Inorg. Chem. 2003, 42, 2280-2287

Incorporation of Aluminum in the Calcium Silicate Hydrate (C–S–H) of Hydrated Portland Cements: A High-Field ²⁷Al and ²⁹Si MAS NMR Investigation

Morten Daugaard Andersen, Hans J. Jakobsen, and Jørgen Skibsted*

Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark

Received October 7, 2002

The calcium silicate hydrate (C–S–H) phase resulting from hydration of a white Portland cement (wPc) in water and in a 0.3 M NaAlO₂ solution has been investigated at 14 and 11 hydration times, respectively, ranging from 6 h to 1 year by ²⁷Al and ²⁹Si MAS NMR spectroscopy. ²⁷Al MAS NMR spectra recorded at 7.05, 9.39, 14.09, and 21.15 T have allowed a determination of the ²⁷Al isotropic chemical shift (δ_{iso}) and quadrupolar product parameter $(P_{Q} = C_{Q}\sqrt{1+\eta_{Q}^{2}/3})$ for tetrahedrally coordinated AI incorporated in the C–S–H phase and for a pentacoordinated Al site. The latter site may originate from Al3+ substituting for Ca2+ ions situated in the interlayers of the C-S-H structure. The spectral region for octahedrally coordinated AI displays resonances from ettringite, monosulfate, and a third aluminate hydrate phase ($\delta_{\rm iso} = 5.0$ ppm and $P_{\rm Q} = 1.20$ MHz). The latter phase is tentatively ascribed to a less-crystalline aluminate gel or calcium aluminate hydrate. The tetrahedral AI incorporated in the C-S-H phase has been quantitatively determined from ²⁷AI MAS spectra at 14.09 T and indirectly observed quantitatively in ²⁹Si MAS NMR spectra by the Q²(1AI) resonance at -81.0 ppm. A linear correlation is observed between the ²⁹Si MAS NMR intensity for the Q²(1AI) resonance and the quantity of AI incorporated in the C-S-H phase from ²⁷AI MAS NMR for the different samples of hydrated wPc. This correlation supports the assignment of the resonance at $\delta_{iso}(^{29}Si) = -81.0$ ppm to a Q²(1Al) site in the C–S–H phase and the assignment of the ²⁷Al resonance at $\delta_{iso}(^{27}Al)$ = 74.6 ppm, characterized by $P_0(^{27}\text{AI}) = 4.5$ MHz, to tetrahedrally coordinated AI in the C–S–H. Finally, it is shown that hydration of wPc in a NaAlO₂ solution results in a C-S-H phase with a longer mean chain length of SiO₄ tetrahedra and an increased quantity of Al incorporated in the chain structure as compared to the C-S-H phase resulting from hydration of wPc in water.

Introduction

The principal binding phase responsible for the strength development in hydrated Portland cements is a poorly crystalline calcium silicate hydrate $((CaO)_x(SiO_2)_y(H_2O)_z)$, shorthand notation C–S–H). The C–S–H phase is formed by hydration of the calcium silicates, alite (Ca_3SiO_5) and belite (Ca_2SiO_4) , which along with calcium aluminate $(Ca_3-Al_2O_6)$ and ferrite $(Ca_2Al_xFe_{2-x}O_5)$ are the main phases in Portland cements. The structure of the C–S–H phase is difficult to study using conventional X-ray diffraction techniques as a result of the lack of long-range order and the incorporation of guest ions, (e.g., Mg²⁺, Al³⁺, and Fe³⁺)

in the structure.¹ From thermal analysis, microanalytical

techniques (e.g., SEM, TEM, and EPMA), and ²⁹Si MAS NMR spectroscopy it is well-known that the nanostructure of the C–S–H depends strongly on the Ca/Si ratio and the water content and that domains with different structures may be present in the cement paste.¹ Furthermore, it is known that the C–S–H phase has a layer structure which ideally resembles the layer structure of the crystalline 11- and 14-Å tobermorites with the expected constitutional formulas $Ca_{4.5}Si_6O_{16}(OH)$ ·5H₂O² and $Ca_5Si_6O_{16}(OH)$ ·8H₂O,³ respectively. Several models for the formation of the C–S–H and

Taylor, H. F. W. Cement Chemistry, 2nd ed.; Thomas Telford: London, 1997.

Merlino, S.; Bonaccorsi, E.; Armbruster, T. Eur. J. Mineral. 2001, 13, 577.
 Mitsuda, T.; Taylor, H. F. W. Mineral. Mag. 1978, 42, 229.

^{*} To whom correspondence should be addressed. E-mail: jskib@ chem.au.dk. Phone: (+45) 89423900. Fax: (+45) 86196199.

Figure 1. Schematic representation of a single layer in the crystal structure for a 14-Å tobermorite. The upper part shows a pentameric silicate chain which is a characteristic feature for the "dreierketten"-based models for the C–S–H phase. The lower part illustrates the incorporation of Al in the bridging site of the pentameric silicate chain. Interlayer water molecules and Ca²⁺ ions are not included in this representation.

its microstructure in cement pastes have been proposed.^{1,4,5} Most recently, it has been suggested that a C–S–H phase with a sorosilicate-like structure (i.e., including $(Si_2O_7)^{6-1}$ ions) is formed soon after setting of the cement paste and that this phase on a longer time scale becomes unstable and transforms into a tobermorite-like C–S–H structure.⁴

A common structural feature for the tobermorites is a layer structure consisting of CaO₂ layers, with 7-fold coordinated Ca^{2+} ions, where the oxygens are shared with Si^{4+} in chains of SiO₄ tetrahedra in a "dreierketten" arrangement on both sides of the CaO₂ layer^{2,3,6} as illustrated in Figure 1. Water molecules and additional Ca²⁺ ions are present between these layers, which are separated by either 11 or 14 Å. The 11-Å tobermorite includes SiO4 tetrahedra in double chains ("dreierdoppelketten", Q^2 and Q^3 units in a 2:1 ratio)² whereas the 14-Å tobermorite only contains SiO₄ tetrahedra in "dreierketten" chains (i.e., Q² units).¹ A major difference between tobermorites and the C-S-H, resulting from Portland cement hydration, is that the chains of SiO_4 tetrahedra are broken. Studies of C-S-H phases by the trimethylsilylation (TMS) technique have shown that the C-S-H contains dimeric, pentameric, and higher polymeric species of SiO₄ tetrahedra, resulting in chains of 2, 5, 8, ..., (3n-1) SiO₄ tetrahedra.⁷⁻⁹ The chain of SiO₄ tetrahedra in the upper part of Figure 1 illustrates a pentameric unit where a bridging SiO₄ tetrahedron (Q_B²) connects two dimers, resulting in two SiO₄ end-groups (Q¹) and two "paired" SiO₄

sites (Q_P^2). The presence of dimeric or end-group (Q^1) and chain (Q^2) SiO₄ tetrahedra and the absence of Q^3 SiO₄ tetrahedra (i.e., double chains of SiO₄ tetrahedra) have been demonstrated by ²⁹Si MAS NMR in a number of studies of C-S-H phases in hydrating Portland cements (see refs 10 and 11 and references therein). Although the paired and bridging SiO₄ tetrahedra have not been distinguished so far by ²⁹Si MAS NMR, this technique allows quantification of the fractions of Q¹ and Q² SiO₄ tetrahedra, implying that the mean chain length of SiO₄ tetrahedra in the C-S-H can be calculated.

On the basis of ²⁹Si and ¹⁷O MAS NMR studies in combination with X-ray diffraction and chemical analysis of a number of synthetic (aluminum free) C-S-H phases with different Ca/Si ratios (0.41-1.85), Cong and Kirkpatrick^{12–14} have proposed a defect tobermorite structural model for the C-S-H phase. This model is based on the structure of the 14-Å tobermorite but includes stacking disorder among adjacent CaO₂ layers, structural disorder within these layers, and a significant concentration of defects in the chains of SiO₄ tetrahedra. The latter types of defects are proposed to be vacancies of bridging SiO₄ tetrahedra (i.e., Q_{B^2} units), resulting in many dimers in a broken chain structure of SiO₄ tetrahedra connected to the CaO₂ layer. Subsequent Ca X-ray absorption,15 Raman,16 and infrared17 spectroscopic studies of the same C-S-H samples and hydrothermally prepared C-S-H phases by Kirkpatrick, Cong, and co-workers are all in overall agreement with this proposed defect tobermorite structural model.

The ²⁹Si NMR resonances originating from the Q¹ and Q² (i.e., Q_B^2 and Q_P^2) sites are observed as broadened resonances at about -79.5 and -84.5 ppm, respectively.^{11,18-24} In a ²⁹Si MAS NMR investigation of a hydrated synthetic slag glass, Richardson et al.²³ also observed a resonance at -80.5 ppm, which they assigned to a Q²(1Al) site, i.e., a SiO₄ chain unit connected to one SiO₄ and one AlO₄ tetrahedron, employing earlier results from ²⁹Si MAS studies of Alsubstituted tobermorites.²⁴ Moreover, they suggested that Al

- (11) Skibsted, J.; Hall, C.; Jakobsen, H. J. In *Structure and Performance of Cements*, 2nd ed.; Bensted, J., Barnes, P., Eds.; Spon Press: London, 2002; pp 457–476.
- (12) Cong, X.; Kirkpatrick, R. J. Adv. Cem. Res. 1995, 7, 103.
- (13) Cong, X.; Kirkpatrick, R. J. Adv. Cem. Based Mater. 1996, 3, 144.
- (14) Cong, X.; Kirkpatrick, R. J. J. Am. Ceram. Soc. 1996, 79, 1585.
- (15) Kirkpatrick, R. J.; Brown, G. E.; Xu, N.; Cong, X. Adv. Cem. Res. 1997, 9, 31.
- (16) Kirkpatrick, R. J.; Yarger, J. L.; McMillan, P. F.; Yu, P.; Cong, X. Adv. Cem. Based Mater. **1997**, 5, 93.
- (17) Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F.; Cong, X. J. Am. Ceram. Soc. **1999**, 82, 742.
- (18) Lippmaa, E.; Mägi, M.; Tarmak, M.; Weiker, W.; Grimmer, A.-R. Cem. Concr. Res. 1982, 12, 597.
- (19) Clayden, N. J.; Dobson, C. M.; Groves, G. W.; Hayes, C. J.; Rodger, S. A. Proc. Br. Ceram. Soc. 1984, 35, 55.
- (20) Young, J. F. J. Am. Ceram. Soc. 1988, 71, C118.
- (21) Hjorth, J.; Skibsted, J.; Jakobsen, H. J. Cem. Concr. Res. 1988, 18, 789.
 (22) Grutzeck, M.; Benesi, A.; Fanning, B. J. Am. Ceram. Soc. 1989, 72,
- 665.
 (23) Richardson, I. G.; Brough, A. R.; Brydson, R.; Groves, G. W.; Dobson,
- (23) Kieliauson, F. G., Biougn, A. K., Brydson, K., Oloves, G. W., Dooson, C. M. J. Am. Ceram. Soc. **1993**, 76, 2285.
- (24) Komarneni, S.; Roy, R.; Roy, D. M.; Fyfe, C. A.; Kennedy, G. J.; Bothner-By, A. A.; Dadok, J.; Chesnick, A. S. J. Mater. Sci. 1985, 20, 4209.

⁽⁴⁾ Grutzeck, M. W. Mater. Res. Innovat. 1999, 3, 160.

⁽⁵⁾ Jennings, H. M. Cem. Concr. Res. 2000, 30, 101.

⁽⁶⁾ Hamid, S. A. Z. Kristallogr. 1981, 154, 189.

⁽⁷⁾ Dent-Glasser, L. S.; Lachowski, E. E.; Mohan, K.; Taylor, H. F. W. *Cem. Concr. Res.* **1978**, 8, 733.

⁽⁸⁾ Dent-Glasser, L. S.; Lachowski, E. E.; Qureshi, M. Y.; Calhoun, H. P.; Embree, D. J.; Jamieson, W. D.; Masson C. R. *Cem. Concr. Res.* 1981, *11*, 775.

⁽⁹⁾ Mohan, K.; Taylor, H. F. W. Cem. Concr. Res. 1982, 12, 25.

⁽¹⁰⁾ Richardson, I. G. Cem. Concr. Res. 1999, 29, 1131.

can only substitute for Si in the bridging (Q_B^2) site. The lower part of Figure 1 illustrates a pentameric unit, where Al is incorporated in the bridging site. The tetrahedral environment for aluminum in the C-S-H was supported by the observation of a broad resonance at about 70 ppm in the ²⁷Al MAS NMR spectrum of the hydrated slag glass.²³ Faucon et al. have studied the dependency of the Ca/Si ratio on the incorporation of Al in the C-S-H by ²⁷Al MAS NMR²⁵ and multiple-quantum (MQ) MAS NMR.26 They proposed that aluminum preferentially substitutes a nonbridging SiO₄ tetrahedron for C-S-H phases with polymeric chains of SiO_4 tetrahedra. For a high Ca/Si ratio C-S-H, which only includes dimers of SiO₄ tetrahedra, they suggested that a limited degree of Al can substitute for Ca²⁺ ions in the interlayer or in the CaO₂ layer on the basis of the observation of resonances from pentacoordinated and octahedrally coordinated Al, respectively.25

This work presents the results of a ²⁹Si MAS and highfield (14.09 and 21.15 T) ²⁷Al MAS NMR investigation of the C-S-H resulting from hydration of a white Portland cement (wPc) using water and a 0.3 M aqueous solution of NaAlO₂. The ²⁷Al MAS spectra demonstrate that tetrahedral Al in the C-S-H can be distinguished (and quantified) from the resonances for the Al guest ions in the anhydrous alite and belite phases. Quantitative information about Al incorporated in the C-S-H is also obtained by ²⁹Si MAS NMR for the two series of hydrated wPc by the observation of the $Q^{2}(1AI)$ resonance. The linear correlation between the ²⁹Si intensities for the $Q^2(1AI)$ resonance with the quantities of tetrahedral Al in the C-S-H, observed by ²⁷Al MAS NMR, gives improved evidence for the correct assignment of these resonances in the ²⁹Si and ²⁷Al MAS NMR spectra. Furthermore, it is shown that information about ettringite, monosulfate, and a third aluminum hydrate phase, resulting from hydration of the calcium aluminate phase in the wPc, is readily achieved from high-field ²⁷Al MAS NMR spectra.

Experimental Section

Materials. The white Portland cement (wPc) was a commercial cement from Aalborg Portland A/S, Denmark, with the following metal oxide composition: 69.13 wt % CaO; 24.7 wt % SiO₂; 1.74 wt % Al₂O₃; 0.31 wt % Fe₂O₃; 0.56 wt % MgO; 1.97 wt % SO₃; Blaine fineness of 424 m²/kg. Two series of hydrated samples were prepared using this cement. The first series corresponds to hydration of the wPc in demineralized water employing a water/cement ratio of 0.50 whereas the second series is the wPc mixed with a 0.30 M solution of NaAlO2 in demineralized water using a solution/cement ratio of 1.0 to prevent "flash setting" of the cement. The wPc was added to the water/NaAlO₂ solution and mixed by hand for 5 min. After mixing, the cement pastes were placed in open plastic bags in a closed desiccator with a relative humidity of 100% at 20 °C. At appropriate time intervals, samples were ground to a powder and the hydration process was stopped by suspending the powder sample in acetone under stirring for about 15 min. After drying at 20 °C in a desiccator, the samples were kept in airtight containers

prior to the NMR investigations to prevent atmospheric CO_2 contamination.

NMR Measurements. The solid-state ²⁷Al MAS experiments were performed on Varian INOVA-300 (7.05 T), INOVA-400 (9.39 T), and INOVA-600 (14.09 T) spectrometers using home-built CP/MAS probes for 4 and 5 mm o.d. zirconia (PSZ) rotors. The single-pulse ²⁷Al MAS experiments at 7.05 and 9.39 T used a pulse width of 1 μ s for a rf field strength of $\gamma B_1/2\pi = 60$ kHz, ¹H decoupling with $\gamma B_2/2\pi = 75$ kHz, spinning speeds of about 10 kHz, a 2-s relaxation delay, and typically 10 000 scans. The ²⁷Al MAS spectra at 14.09 T were obtained in a similar manner for $\gamma B_1/2\pi = 50$ kHz, $\gamma B_2/2\pi = 50$ kHz, and a spinning speed of $\nu_{\rm R}$ = 13.0 kHz. At the three magnetic fields, the 27 Al MAS NMR spectrum of the probe itself including an empty zirconia rotor showed a broad resonance of very low intensity. This spectrum was subtracted from the ²⁷Al MAS NMR spectra of the cement samples prior to the quantitative evaluation of the observed intensities. The Al₂O₃ contents of the samples were determined from the ²⁷Al MAS NMR spectra recorded at 14.09 T and employed a pulse width of $\tau_p = 0.5 \ \mu s$ for $\gamma B_1/2\pi = 50 \ \text{kHz}$ (i.e., a flip angle $< \pi/6$ for ²⁷Al, I = 5/2, in a solid) to ensure quantitative reliability of the intensities observed for the ²⁷Al central transition for sites experiencing different quadrupole couplings. Moreover, these measurements employed weighed samples and the ²⁷Al MAS NMR spectrum of α -Al₂O₃ as an external intensity reference. A single ²⁷Al MAS NMR spectrum was obtained on a Varian INOVA-900 spectrometer (21.15 T) at Oxford Instruments, U.K., using a homebuilt 900 MHz CP/MAS NMR probe²⁷ and a pulse width of $\tau_p =$ 1.0 μ s for $\gamma B_1/2\pi = 60$ kHz. The solid-state ²⁹Si MAS NMR spectra were obtained on a Varian INOVA-400 (9.4 T) spectrometer using a home-built CP/MAS probe for 7 mm o.d. zirconia rotors, a spinning speed of 6.0 kHz, single-pulse excitation with a pulse width of 3 μ s for a rf field strength $\gamma B_1/2\pi = 40$ kHz, a relaxation delay of 30 s, and typically 2048 scans. ²⁹Si and ²⁷Al chemical shifts are referenced to external samples of tetramethylsilane (TMS) and a 1.0 M aqueous solution of AlCl₃·6H₂O, respectively. The deconvolutions were performed on a SUN Ultra 5 computer using the least-squares fitting routine of the Varian software and the method for deconvolving ²⁹Si MAS NMR spectra of anhydrous and hydrated Portland cements described elsewhere.28,29

Results and Discussion

High-Field ²⁷Al MAS NMR. The analysis and interpretation of ²⁷Al MAS NMR spectra of hydrated Portland cements are complicated by the second-order quadrupolar line broadening which may result in a severe overlap of broadened resonances in the case of multiple sites. A significant improvement in resolution of several resonances may be achieved by performing the MAS NMR experiments at a very high magnetic field as a result of the inverse proportionality of the second-order quadrupole interaction with the magnetic field and the increased chemical shift dispersion. Most recently, this has been demonstrated by very high-field ²⁷Al MAS NMR in the characterization of multiple aluminum

⁽²⁵⁾ Faucon, P.; Delagrave, A.; Petit, J. C.; Richet, C.; Marchand, J. M.; Zanni, H. J. Phys. Chem. B 1999, 103, 7796.

⁽²⁶⁾ Faucon, P.; Charpentier, T.; Bertrandie, D.; Nonat, A.; Virlet, J.; Petit, J. C. *Inorg. Chem.* **1998**, *37*, 3726.

⁽²⁷⁾ Jakobsen, H. J.; Daugaard, P.; Hald, E.; Rice, D.; Kupce, E.; Ellis, P. D. J. Magn. Reson. 2002, 156, 152.

⁽²⁸⁾ Skibsted, J.; Jakobsen, H. J.; Hall, C. J. Chem. Soc., Faraday Trans. 1995, 91, 4423.

⁽²⁹⁾ Skibsted, J.; Mejlhede Jensen, O.; Jakobsen, H. J. Proceedings of the 10th International Congress on the Chemistry of Cement; Gothenburg, Sweden, 1997; Vol. 2, paper 2ii056.

Figure 2. ²⁷Al MAS NMR spectra of the central transition for wPc hydrated for 12 weeks recorded at (a) 7.05 T, (b) 14.09 T, and (c) 21.15 T, employing ¹H decoupling and spinning speeds of $\nu_{\rm R} = 13.0$ kHz (7.05 and 14.09 T) and $\nu_{\rm R} = 9.5$ kHz (21.15 T). The asterisks indicate spinning sidebands whereas the centerbands from ettringite, monosulfate, and the third aluminate hydrate phase are indicated by E, M, and T, respectively.

environments in zeolite USY,30 in aluminum orthovanadate,31 and in an aluminoborate.³² The advantages of employing very high magnetic fields in ²⁷Al MAS NMR studies of cementitious materials are illustrated in Figure 2, which compares ²⁷Al MAS NMR spectra of the central transition for the wPc hydrated for 12 weeks in water recorded at 7.05, 14.09, and 21.15 T. At 7.05 T (Figure 2a) the spectral region for octahedrally coordinated A1 (20 to -10 ppm) includes a narrow centerband at 13.0 ppm and two peaks with lower intensity at 8.6 and 4.0 ppm, which arise from either a second-order quadrupolar line shape from a single ²⁷Al site or from two different Al species, possessing rather small quadrupole couplings. The ²⁷Al MAS spectra recorded at higher magnetic fields clearly demonstrate a significant increase in resolution of these two peaks, and from these spectra it is apparent that the two peaks originate from two distinct Al environments in the sample.

The centers of gravity for the central transitions reveal that the narrow centerband at 13.0 ppm and the slightly broader resonance at 9.8 ppm (14.09 T) originate from ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3 \cdot 26H_2O)$ and monosulfate

(Ca₄[Al(OH)₆]₂SO₄•6H₂O), respectively, employing earlier reported ²⁷Al quadrupole coupling and isotropic chemical shift parameters for synthetic samples of these aluminate hydrates.³³ The centerband at lowest frequency has at the moment not been assigned to a specific type of aluminum species but arises most likely from a third aluminate hydrate phase. From the relationship³⁴

$$\delta_{1/2,-1/2}^{cg} = \delta_{iso} - P_Q^2 \frac{C_{1/2,-1/2}}{\nu_L^2}$$

$$C_{1/2,-1/2} = \frac{3}{40} \frac{I(I+1) - 3/4}{I^2 (2I-1)^2}$$
(1)

between the center of gravity for the central transition $(\delta_{1/2,-1/2}^{cg})$ and the Larmor frequency (ν_L) , $\delta_{iso} = 5.0 \pm 0.1$ ppm and the quadrupolar product parameter P_Q = $C_{\rm Q}\sqrt{1+\eta_{\rm Q}^2/3} = 1.20 \pm 0.10$ MHz are determined for the third aluminate hydrate phase from linear regression analysis of $\delta_{1/2,-1/2}^{cg}$ as a function of ν_L^{-2} obtained at the Larmor frequencies 78.1 MHz (7.05 T), 104.2 MHz (9.39 T), 156.3 MHz (14.05 T), and 234.5 MHz (21.15 T). For C-S-H phases synthesized in the presence of aluminum, Faucon et al.25 observed an 27Al resonance corresponding to the parameters $\delta_{iso} = 4.25$ ppm and $P_Q = 1.83$ MHz, which they assigned to Al^{3+} substituting Ca^{2+} in the CaO_2 layer of the C-S-H structure (cf. Figure 1). For synthetic Al-substituted 11-Å tobermorites, Klimesch and Ray³⁵ observed a resonance for octahedrally coordinated Al at approximately 3-5 ppm, which they ascribed to substitution of Al in an octahedral site of the tobermorite structure. At the moment, we believe that the low-frequency resonance in Figure 2, observed for the hydrated wPc, does not arise from Al incorporated in the C-S-H phase but more likely from a less-crystalline alumina gel or calcium aluminate hydrate phase. This belief is due to the fact that ²⁷Al{¹H} cross-polarization (CP) MAS NMR experiments demonstrate that Al is coordinated to a number of OH⁻ groups in the third aluminate hydrate phase either as $Al(OH)_6^{3-}$ or $O_xAl(OH)_{6-x}^{(3+x)-}$ octahedra. ²⁷Al-{¹H} CP/MAS NMR spectra, recorded for an array of CP contact times or for different ²⁷Al rf field strengths with a fixed ¹H rf field, show very similar cross relaxation behavior for the third aluminate hydrate and monosulfate. This strongly indicates bonding of OH⁻ groups directly to aluminum in the third aluminate hydrate phase and most likely in the form of $Al(OH)_6^{3-}$ units as for monosulfate. Furthermore, ²⁷Al MAS NMR experiments for a wPc hydrated in the presence of 2-10 wt % gypsum demonstrate that an increasing quantity of gypsum results in a decrease in the quantity of the third aluminate hydrate phase and an increase in the quantity of ettringite formed after hydration for 8 weeks. It is also noted that the third aluminate hydrate phase has not been observed in an earlier ²⁷Al MAS NMR study of the hydration (10 min-28 days) of an ordinary

- (34) Samoson, A. Chem. Phys. Lett. 1985, 119, 29.
- (35) Klimesch, D. S.; Ray, A. S. Adv. Cem. Res. 1999, 11, 179.

⁽³⁰⁾ Fyfe, C. A.; Bretherton, J. L.; Lam, L. Y. *Chem. Commun.* 2000, 1575.
(31) Nielsen, U. G.; Skibsted, J.; Jakobsen, H. J. *Chem. Commun.* 2001, 2690

⁽³²⁾ Gan, Z.; Gor'kov, P.; Cross, T. A.; Samoson, A.; Massiot, D. J. Am. Chem. Soc. 2002, 124, 5634.

⁽³³⁾ Skibsted, J.; Henderson, E.; Jakobsen, H. J. Inorg. Chem. 1993, 32, 1013.

Portland cement.²⁹ Thus, the ²⁷Al NMR resonance at $\delta_{iso} = 5.0$ ppm hardly originates from an octahedrally coordinated Al site in the C–S–H phase. Further studies aimed at elucidating the structure and composition of the third aluminate hydrate phase are in progress.

In the spectral region for tetrahedrally coordinated Al, the ²⁷Al MAS NMR spectra in Figure 2 display a rather broad resonance with the center of gravity of 69.5 and 72.3 ppm at 14.09 and 21.15 T, respectively. The line shape of this resonance indicates that it does not originate from a single well-defined aluminum environment but more likely an Al site in a less-crystalline structure. Employing eq 1, the centers of gravity for the central transition at the two magnetic fields, and the value $\delta_{1/2,-1/2}^{cg} = 63.2$ ppm determined at 9.39 T gives the parameters $\delta_{iso} = 74.6 \pm 0.2$ ppm and $P_0 = 4.5 \pm$ 0.2 MHz, which should be considered mean values for ²⁷Al in this environment. Following the ²⁷Al MAS NMR studies of a hydrated synthetic slag glass²³ and of Al-substituted tobermorites,²⁴ this resonance is assigned to tetrahedrally coordinated Al incorporated in the C-S-H. The high-field ²⁷Al MAS NMR spectra (Figure 2b,c) allow a straightforward quantification of the intensity for this resonance and thereby of the quantity of aluminum incorporated in the C-S-H, employing the ²⁷Al MAS NMR spectrum of α -Al₂O₃ as an external intensity reference. For the wPc hydrated for 12 weeks, this procedure gives an equivalent quantity of Al₂O₃ of 0.14 wt % in the hydrated wPc, which is incorporated in the C-S-H. Finally, the high-field ²⁷Al MAS spectra recorded at 14.09 and 21.15 T also includes a minor resonance with the centers of gravity of 33.5 and 37.1 ppm, respectively. These values results in the parameters $\delta_{iso} =$ 39.9 ± 0.3 ppm and $P_{\rm Q} = 5.1 \pm 0.2$ MHz. The $\delta_{\rm iso}$ value indicates that this resonance originates from a pentacoordinated AlO₅ site, since 5-fold-coordinated Al in minerals and aluminates exhibits isotropic chemical shifts in the range 18-52 ppm.³⁶ A resonance from pentacoordinated Al, corresponding to the parameters $\delta_{iso} = 38.8$ ppm and $P_0 = 3.2$ \pm 0.2 MHz, has also been observed by Faucon et al.,²⁵ who tentatively assigned this resonance to A1³⁺ substituting for Ca^{2+} ions situated in the interlayers of the C–S–H structure.

²⁷Al MAS NMR of White Portland Cement Samples. With the aim of quantifying Al incorporated in the C–S–H phase, the samples of wPc hydrated in water and in a 0.3 M solution of NaAlO₂ have been investigated by ²⁷Al MAS NMR at 14.09 T. Illustrative ²⁷Al MAS NMR spectra of the wPc hydrated in water for 6 h, 1 week, and 1 year are shown in Figure 3. After hydration for 6 h, the spectral region for tetrahedrally coordinated Al displays two overlapping resonances with maximun peak intensities at 86 and 81 ppm. With employment of the results from an earlier ²⁷Al MAS study of anhydrous Portland cements,³⁷ these resonances are assigned to Al incorporated in the calcium silicates alite and belite (86 ppm) and Al in the impure form of calcium

Figure 3. ²⁷Al MAS NMR spectra (14.09 T) of the central transition for the wPc hydrated in water for (a) 6 h, (b) 1 week, and (c) 1 year, obtained using ¹H decoupling and the spinning speed $\nu_R = 13.0$ kHz. The asterisks indicate spinning sidebands from ettringite, whereas the filled diamond and the open circle show the centerbands from Al incorporated in alite/belite and from Al in the calcium aluminate phase (Ca₃Al₂O₆), respectively. The filled circle indicates the centerband from Al incorporated in the C–S–H phase, while the centerbands from the hydration products ettringite, monosulfate, and the third aluminate hydrate phase are denoted by E, M, and T, respectively.

aluminate (Ca₃Al₂O₆, 81 ppm). The ²⁷Al MAS NMR spectrum of wPc after 1 week of hydration shows that nearly all Al in the calcium aluminate phase and in alite/belite have reacted and mainly formed ettringite, monosulfate, and the third aluminate hydrate phase. Thus, the centerband from Al incorporated in the C–S–H phase dominates the spectral region for tetrahedrally coordinated Al and allows a straightforward quantification of Al in the C–S–H. After hydration for 1 year, the intensity for the centerband from Al in the C–S–H has increased and the resonance from pentacoordinated Al is clearly observed.

The hydration of wPc in water and 0.3 M NaAlO₂ solution has been studied by ²⁷Al MAS NMR at 14 and 11 different hydration times, respectively, ranging from 6 h to 1 year. From these spectra the equivalent quantities of Al₂O₃ in the hydrated wPc samples, which are incorporated in the C–S– H, are determined. Values for the different hydration times are listed in Table 1 for the two series of hydration. Figure 4 displays these quantities of Al₂O₃ in the C–S–H as a function of the hydration time for both series of hydration

⁽³⁶⁾ Jansen, S. R.; Hintzen, H. T.; Metselaar, R.; de Haan, J. W.; van de Ven, L. J. M.; Kentgens, A. P. M.; Nachtegaal, G. H. *J. Phys Chem. B* **1998**, *102*, 5969.

⁽³⁷⁾ Skibsted, J.; Jakobsen, H. J.; Hall, C. J. Chem. Soc., Faraday Trans. 1994, 90, 2095.

Hydrated Portland Cements

Table 1. Quantities of Al Incorporated in the C–S–H Phase and Fractions of ²⁹Si NMR Intensities for the Q²(1Al) Resonance for 12 Hydration Times for the White Portland Cement Hydrated in Water and in a 0.3 M NaAlO₂ Solution

	wPc hydr	wPc hydrated in water		wPc hydrated in 0.3 M NaAlO ₂ (aq)	
hydration time	$\begin{array}{c} \mathrm{Al}_2\mathrm{O}_3\\ (\mathrm{wt}~\%)^a \end{array}$	$I(Q^2(1Al)) $ (%) ^b		$I(Q^2(1Al)) $ (%) ^b	
12 h	0.02	1.8	0.09	5.2	
1 day	0.05	3.1	0.12	6.5	
2 days	0.05	4.4	0.13	7.4	
4 days	0.07	5.0	0.14	8.2	
1 week	0.09	5.1	0.16	8.8	
2 weeks	0.10	5.5	0.17	9.5	
4 weeks	0.12	7.1	0.19	10.1	
8 weeks	0.13	7.3	0.20	11.1	
12 weeks	0.14	7.5	0.21	11.3	
18 weeks	0.14	7.4	0.22	11.6	
30 weeks	0.13	8.0	с	11.9	
1 year	0.15	8.6	0.24	13.7	

^{*a*} Equivalent quantities of Al₂O₃ in the hydrated cements which are incorporated in the C–S–H determined from ²⁷Al MAS NMR spectra of the central transition at 14.09 T, employing the ²⁷Al MAS spectrum of α -Al₂O₃ as an external intensity reference. The total quantity of Al₂O₃ in the wPc before hydration is 1.74 wt %. The error limits are estimated to ±0.02 wt % for all hydration times. ^{*b*} Relative intensity of the Q²(1Al) resonance determined from computer deconvolutions of the ²⁹Si MAS NMR spectra. The error limits are estimated to ±0.5% for all hydration times. ^{*c*} Not determined.

Figure 4. Graphs illustrating the equivalent quantities of Al_2O_3 (wt %) in the hydrated wPc samples which are incorporated in the C-S-H as a function of the logarithm to the hydration time for the wPc hydrated in water (filled circles) and in a 0.3 M NaAlO₂ solution (open circles). The quantities of Al_2O_3 in the C-S-H phase are determined from ²⁷Al MAS NMR spectra at 14.09 T by employing the ²⁷Al MAS NMR spectrum of α -Al₂O₃ as an external intensity reference (see also Table 1).

studied at 11 and 14 different hydration times. The graphs in Figure 4 clearly reveal an increasing quantity of Al incorporated in the C–S–H with increasing hydration time for both series of hydration. Furthermore, it is evident that hydration of wPc in a NaAlO₂ solution results in an increase in the incorporation of Al in the C–S–H.

²⁹Si MAS NMR of White Portland Cement Samples. ²⁹Si MAS NMR spectra of the wPc hydrated in a 0.3 M NaAlO₂ solution for 1 day, 2 weeks, and 1 year are illustrated in Figure 5. In accord with earlier ²⁹Si MAS studies of anhydrous and hydrated white Portland cements,^{19,21,28,29} these spectra include a narrow resonance from the unique Si environment in belite ($\delta_{iso} = -71.3$ ppm), which is superimposed on a number of broadened resonances in the range -68 to -76 ppm, originating from the monoclinic M_{III} form of alite. As the hydration proceeds, the intensities of these resonances decrease while a corresponding increase in

Figure 5. ²⁹Si MAS NMR spectra (9.39 T, $\nu_R = 6.0$ kHz) of wPc hydrated in a 0.3 M NaAlO₂ solution after (a) 1 day, (b) 2 weeks, and (c) 1 year of hydration. Parts d and e illustrate simulated resonances for the Q¹, Q², and Q²(1Al) sites in the C–S–H phase, resulting from the optimized deconvolution of the spectrum after hydration for 1 year (c).

intensity is observed for the resonances at -79 and -85 ppm, originating from the Q^1 and Q^2 (i.e., Q_B^2 and Q_P^2 ; cf. Figure 1) sites of the C-S-H phase, respectively. Furthermore, a low-frequency shoulder to the Q¹ resonance becomes visible, especially after prolonged hydration. This resonance, with the chemical shift $\delta_{iso} = -81.0$ ppm, is ascribed to a Q²-(1Al) site in the C-S-H, following the studies of Richardson et al.²³ With the aim of quantifying the relative intensity of this resonance, the individual ²⁹Si MAS NMR spectra of the wPc hydrated in water and in a 0.3 M NaAlO₂ solution have been deconvolved using the method described earlier for anhydrous and hydrated Portland cements.28,29 This method employs separate peaks from Si in alite, belite, and the Q^1 , Q^2 , and $Q^2(1AI)$ resonances from the C-S-H. Although the results from these deconvolutions contain valuable information about the hydration kinetics for alite and belite, we only focuss on the relative intensity for the $Q^2(1AI)$ resonance in this work. Relative intensities for the Q²(1Al) resonance are summarized in Table 1 for different times of hydration for the wPc hydrated in water and in the NaAlO₂ solution. These data, along with those determined for the remaining

Figure 6. Graph illustrating the fraction of ²⁹Si NMR intensities for the $Q^2(1Al)$ resonance as a function of the equivalent quantities of Al_2O_3 (wt %) in the hydrated wPc samples which are incorporated in the C–S–H phase and determined by ²⁷Al MAS NMR. The data for the white Portland cement hydrated in water and in a 0.3 M NaAlO₂ solution are shown by filled and open circles, respectively. Linear regression analysis of the data for both series of hydrated wPc results in eq 2.

samples in each series of hydration, reveal an increase in the relative intensity for the $Q^2(1AI)$ resonance with increasing hydration time. Furthermore, it is apparent that hydration of wPc in a NaAlO₂ solution results in a higher degree of Al for Si substitution in the C–S–H phase.

Correlation between the Results from ²⁷Al and ²⁹Si **MAS NMR.** The fact that the quantity of Al incorporated in the C–S–H can be determined directly from the ²⁷Al MAS NMR spectra and indirectly from the intensity of the Q²(1Al) resonance in the ²⁹Si MAS spectra points toward a correlation between the results from these two techniques. Figure 6 displays the fraction of ²⁹Si NMR intensity in the Q²(1Al) resonance as a function of the equivalent quantity of Al₂O₃ in the wPc samples, which is incorporated in the C–S–H and measured by ²⁷Al MAS NMR. This graph demonstrates a linear relationship between the results from ²⁷Al and ²⁹Si MAS NMR where linear regression gives the equation

$$I(Q^2(1AI)) = 51.77 \text{ wt } \% (AI_2O_3) + 0.64, R = 0.993$$
 (2)

This linear relationship demonstrates that the ²⁹Si NMR resonance at $\delta_{iso} = -80.5$ ppm is correctly assigned to a SiO₄ unit connected to an AlO₄ tetrahedron and another SiO₄ unit in the C–S–H phase, i.e., a Q²(1Al) site. Similarly, the centerband in the ²⁷Al MAS spectrum corresponding to the mean parameters $\delta_{iso} = 74.6$ ppm and $P_Q = 4.53$ MHz is correctly assigned to tetrahedrally coordinated Al incorporated in the chains of SiO₄ tetrahedra in the C–S–H phase. Thereby, our results support the assignments of these resonances proposed by Richardson et al.²³ from ²⁹Si and ²⁷Al MAS NMR studies of a synthetic glass slag.

From Figure 6 (and Table 1) it is also apparent that hydration of wPc in a NaAlO₂ solution results in a larger quantity of Al incorporated in the C–S–H phase. Improved information about the C–S–H structure can be obtained from the deconvolutions of the ²⁹Si MAS NMR spectra by calculation of the mean chain length (CL) of SiO₄ and AlO₄

Table 2. Mean Chain Lengths of SiO_4 and AlO_4 Tetrahedra and Al/Si Ratios for the C–S–H Phase for 12 Hydration Times for the White Portland Cement Hydrated in Water and in a 0.3 M NaAlO₂ Solution

	wPc hydrated in water		wPc hydrated in 0.3 M NaAlO ₂ (aq)	
hydration time	$\overline{\mathrm{CL}}^a$	Al/Si ratio ^b	$\overline{\mathrm{CL}}^a$	Al/Si ratio ^b
12 h	2.67	0.043	3.19	0.084
1 day	2.95	0.045	3.28	0.068
2 days	3.08	0.050	3.16	0.065
4 days	3.03	0.048	3.23	0.064
1 week	2.91	0.044	3.27	0.065
2 weeks	3.00	0.043	3.35	0.064
4 weeks	3.10	0.048	3.31	0.062
8 weeks	3.27	0.047	3.41	0.062
12 weeks	3.35	0.047	3.50	0.061
18 weeks	3.41	0.045	3.53	0.059
30 weeks	3.49	0.045	3.80	0.061
1 year	3.49	0.046	4.07	0.069

^{*a*} Mean chain length of SiO₄ and AlO₄ in the C–S–H phase calculated using eq 3 and the results from deconvolution of the ²⁹Si MAS NMR spectra. The error limits are estimated to ±0.15 for all hydration times. ^{*b*} Al/Si ratio for the C–S–H calculated from eq 3 using the results from deconvolution of the ²⁹Si MAS NMR spectra. The error limits are estimated to ±0.004 for all hydration times.

tetrahedra and the Al/Si ratio for these chains by employing the equations 38

$$\overline{\text{CL}} = \frac{2\left[Q^{1} + Q^{2} + \frac{3}{2}Q^{2}(1\text{Al})\right]}{Q^{1}}$$

$$\text{Al/Si} = \frac{\frac{1}{2}Q^{2}(1\text{Al})}{Q^{1} + Q^{2} + Q^{2}(1\text{Al})} (3)$$

where $Q^2 = Q^2(0\text{Al})$. Mean chain lengths and Al/Si ratios for the hydration times, calculated using eq 3, are listed in Table 2 for the wPc hydrated in water and in a 0.3 M NaAlO₂ solution. These data reveal that the average chain length increases with increasing hydration time whereas the Al/Si ratios for the C-S-H phase are independent of the hydration time at least within the estimated error limits for the calculated Al/Si ratios. Furthermore, the hydration of wPc in a NaAlO₂ solution results in longer chains of SiO₄ and AlO₄ tetrahedra and in a larger degree of Al for Si substitution in the tetrahedral chains of the C-S-H structure as compared to the C-S-H resulting from wPc hydration (Table 2) are very similar to the value $\overline{\text{CL}} = 4.05$, reported for a hydrated 1/1 mixture of wPc and a blast furnace slag.³⁸

Conclusions

²⁷Al MAS NMR at very high magnetic fields can advantageously be employed in studies of hydrated Portland cements, allowing detection and quantification of a number of different Al species in these materials. From such spectra the ²⁷Al isotropic chemical shift and quadrupolar product parameter (P_Q) have been determined for Al incorporated in the C–S–H phase, for a pentacoordinated Al site, which most likely results from Al³⁺ substituting for Ca²⁺ ions in

⁽³⁸⁾ Richardson, I. G. Groves, G. W. J. Mater. Sci. 1997, 32, 4793.

Hydrated Portland Cements

the interlayer structure of the C-S-H, and for an unknown aluminate hydrate phase. The latter phase has been described for the first time and tentatively assigned to a less-crystalline alumina gel or calcium aluminate hydrate, which includes Al(OH)₆³⁻ or O_x Al(OH)_{6-x}^{(3+x)-} octahedra in its structure. Quantification of tetrahedral Al incorporated in the C-S-H phase has demonstrated that the quantity of Al in the C-S-H increases with increasing hydration time and when the white Portland cement (wPc) is hydrated in a NaAlO₂ solution. The tetrahedral Al sites in the C-S-H have also been observed by ²⁹Si MAS NMR, where the incorporation of Al in the C-S-H results in a resonance at -81.0 ppm from a $O^{2}(1AI)$ site. The linear correlation between the ²⁹Si NMR intensities for the $Q^2(1Al)$ resonance and the quantities of Al incorporated in the C-S-H phase gives improved evidence for the correct assignment of the ²⁹Si NMR resonance at $\delta_{iso}(^{29}\text{Si}) = -81.0$ ppm to a Q²(1Al) site in the C-S-H and the assignment of the ²⁷Al NMR resonance at $\delta_{iso}(^{27}Al) = 74.6$ ppm to tetrahedrally coordinated Al incorporated in the C-S-H phase. The mean chain length of SiO₄ and AlO₄ tetrahedra in the C-S-H increases with

increasing hydration time. Furthermore, it has been shown that hydration of wPc in a NaAlO₂ solution results in a C-S-H with longer average chain lengths as compared to the C-S-H resulting from hydration of wPc in water. On the contrary, the Al/Si ratio for the chain structure of the C-S-H is independent of the hydration time for both series of hydration with a larger Al/Si ratio for wPc hydrated in 0.3 M NaAlO₂ solution as compared to the wPc hydrated in pure water.

Acknowledgment. The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, University of Aarhus, sponsored by the Danish Research Councils (SNF and STVF), Teknologistyrelsen, Carlsbergfondet, and Direktør Ib Henriksens Fond, is acknowledged. Varian Inc. and Oxford Instruments are acknowledged for access to the 900 MHz NMR Facility at Oxford Instruments, Eynsham, U.K. Financial support from the two Danish Research Councils (J. No. 2020-00-0018 and J. No. 0001237) is acknowledged.

IC020607B