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The preparation and characterization of three new paramagnetic
complexes of the 17-electron ReII ion are reported. The salts [Re-
(triphos)(CH3CN)3)][X]2, X ) [BF4]- (1), [PF6]- (2), and [Et4N][Re-
(triphos)(CN)3] (3) were prepared by homolytic cleavage of the
Re−Re bond in [Re2(CH3CN)10][BF4]4 or by disruption of the chlorine
bridges in [(triphos)Re(µ-Cl)3Re(triphos)]Cl (1) (triphos ) 1,1,1-
tris(diphenylphosphino-methyl)ethane) and characterized by single-
crystal X-ray diffraction, infrared and 1H NMR spectroscopies, cyclic
voltammetry, and magnetic susceptibility measurements. Compound
2 undergoes reversible reduction and irreversible oxidation
processes while 3 undergoes a reversible reduction, an irreversible
oxidation, and a reversible oxidation. The magnetic susceptibility
data for 2 and 3 exhibit a strong temperature independent
paramagnetic component which is in accord with a highly
anisotropic S ) 1/2 magnetic ground state. The results of this study
indicate that dinuclear Re2

II,II starting materials are viable precursors
for producing unusual mononuclear ReII complexes.

Supramolecular chemistry involving transition metal ions
is a powerful entry into the design of molecular materials
with tunable magnetic,1 electronic,2 and photophysical
properties.3 Such studies require a steady influx of new
precursors to investigate properties of both discrete molecules
and polymeric architectures. As part of our interest in this

area, we are focusing on coordination complexes of Re which
exhibit rich electrochemistry and photochemistry and offer
the potential for engendering unusual anisotropic magnetic
properties.

Mononuclear 17-electron complexes of ReII are attractive
prospects for applications in molecular magnetism due to
strong spin-orbit coupling effects arising from the low-spin
d5 configuration. The main literature of mononuclear ReII

compounds consists of phosphine and carbonyl complexes4

and electrochemically generated species, but the development
of convenient synthetic routes for such compounds with a
diversity of ligand types has been hindered by the tendency
for ReII to engage in metal-metal multiple bonding.5 In spite
of this obstacle, work by Walton and others6 has demon-
strated the feasibility of using bulky ligands to induce
homolytic scission of the metal-metal bond of dirhenium
Re2

II,II complexes to form stable mononuclear ReII species.
Herein we report the synthesis and characterization of new
mixed-ligand ReII compounds prepared by reacting triphos
with two different dirhenium staring materials.

The cation [Re(triphos)(CH3CN)3]2+ was synthesized from
the M2L10 complex [Re2II,II (CH3CN)10][BF4]4 prepared in our
laboratories,7 as well as from the face-sharing bioctahedral
complex [(triphos)Re(µ-Cl)3Re(triphos)]Cl originally reported
by Walton and co-workers (triphos) 1,1,1-tris(diphenyl-
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phosphino-methyl)ethane).8 Reactions of [Re2(CH3CN)10]-
[BF4]4 with excess triphos in a refluxing solution of CH3CN/
CH2Cl2 for 4 days produce [Re(triphos)(CH3CN)3][BF4]2 (1)
in 30% yield.9 The long time required for obtaining the
mononuclear product is not surprising in view of the
robustness of Re-Re triple bonds. The persistent green color
of the reaction mixture, even after refluxing for 4 days,
indicates that cleavage of the M-M bond is still incomplete.
A green intermediate, as yet uncharacterized, is significantly
less soluble in CH3CN/Et2O than is1, and was therefore
separated by filtration. The yield of1 is increased by employ-
ing longer reaction times and by using excess triphos ligand.

Although it proved to be possible to prepare1 from
[Re2(CH3CN)10][BF4]4, the low yields and long reaction times
led us to explore analogous chemistry of the face-sharing
bioctahedral complex [(triphos)Re(µ-Cl)3Re(triphos)]Cl. Re-
actions of [(triphos)Re(µ-Cl)3Re(triphos)]Cl with 4 equiv of
TlPF6 in the presence of acetonitrile lead to the formation
of [Re(triphos)(CH3CN)3][PF6]2 (2) in good yields (76%)
after 12 h of reflux.10

Reactions of1 with 3 equiv of anhydrous [Et4N]CN in
acetonitrile proceed with an immediate color change from
yellow-orange to dark orange, but invariably the substituion
product is contaminated with the [Et4N][BF4] byproduct.
Direct reaction of [(triphos)Re(µ-Cl)3Re(triphos)]Cl with 6
equiv of anhydrous [Et4N]CN leads to homolytic scission
of the Re24+ core to yield pure [Et4N][Re(triphos)(CN)3] (3)
in 33% yield.11

Infrared spectroscopy performed on a Nujol mull of2
confirmed the presence of coordinated acetonitrile ligands
with weakν(CtN) stretches appearing at 2274 cm-1 (s) and
2319 cm-1 (s). The shifts of theν(CtN) stretching modes
to higher energies in2 versus that of free acetonitrile (2252
cm-1) are consistent with primarilyσ-donation from the
cyanide ligand to the metal ion.12 Theν(CtN) stretches for

the cations in the salts1 and2 are essentially identical. The
infrared spectrum of a microcrystalline sample of3 contains
two intenseν(CtN) stretches at 2060 and 2070 cm-1, which
are shifted by 10 and 20 cm-1, respectively, from that of
tetraethylammonium cyanide (2050 cm-1).

Single crystals of [Re(triphos)(CH3CN)3][BF4]2 (1) and
[Re(triphos)(CH3CN)3][PF6]2 (2) were grown by slow dif-
fusion of Et2O into saturated solutions of the compounds in
acetonitrile.13 Single crystals of [Et4N][Re(triphos)(CN)3]
were grown by chilling a saturated solution of3 in Et2O/
CH3CN (50/50 v/v) for 12 h.11 Structures were determined
using single-crystal X-ray diffraction methods.14

The coordination geometry of the ReII ions in compounds
1-3 (Figures 1 and 2) is pseudo-octahedral with only slight
deviations of the coordination angles from the ideal values.
Three sites are occupied by acetonitrile molecules or cyanide
ligands while the other three positions are filled by P atoms
of the capping triphos ligand. Thecis-P-Re-N angles in1
(90.88(8)-99.78(7)°) and cis-P-Re-C angles in3 (90.6-
(3)-98.8(2)°) are all greater than 90° due to steric interac-
tions between the triphos and other ligands. Selected bond
distances and angles are provided in the figure captions.

The cyclic voltammograms of compounds2 and3 were
recorded in 0.1 Mn-[Bu4NPF6]/CH3CN.15 Complex2 shows
a reversible reduction couple atE1/2 ) +0.09 V presumed
to be due to ReII/ReI, an irreversible oxidation atEp,a) +1.17
V assigned to ReII/ReIII , and a corresponding irreversible
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reduction of the oxidized ReIII product atEp,c ) -0.30 V.
The wave atEp,c ) -0.30 V is not present when the potential
is swept first from 0 to+1 V, an indication that this is a
chemical product wave generated by the irreversible process
occurring at+1.17 V.

The electrochemistry of3 consists of an irreversible, one-
electron oxidation assigned to ReII/ReIII at Ep,c ) +0.19 V,
a reversible oxidation attributed to ReIII /ReIV atE1/2 ) +1.12
V, and a reversible reduction (ReII/ReI) at E1/2 ) -0.74 V
(Figure 3). The presence of a completely irreversible process
at an intermediate potential between two reversible processes
is unusual; nevertheless it is reproducible and invariable
under a variety of experimental conditions including variation
of the scan rate, the use of coordinating or noncoordinating
solvents, and at Pt as well as glassy carbon working

electrodes. Additional details on the electrochemistry of3
are available in the Supporting Information.

The magnetic properties of compounds1 and 3 were
examined over the temperature range 2-300 K. TheømT
versusT plot of 1 is in reasonable accord with one unpaired
electron (C ) 0.289) and a large temperature independent
paramagnetic contribution (TIP) (øTIP ) 1.796 × 10-3).
Compound3 exhibits magnetic behavior similar to that of1
with C ) 0.208 andøTIP ) 1.363× 10-3. The values ofC
for 1 and 3 are lower than expected and are attributed to
strong spin-orbit coupling in this unquenched d5 system (λ
values for Re are reported to be in the range 2000-3000
cm-1). A model for the magnetic behavior of these com-
pounds is currently being developed.16

The compounds reported in this study are new examples
of 17-electron mononuclear ReII complexes suitable for the
preparation of clusters and supramolecular architectures.
Although the preparation of1 from [Re2(CH3CN)10][BF4]4

requires long reaction times, these experiments demonstrate
the utility of dirhenium complexes as convenient precursors
for mononuclear ReII complexes. Efforts are underway to
incorporate2 and3 into larger assemblies to probe the effects
of strong spin-orbit coupling on magnetic clusters containing
both 3d and 5d ions.
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Figure 1. Thermal ellipsoid plot of the cationic unit in1 with important
atoms labeled. Hydrogen atoms were omitted for the sake of clarity. Selected
bond distances (Å) and bond angles (deg): Re(1)-P(1) 2.3991(10), Re-
(1)-P(2) 2.3841(9), Re(1)-P(3) 2.3907(9), Re(1)-N(1) 2.096(3), Re(1)-
N(2) 2.095(3), Re(1)-N(3) 2.094(3), N(1)-C(10) 1.154(4), N(2)-C(20)
1.137(4), N(3)-C(30) 1.134(4), P(1)-Re(1)-P(2) 88.11(3), P(1)-Re(1)-
P(3) 85.16(3), P(2)-Re(1)-P(3) 88.84(3), N(1)-Re(1)-N(2) 82.88(10),
N(1)-Re(1)-N(3) 84.20(10), N(2)-Re(1)-N(3) 85.02(10), N(1)-Re(1)-
P(2) 91.25(8), N(1)-Re(1)-P(3) 94.12(7), N(1)-Re(1)-P(3) 175.80(8).

Figure 2. Thermal ellipsoid plot of the anionic unit in3 with important
atoms labeled. The thermal ellipsoids are drawn at the 50% level except
for the carbon atoms of the phenyl rings, which are represented as arbitrary
size spheres of arbitrary radius. Hydrogen atoms were omitted for the sake
of clarity. Selected bond distances (Å) and bond angles (deg): Re(1)-P(1)
2.429(2), Re(1)-P(2) 2.422(2), Re(1)-P(3) 2.425(2), Re(1)-C(1) 2.038-
(9), Re(1)-C(2) 2.110(9), Re(1)-C(3) 2.109(8), C(1)-N(1) 1.162(10),
C(2)-N(2) 1.153(10), C(3)-N(3) 1.148(10), P(1)-Re(1)-P(2) 84.53(7),
P(1)-Re(1)-P(3) 84.87(7), P(2)-Re(1)-P(3) 87.32(7), C(1)-Re(1)-C(2)
86.1(3), C(1)-Re(1)-C(3) 85.3(3), C(2)-Re(1)-C(3) 83.8(3), C(1)-Re-
(1)-P(1) 175.1(3), C(1)-Re(1)-P(2) 90.6(3), C(1)-Re(1)-P(3) 95.4(3),
Re(1)-C(1)-N(1) 176.1(9), Re(1)-C(2)-N(2) 175.8(7), Re(1)-C(3)-N(3)
173.9(8).

Figure 3. Cyclic voltammogram of compound3 in 0.1 M [n-Bu4N][PF6]/
CH3CN at a Pt disk electrode versus Ag/AgCl.
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