived from molecule-based precursors are a contemporary research focus.^{2,3} Magnets of $M[TCNE]_x \cdot xS$ (M = V, Mn, Fe, Co, Ni; TCNE = tetracyanoethylene; $S = CH_2Cl_2$) composition have been reported with magnetic ordering temperatures (T_c) as high as 125 °C.³ The room temperature $V[TCNE]_x$ magnet was initially prepared via the reaction of $V(C_6H_6)_2$ and TCNE in CH₂-Cl₂; however, greater reproducibility was achieved via the reaction of V(CO)₆ and TCNE in CH₂Cl₂.³ The chemical vapor deposition (CVD) of $V[TCNE]_x$ has led to the development of a solvent-free thin film magnet with improved magnetic properties.⁴ In contrast, M'[TCNE]_x·xS (M' = Mn, Fe, Co, Ni) magnets are prepared from the reaction of MI₂ and TCNE^{3,5} and thin films have yet to be prepared. In order to develop thin film $M'[TCNE]_x$ magnets, volatile precursors need to be identified. Metal carbonyls, as demonstrated with V(CO)₆, in principle are suitable and were studied.

The reaction of TCNE with $Cr(CO)_6^6$ and $Mn_2(CO)_{10}$,^{7a} albeit slow, leads to CO-containing products. In contrast, the reaction of $Co_2(CO)_8$ in CH₂Cl₂ leads to an immediate black

- (2) (a) Ovcharenko, V. I.; Sagdeev, R. Z. Russ. Chem. Rev. 1999, 68, 345. (b) Miller, J. S.; Epstein, A. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 385. (c) Crayson, J. A.; Devine, J. N.; Walton, J. C. Tetrahedron 2000, 56, 7829.
- (3) Miller, J. S.; Epstein, A. J. Chem. Commun. 1998, 1319.
- (4) Pokhodnya, K. I.; Epstein, A. J.; Miller J. S. Adv. Mater. 2000, 12, 410.
- (5) Zhang, J.; Ensling, J.; Ksenofontov, V.; Gütlich, P.; Epstein, A. J.;. Miller, J. S. Angew. Chem., Int. Ed. 1998, 37, 657.
- **1996** Inorganic Chemistry, Vol. 41, No. 8, 2002

CO-free paramagnetic product that does not magnetically order above 2 K.^{7b} Nonetheless, magnetically ordered Co-[TCNE]₂•xS ($T_c = 44$ K), has been made from CoI₂.⁵ The reaction of TCNE with Fe(CO)₅ in CH₂Cl₂, albeit slow, leads the formation of a brown-green solid of Fe[TCNE]₂•0.32-(CH₂Cl₂), **1**, composition after drying in vacuo for 3 days at 70 °C.⁸ The IR spectrum of **1** has ν_{CN} absorptions at 2222, 2178, and 2172 cm⁻¹ in accord with Fe[TCNE]₂•0.75(CH₂-Cl₂) prepared from FeI₂ (i.e., 2221, 2177, and 2174 cm⁻¹)⁵ and indicates that the σ -dimer of [TCNE]•-, [C₄(CN)₈]₂²⁻, is not present.⁹

The 6.11 emu K/mol value for the room temperature χT product for **1** indicates strong magnetic coupling as it significantly exceeds the expected spin-only value ($S = 2 + \frac{1}{2} + \frac{1}{2}$) of 3.75 emu K/mol, and the 5.10 emu K/mol value that takes into account a full contribution of orbital angular momentum for Fe(II) ($\chi T = 4.35$ emu K/mol for [Fe^{II}(NCMe)₆]^{2+ 10}). The zero field cooled (ZFC) and FC temperature dependence of the susceptibility, $\chi(T)$, of **1** reveals a bifurcation ($\chi_{ZFC} \neq \chi_{FC}$) at 120 K and two magnetic transitions at 12 and 100 K (Figure 1) that are comparable to 24 and 97 K transitions reported for Fe[TCNE]₂ prepared from FeI₂.^{11a} Ac susceptibility studies show that the low-temperature peak position is frequency dependent, while the

- (9) Zhang, J.; Liable-Sands, L. M.; Rheingold, A. L.; Del Sesto, R. E., Gordon, D. C.; Burkhart, B. M.; Miller, J. S. Chem. Commun. 1998, 1385.
- (10) Buschmann, W. E.; J. S. Miller, J. S. Chem. Eur. J. 1998, 4, 1731.

10.1021/ic011288b CCC: \$22.00 © 2002 American Chemical Society Published on Web 03/28/2002

^{*} Author to whom correspondence should be addressed. E-mail: jsmiller@chemistry.utah.edu.

^{(1) (}a) University of Utah. (b) The Ohio State University.

⁽⁶⁾ Gross-Lannert, R.; Kaim, W.; Olbrich-Deussner, B. Inorg. Chem. 1989, 28, 3113. Herberhold, M. Angew. Chem., Int. Ed. 1968, 7, 305.

^{(7) (}a) Pokhodnya, K. I.; Petersen, N.; Miller, J. S. Unpublished. (b) Raebiger, J. R.; Miller, J. S. In preparation.

⁽⁸⁾ In a typical preparation neat Fe(CO)₅ (24 µL; 0.18 mmol) was dropwise added to a stirred solution of TCNE (46 mg; 0.36 mmol) in 15 mL of CH₂Cl₂. The mixture was stirred for 5 days with venting, and, as color changes from yellow to dark brown, a precipitate forms. *CAUTION: Fe*(*CO*)₅ *is very toxic and needs to be handled carefully in a well-vented hood.* The product was filtered, washed with CH₂Cl₂, and dried (yield: 43 mg (85%). The TCNQ and DDQ materials were prepared by the same methods using TCNQ and DDQ, respectively. Elemental anal. Obsd (calcd) for Fe[TCNE]₂·0.32(CH₂Cl₂): C, 43.50 (43.77); H, 0.00 (0.18); N, 33.24 (33.20). For Fe[TCNQ]₂·0.70(CH₂Cl₂): C, 56.91 (56.65); H, 1.81 (1.81); N, 21.40 (21.29). For Fe[DDQ]₂·1.02-(CH₂Cl₂): C, 34.28 (34.03); H, 0.34 (0.43); N, 9.39 (9.67).

Figure 1. ZFC and FC susceptibility, $\chi(T)$, of $\mathbf{1} (\times, +)$ and $\mathbf{2} (\bullet, \bigcirc)$, as well as $\chi(T)$ at 1000 Oe of $\mathbf{3} (\bullet)$. Inset is $\chi T(T)$ for $\mathbf{3}$, and the line is a fit to the data as described in the text.

high-temperature peak is not. We speculate that at 100 K the magnetization component parallel to the applied magnetic field orders ferrimagnetically while the perpendicular component remains disordered^{12a} and freezes at 12 K, and additional studies are in progress.

 $M[TCNQ]_2 \cdot yS$ (M = Mn, Fe, Co, Ni; S = MeOH, H₂O; TCNQ = 7.7.8.8-tetracyano-*p*-quinodimethane) exhibits Curie-Weiss behavior characteristic of isolated metal ions due to formation of $S = 0 \sigma$ -dimerized [TCNQ]₂²⁻ units.¹³ However, upon annealing at 160 °C or X-ray irradiation, magnetic ordering occurs for M = Mn, in which the S = 0 μ_4 -[TCNQ]₂²⁻ dimers break to form two $S = \frac{1}{2}$ [TCNQ]^{•-}. The $S = \frac{1}{2}$ [TCNQ]^{•-} spin couples with Mn^{II}, leading to ferrimagnetic ordering at $\sim \! 50~{\rm K}$ based on a deviation of $\chi^{-1}(T)$ from the Curie–Weiss law.¹³ Similar σ -[TCNE]₂^{2–} dimers were observed for $M[TCNE]_2$ (M= Mn, Fe),⁹ which also magnetically order upon thermal treatment.⁹ Thermolysis breaks the long, central σ -dimer bond (ca. 1.6 Å)^{9,13} and subsequently forms two $S = \frac{1}{2}$ radicals. In addition, the M-solvent bond breaks and solvent loss occurs to open up sites for either $S = \frac{1}{2}$ [TCNQ]^{•-} or [TCNE]^{•-} to bind to the M stabilizing sufficiently strong magnetic coupling and ferrimagnetic ordering.9

The reaction of Fe(CO)₅ with TCNQ and subsequent annealing in vacuo at 70 °C forms a new magnetically ordered material of Fe[TCNQ]₂•0.70(CH₂Cl₂), **2**, composition⁸ (ν_{CN} , 2194, 2163, and 2107 cm⁻¹; δ (C–H), 826 cm⁻¹). χT (300 K) for **2** is 4.81 emu K/mol, close to the theoretically predicted 5.10 emu K/mol for the S = 2 Fe²⁺ (possessing an orbital contribution to the moment) and two $S = \frac{1}{2}$ spinonly [TCNE]^{•-} species. The ZFC and FC $\chi(T)$ of **2** indicate that the system orders ferrimagnetically below ~55 K (Figure

Figure 2. The temperature dependencies of the in-phase (χ') and out-of-phase (χ'') components of the complex ac susceptibility of **2** at 10 (\bullet), 100 (×), and 1000 (+) Hz.

1) on the basis of a deviation of $\chi(T)$ from the Curie–Weiss law. The bifurcation starts at ~30 K and becomes much more pronounced below 24 K, suggesting a correlated spin-glass ground state. The temperature dependencies of the in-phase (χ') and out-of-phase (χ'') components of the complex ac susceptibility measured at different frequencies (10–1000 Hz) for the compound **2** are shown in Figure 2. Both $\chi'(T)$ and $\chi''(T)$ display maxima at 20–24 K, which demonstrate a gradual shift toward higher temperatures as the frequency increases, which is characteristic for spin-glasses.¹² The ordering temperature, T_c , is ~35 K, based on the onset of $\chi''(T)$.

In contrast to formation of magnetically ordered materials with either TCNE or TCNQ, the reaction of Fe(CO)₅ with DDQ (DDQ = 1,2-dichloro-5,6-dicyanobenzoquinone) led to Fe[DDQ]₂•1.02(CH₂Cl₂), **3**⁸ (ν_{CN} : 2234 cm⁻¹). **3** exhibits Curie—Weiss behavior characteristic of isolated metal ions and $S = \frac{1}{2}$ [DDQ]•⁻ above 2 K, with a room temperature moment of 4.81 emu K/mol that is close to the theoretically predicted one for the S = 2 Fe^{II} and two [TCNE]•⁻. $\chi(T)$ can be fit to a model including zero field splitting (*D*) for Fe^{II 14} with D = -6 K, $g_{Fe} = 2.25$, and $\theta = -23.5$ K as expected for a paramagnetic system with Fe(II) and two $S = \frac{1}{2}$ [TCNE]•⁻ species with g = 2.00.

Hence, Fe(CO)₅ is a useful precursor for the preparation of molecule-based magnets. The TCNQ analogue of an M[TCNE]_x magnet, as observed for M = Fe, has a substantially reduced T_c . This reduction in T_c is also observed for the [M(C₅Me₅)₂][TCNX] (M = Cr, Mn, Fe; X = E, Q) family of ferromagnets.^{2b}

Acknowledgment. We gratefully acknowledge the support from the U.S. Department of Energy (Grants DE FG 03-93ER45504 and DE FG 02-86BR45271).

IC011288B

 ^{(11) (}a) Gîrtu, M. A.; Wynn, C. M.; Zhang, J.; Miller, J. S.; Epstein, A. J. *Phys. Rev B* 2000, 61, 492. (b) Wynn, C. M.; Girtu, M. A.; Zhang, J.; Miller, J. S.; Epstein, A. J. *Phys. Rev. B* 1998, 58, 8508.

⁽¹²⁾ Mydosh, J. A. *Spin Glasses*; Taylor & Francis: London, Washington, DC, 1993; (a) p 39.

⁽¹³⁾ Zhao, H.; Heintz, R.A.; Ouyang, X.; Dunbar, K. R. Chem. Mater. 1999, 11, 736. Zhao, H.; Heintz, R.A.; Ouyang, X.; Grandinetti, G.; Cowen, J.; Dunbar, K. R. In NATO ARW Supramolecular Engineering of Synthetic Metallic Materials: Conductors and Magnets; Veciana, J., Rovira, C., Amabilino, D., Eds.; 1998; Vol. C518; p 353.

⁽¹⁴⁾ O'Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203.