Inorg. Chem. 2002, 41, 2302–2303

Multiple Reactions of Triphenylstannane with $Ru_5(CO)_{12}(C_6H_6)(\mu_5-C)$ Yield Bimetallic Clusters with Unusually Large Numbers of Tin Ligands

Richard D. Adams,* Burjor Captain, Wei Fu, and Mark D. Smith

Department of Chemistry and Biochemistry and USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208

Received December 27, 2001

The cluster complex Ru₅(CO)₁₂(C₆H₆)(μ_5 -C), **1**, undergoes multiple addition reactions with Ph₃SnH to yield two new bimetallic cluster complexes: Ru₅(CO)₈(μ -SnPh₂)₄(C₆H₆)(μ_5 -C), **2**, 2% yield, and Ru₅-(CO)₇(μ -SnPh₂)₄(SnPh₃)(C₆H₆)(μ_5 -C)(μ -H), **3**, 26% yield, containing four and five tin ligands, respectively. Both compounds consist of a square pyramidal Ru₅ cluster with an interstitial carbido ligand and bridging SnPh₂ groups located across each of the four edges of the base of the Ru₅ square pyramid. Compound **3** contains an additional SnPh₃ group terminally coordinated to one of the ruthenium atoms in the square base.

Over the years metal—tin compounds have been of great interest.¹ Tin complexes of palladium and platinum have been shown to be superior catalysts for hydrogenation and hydroformylation of olefins.¹ Ruthenium—tin carbonyl cluster complexes have recently been shown to be precursors to bimetallic catalysts that exhibit superior selectivity in the hydrogenation of cyclic polyenes.² SnCl₂ has been shown to add to metal carbonyl cluster complexes to yield bimetallic clusters containing bridging SnCl₂ ligands.³ Carbido pentaruthenium carbonyl complexes have also been shown to exhibit a range of exciting chemistry in recent years.⁴ We have now found that the pentaruthenium complex Ru₅(CO)₁₂-(C₆H₆)(μ_5 -C), **1**,⁵ reacts with Ph₃SnH multiple times to yield complexes containing an unprecedented number of tin ligands.

The reaction of **1** with an excess of Ph₃SnH at 127 °C has yielded two new high-nuclearity cluster complexes: Ru₅-(CO)₈(μ -SnPh₂)₄(C₆H₆)(μ ₅-C), **2**, 2% yield, and Ru₅(CO)₇-(μ -SnPh₂)₄(SnPh₃)(C₆H₆)(μ ₅-C)(μ -H), **3**, 26% yield, respec-

Figure 1. An ORTEP diagram of the molecular structure of $Ru_5(CO)_8$ - $(SnPh_2)_4(C_6H_6)(\mu_5-C)$, **2**, showing 40% thermal ellipsoid probability. Selected bond distances (Å): Ru(1)-Ru(2) 2.763(11), Ru(1)-Ru(5) 2.7673(10), Ru(1)-Ru(3) 2.7701(10), Ru(1)-Ru(4) 2.7922(11), Ru(2)-Ru(3) 2.8825(12), Ru(2)-Ru(5) 2.8864(11), Ru(3)-Ru(4) 2.9012(10), Ru(4)-Ru(5) 2.8983(11), Ru(2)-Sn(2) 2.6022(12), Ru(2)-Sn(1) 2.6027(11), Ru(3)-Sn(3) 2.6239(11), Ru(4)-Sn(3) 2.6280-(10), Ru(4)-Sn(4) 2.6261(9), Ru(5)-Sn(1) 2.6429(11), Ru(5)-Sn(4) 2.6278(10).

tively.⁶ Compounds **2** and **3** were characterized by IR,⁷ NMR,⁷ and single-crystal X-ray diffraction analyses.⁸ ORTEP diagrams of **2** and **3** are shown in Figures 1 and 2. Compound **2** consists of a square pyramidal cluster of five ruthenium atoms with four bridging SnPh_2 ligands, one on each edge of the base of the square pyramid, see Scheme 1. The C₆H₆ ligand has been relocated from a basal coordination site to the apical ruthenium atom Ru(1).

10.1021/ic011321u CCC: \$22.00 © 2002 American Chemical Society Published on Web 04/04/2002

^{*} Author to whom correspondence should be addressed. E-mail: adams@psc.sc.edu.

Holt, M. S.; Wilson, W. L.; Nelson, J. H. *Chem. Rev.* **1989**, *89*, 11.
 Hermans, S.; Raja, R.; Thomas, J. M.; Johnson, B. F. G.; Sankar, G.; Gleeson, D. *Angew. Chem., Int. Ed.* **2001**, *40*, 1211.

^{(3) (}a) Brivio, E.; Čeriotti, A.; Garlaschelli, L.; Manassero, M.; Sansoni, M. Chem. Commun. 2000, 1955. (b) Hermans, S.; Johnson, B. F. G. Chem. Commun. 2000, 1955.

⁽⁴⁾ Dyson, P. J. Adv. Organomet. Chem. 1998, 43, 43.

⁽⁵⁾ Braga, D.; Grepioni, F.; Sabatino, P.; Dyson, P. J.; Johnson, B. F. G.; Lewis, J.; Bailey, P. J.; Raithby, P. R.; Stalke, D.; *J. Chem. Soc., Dalton Trans.* **1993**, 985.

⁽⁶⁾ A 9.3 mg amount of 1 (0.010 mmol) was dissolved in 10 mL of octane in a 50 mL three-neck round-bottom flask equipped with a stir bar. To this solution was added 15.2 mg of Ph₃SnH (0.043 mmol) dissolved in 5 mL of octane, and then the mixture was brought to reflux for 20 min. After cooling, the solvent was removed in vacuo, and the product was purified by TLC on silica gel by using a 2:1 hexane/methylene chloride solvent mixture to yield 0.5 mg (2%) of the red product 2 and 6.2 mg (26%) of the red product 3.

Figure 2. An ORTEP diagram of the molecular structure of $Ru_5(CO)_7(SnPh_2)_4(SnPh_3)(C_6H_6)(\mu_5-C)(\mu-H)$, **3**, showing 40% thermal ellipsoid probability. Selected bond distances (Å): Ru(1)-Ru(2) 2.9290(11), Ru(1)-Ru(3) 2.8208(8), Ru(1)-Ru(4) 2.8517(11), Ru(2)-Ru(3) 2.9117(8), Ru(3)-Ru(4) 2.8670(8), Ru(2)-Sn(1) 2.7559(10), Ru(2)-Sn(2) 2.6198-(5), Ru(3)-Sn(3) 2.6125(8), Ru(3)-Sn(2) 2.7106(8), Ru(4)-Sn(3) 2.6715-(6).

Compound **3** contains a square pyramidal cluster of five ruthenium atoms and five tin ligands. Four of the tin ligands are bridging SnPh₂ groups positioned similarly to those in **2**. The fifth tin grouping is in the form of a SnPh₃ ligand that is terminally coordinated to the basal ruthenium Ru(2). The Ru–Sn bond distance to the SnPh₃ ligand, Ru(2)–Sn-(1) = 2.7559(10) Å, is significantly longer than those to the bridging SnPh₂ groups which all lie in the range 2.6125-(8)–2.7106(8) Å. There is one bridging hydride ligand (not located directly), $\delta = -25.63$ ppm in its ¹H NMR spectrum, that is believed to bridge the long Ru–Ru bond, Ru(1)– Ru(2) = 2.9290(11) Å, proximate to the SnPh₃ group.

It is known that tertiary stannanes can oxidatively add to triruthenium carbonyl cluster compounds by reaction of their Sn-H bond to yield stannyltriruthenium hydride cluster complexes.⁹ This would seem to be a logical first step in the formation of compounds **2** and **3**. Indeed, compound **3** contains both SnPh₃ and hydride ligands. We have recently shown that $Ru_5(CO)_{15}(\mu_5-C)$ reacts with Et₃SiH by an SiH oxidative addition involving cleavage of a Ru-Ru bond in the cluster.¹⁰ The mechanism of formation of **2** and **3** appears to involve cleavage of a Ph group from an intermediate species containing an SnPh₃ group. The phenyl was then combined with the hydride ligand and eliminated as C₆H₆. This is supported by the observation of C₆H₆ (by ¹H NMR) in the reaction mixtures that yielded compounds 2 and 3. Further studies of the mechanism are in progress. Cleavage of phenyl groups from PPh₃ ligands in metal clusters is a well-established transformation.¹¹ Triruthenium compounds containing multiple SnR₂ bridging groups have been reported previously,¹² but the formation of the SnPh₂ groups by the reaction reported here is new and the introduction of four such groups is heretofore unprecedented.

The facile introduction of tin-containing ligands into metal carbonyl clusters may make available a range of new bimetallic carbonyl cluster complexes that can serve as precursors to new nanoclusters containing tin that could find applications in heterogeneous catalysis.^{13,14}

Acknowledgment. We would like to thank the Office of Basic Energy Sciences of the U.S. Department of Energy for financial support.

Supporting Information Available: X-ray crystallographic data in CIF format for compounds **2** and **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC011321U

- (7) Spectral data for **2**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂) 2056 (w), 2024 (w), 2000 (m), 1977 (s), 1937 (s); ¹H NMR (CDCl₃ in ppm) $\delta = 7.28 7.95$ (m, 40H, Ph), 4.35 (s, 6H, C₆H₆); MS parent ion m/z = 1912. Spectral data for **3**: IR ν_{CO} (cm⁻¹ in CH₂Cl₂) 2008 (s), 1987 (s), 1943 (s), 1928 (m, sh); ¹H NMR (CDCl₃ in ppm) $\delta = 6.70 8.05$ (m, 55H, Ph), 4.48 (s, 6H, C₆H₆), -25.63 (s, 1H, hydride). Anal. Calcd: C 42.99, H 2.78. Found: C 43.11, H 2.64.
- (8) Crystal data for 2: Ru₅Sn₄O₈C₆3H₅₄·C₆H₆·¹/₄CH₂Cl₂, M_r = 2018.51, monoclinic, space group P2₁/c, a = 14.6107(11) Å, b = 18.7109(14) Å, c = 25.3931(19) Å, β = 102.8120(10)°, V = 6769.1(9) Å³, Z = 4, T = -81°C, Mo Kα = 0.71073 Å, μ = 2.60 mm⁻¹. The final R1-(F²) was 0.0595 for 9944 reflections I > 2σ(I). Crystal data for 3: Ru₅Sn₅O₇C₈₃H₆₈·¹/₄C₆H₁₄, M_r = 2276.17, orthorhombic, space group Pnma, a = 20.374(1) Å, b = 22.169(1) Å, c = 19.063(1) Å, V = 8610.0(7) Å³, Z = 4, T = 20°C, Mo Kα = 0.71073 Å, μ = 1.76 mm⁻¹. The crystal of 3 contains ¹/₄ C₆H₁₄ disordered equally over two closely spaced positions. The final R1(F²) was 0.0469 for 5966 reflections I > 2σ(I). Compound 3 has mirror symmetry in the crystal.
- (9) (a) Cabeza, J. A.; Del Rio, I.; Riera, V. Inorg. Chim. Acta 1998, 268, 131. (b) Bois, C.; Cabeza, J. A.; Franco, R. J.; Riera, V.; Saborit, E. J. Organomet. Chem. 1998, 564, 201. (c) Cabeza, J. A.; Llamazares, A.; Riera, V.; Triki, S.; Ouahab, L. Organometallics 1992, 11, 3334. (d) Cabeza, J. A.; Garcia-Granda, S.; Llamazares, A.; Riera, V.; Van der Maelen, J. F. Organometallics 1993, 12, 157. (e) Cabeza, J. A.; Franco, R. J.; Riera, V.; Garcia-Granda, S.; Van der Maelen, J. F. Organometallics 1995, 14, 3342.
- (10) Adams, R. D.; Captain, B.; Fu, W. Organometallics 2000, 19, 3670.
- (11) (a) Garrou, P. E. *Chem. Rev.* 1985, *85*, 171. (b) Bender, R.; Braunstein,
 P.; Dedieu, A., Ellis, P. D.; Huggins, B.; Harvey, P. D.; Sappa, E.;
 Tiripicchio, A. *Inorg. Chem.* 1996, *35*, 1223.
- (12) Cardin, C. J.; Cardin, D. J.; Convert, M. A.; Dauter, Z.; Fenske, D.; Devereux, M. M.; Power, M. B. J. Chem. Soc., Dalton Trans. 1996, 1131.
- (13) Toshima, N.; Yonezawa, T. New J. Chem. 1998, 1179.
- (14) Somerville, D. M.; Shapley, J. R., Catal. Lett. 1998, 52, 123.