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The mechanism of action of auranofin, an antiarthritic gold(I) drug,
is unknown, but several studies suggest that oxidation may be
important for its biochemical effect. Bulk electrolysis studies on
auranofin [(Et3P)Au(TATG); TATG ) 2,3,4,6-tetraacetyl-1-thio-D-
glucopyranosato] at +1.2 and +1.6 V versus Ag/AgCl in 0.1 M
Bu4NBF4/CH2Cl2 results in n values of 0.5 and >2 electrons,
respectively. Oxidation of auranofin with the mild oxidant, Cp2Fe+,
results in formation of disulfide and a digold(I) cation with a bridging
thiolate ligand, [(Et3PAu)2(µ-TATG)]+ (1). The X-ray structure of
the PMe3 analogue, [(Me3PAu)2(µ-TATG)](NO3) (2), is reported.
Compound 2 forms a tetranuclear cluster containing an almost
perfect square of four gold atoms with Au‚‚‚Au distances averaging
3.14 Å. The complex crystallizes in the tetragonal space group
P42212 with cell constants a ) 26.1758(6) Å, b ) 26.1758(6) Å,
c ) 9.7781(3) Å, R ) â ) γ ) 90°, V ) 6699.7(3) Å3, Z ) 4,
R1 ) 0.0644, and wR2 ) 0.1152. A mechanism for oxidation of
auranofin and possible biological implications are discussed.

While the mechanism of the medicinal activity of gold
drugs remains elusive, there is evidence to suggest that redox
pathways could be involved.1,2 The oxidative pathologies that
have been noted for rheumatoid arthritis and the ease by
which gold(I) thiolates undergo oxidation suggest several
possible redox roles in the anti-inflammatory response and/
or in deleterious secondary reactions.2,3 This range of

potential biological activity points to the need to better
understand the reactivity of gold sulfur complexes in order
to establish the possible mechanistic pathways, as well as to
suggest pathways that are likely.

Earlier work in our laboratory established that phosphine
gold(I) complexes containing terminally bonded aromatic
thiolate ligands undergo sulfur based oxidation at ca.+0.7
to +0.9 V producing disulfide and multinuclear cationic gold-
(I) clusters with bridging thiolate ligands.4,5 Furthermore, it
was demonstrated that these gold(I)µ-thiolate clusters oxidize
at significantly higher potentials. Cyclic voltammetry studies
of auranofin in 0.1 M Bu4NBF4/CH2Cl2 using Pt working
and auxiliary electrodes show two irreversible oxidation
processes occurring at+1.1 and+1.6 V versus Ag/AgCl.6

The electrochemical response is sensitive to adsorption
effects and the nature of the electrolyte solution (i.e., BF4

-

vs PF6
- counterions). In previous electrochemical studies on

a series of phosphine gold(I) thiolate complexes, the first
oxidation was assigned as sulfur based.4 This assignment is
also consistent with electronic structure studies, which
assigned the HOMO as primarily sulfur in character.7

In research at Smith, Kline & French Laboratories leading
up to FDA approval of auranofin, several researchers
proposed cationic gold(I) complexes as reactivity products
of auranofin. Hill and Elder et al. obtained preliminary data
on the solid state structure of [(Et3PAu)2(µ-TATG)]2(NO3)2,
in which pairs of gold atoms coordinate to a bridging
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thiolate.8 The quality of the data was not high enough to
completely solve the structure, so it was never published.
However, assay in a rat arthritis model showed the cationic
complex to have activity similar to auranofin at 10 mg Au/
Kg. Hemple et al. studied the effect of aqueous HCl on
auranofin to mimic its behavior in stomach acid. The ionic
complex, [(Et3PAu)2(µ-TATG)]Cl, was proposed as one of
the products. However, trials to isolate the ionic structure
resulted only in (Et3P)Au(TATG) and Et3PAuCl.9 It was with
these perspectives that we sought to determine the fate of
auranofin upon oxidation.

Bulk electrolysis experiments on auranofin at+1.2 V
versus Ag/AgCl in 0.1 M Bu4NBF4/CH2Cl2 result in n )
0.5.10 Completion of electrolysis was checked by cyclic
voltammetry, which confirmed the disappearance of the first
oxidation wave in the electrolysis product solutions. The
second oxidation peak at approximately+1.6 V is still
present. Bulk electrolyses of auranofin at+1.6 V yield n
values greater than 2. This is consistent with gold based
oxidation, but the oxidation products at the higher potential
have not yet been determined.

The oxidation products at the lower potential were
characterized by employing the one-electron oxidant ferro-
cenium.11 Reaction of auranofin with one-half molar equiva-
lent of ferrocenium yields ferrocene, disulfide, and a cationic
gold(I) complex according to eq 1.12

Cyclic voltammetry measurements on the crude product
following complete oxidation of auranofin using Cp2Fe+

showed a reversible wave due to Cp2Fe and an irreversible

peak at+1.65 V.13 Ferrocene and the disulfide, (TATG)2,
were identified in the crude reaction mixture by1H NMR.14,15

The cationic gold complex was isolated as the PF6
- salt after

recrystallization from CH2Cl2/Et2O. The PMe3 derivative of
auranofin can also be oxidized by Cp2Fe+ in an identical
fashion (eq 1).

Numerous attempts to grow X-ray quality crystals of the
PEt3 derivative (1) were unsuccessful. These attempts
included changing the counteranion (PF6

-, NO3
-, CF3SO3

-,
BF4

-) and using a variety of solvent combinations. Finally,
X-ray quality crystals of the PMe3 derivative (2) were
obtained by using the combination of the NO3

- counteranion
and the solvent mixture CH2Cl2/Et2O (1:3).

Crystals of [(Me3PAu)2(µ-TATG)]2(NO3)2 (dimer of 2)
were obtained as colorless needles.16 The complex crystal-
lizes in the tetragonal space groupP42212.17 The molecular
and crystallographic symmetries coincide running through
the center of the cation and anions (N1 and N2 of the nitrate
ions lie on special positions). The oxygen atoms in NO3

-

exhibit disorder, and an unknown solvent, presumably a
highly disordered Et2O, or multiple H2O molecules, is also
present in the crystalline lattice. The molecular structure
(NO3

- omitted) is shown as an ORTEP drawing (Figure 1a)
and a ball-and-stick representation (Figure 1b). Selected bond
lengths and angles are listed in the figure caption.

The cationic digold complex,2, is associated into dimers
via intermolecular Au‚‚‚Au interactions between monomers.
The structure consists of nearly linear two-coordinate gold-
(I) atoms (P-Au-S angles average 176°). Each thiolate
ligand bridges two gold(I) atoms with an acute angle of
approximately 83°, and the four gold atoms form an almost
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2(R3P)Au(TATG) + Cp2Fe+ f

Cp2Fe+ 0.5(TATG)2 + [(R3PAu)2(µ-TATG)]+ (1)

R ) CH3CH2 (1); CH3 (2)
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perfect square.18 The thiolate-bridged Au(1)‚‚‚Au(2) distance
(3.11 Å) is slightly shorter than the nonbridged Au‚‚‚Au
distances (3.17 and 3.14 Å). The thioglucose ligand adopts
a chair configuration with one ligand above and the other
one below the plane of four gold atoms (Figure 1b).

Scheme 1 illustrates a possible mechanism for the first
oxidation process that accounts for then value (0.5) and the
observed products.19 Similar results have been shown for
other phosphine gold(I) thiolate complexes.5 The LAu+

species is probably solvated and/or associated with an anion,
BF4

- in the case of bulk electrolysis experiments. Support

for this mechanism is provided by experiments in which1
and2 are independently prepared by addition of R3PAu+X-

to R3PAu(TATG) in CH2Cl2 solution.20

Oxidation of auranofin by Cp2Fe+ is noteworthy because
ferrocenium generally behaves as an outer sphere electron
transfer reagent and it has a reversible redox couple in 0.1
M Bu4NPF6/CH2Cl2 at + 0.46 V versus SCE.21 This result
suggests that the true redox potential of auranofin is much
lower than+1.1 V. Thus, oxidation of auranofin could occur
more easily (i.e., at lower potentials) than previously
appreciated. The mechanism of oxidation of gold(I) thiolates
by Cp2Fe+ and other one-electron oxidants is currently under
investigation.
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Figure 1. Dicationic structure of2 with hydrogen atoms and NO3- anions
omitted for clarity. (a) Thermal ellipsoid representation (50%) looking down
on the gold square and (b) ball-and-stick representation shown as a side
view. Selected bond lengths (Å) and angles (deg): Au(1)-P(1) 2.259(4);
Au(1)-S(1) 2.334(3); Au(1)-Au(2) 3.106(7); Au(1)-Au(1A) 3.171(11);
Au(2)-P(2) 2.270(4); Au(2)-S(1) 2.355(3); Au(2)-Au(2A) 3.144(12);
P(1)-Au(1)-S(1) 176.94(14); Au(2)-Au(1)-Au(1A) 89.74(2); P(2)-Au-
(2)-S(1) 175.1(2); Au(1)-Au(2)-Au(2A) 90.23(2); Au(1)-S(1)-Au(2)
82.96(10).

Scheme 1 a

a L ) Et3P, Me3P; SR) TATG.
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