Inorg. Chem. 2003, 42, 264-266

Tantalum Amido and Imido Complexes Supported by *Tris*[(2-indolyl)methyl]amine, a Tetradentate Trianionic Ligand with Reduced π -Donor Character

Joseph M. Tanski and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027

Received November 15, 2002

Tris[(2-indole)methyl]amine, N(CH₂inH)₃, may be readily obtained by reaction of methyl 2-bromomethyl-1-indolecarboxylate with NH₃ followed by deprotection with NaOMe/MeOH. In its deprotonated form, [N(CH₂in)₃]³⁻ is an efficient tetradentate trianionic ligand for tantalum, as illustrated by the isolation and structural characterization of [η^4 -N(CH₂in)₃]Ta(NAr)(NMe₂H) (Ar = 2,6-C₆H₃Pr¹₂), [η^4 -N(CH₂in)₃]Ta(NMe₂)₂ and [η^4 -N(CH₂in)₃]Ta(NMe₂)Cl. The [N(CH₂in)₃]³⁻ ligand has a structural similarity to that of [N(CH₂CH₂NR)₃]³⁻, but differs electronically from the latter due to its reduced π -donor capability, a direct result of the nitrogen being a component of the aromatic π -system of the indolyl fragment.

 C_3 symmetric tridentate tripodal ligands are a prominent feature of modern coordination chemistry and collectively stabilize a diverse array of metal ligand combinations. The ability of tripodal ligands to achieve such diversity is in part a consequence of the fact that these ligands vary from neutral (L₃) to trianionic (X₃) donors.^{1,2} In addition to tridentate tripodal ligands, *tetra*dentate tripodal ligands are also known, in which the extra donor functionality is provided by the axial linker atom, most commonly nitrogen.³ A particularly interesting class of such ligand is one which is trianionic (LX₃) and features amido donors, namely tris(amidoethyl)amine and its various derivatives, *i.e.* [N(CH₂C-H₂NR)₃]^{3-.4,5} For example, Schrock has extensively applied this class of ligand to a study of the chemistry of the early

- (2) For the $[L_iX_x]$ classification of ligands, see: Green, M. L. H. J. Organomet. Chem. **1995**, 500, 127–148.
- (3) For an example of a tetradentate tripodal ligand in which B-H is the axial donor, see: Bridgewater, B. M.; Parkin, G. *Inorg. Chem. Commun.* 2000, *3*, 534–536.
- (4) (a) Verkade, J. G. Acc. Chem. Res. 1993, 26, 483–489. (b) Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233–295.
- (5) Tetradentate tetraanionic ligands are also known. See: Kobayashi, J.; Goto, K.; Kawashima, T.; Schmidt, M. W.; Nagase, S. J. Am. Chem. Soc. 2002, 124, 3703–3712.
- 264 Inorganic Chemistry, Vol. 42, No. 2, 2003

transition metals.⁶ In large part, the success of the [N(CH₂C-H₂NR)₃]³⁻ ligand system in stabilizing high oxidation state compounds is associated with the well-known strongly π -donating properties of the amido functionality.^{7,8} Modulation of both structure and reactivity is to be expected if the π -donor properties of the ligand were to be either reduced or eliminated. In this paper, we report the synthesis of a tetradentate trianionic donor ligand in which the π -donor properties of the nitrogen atom are reduced compared to that of an alkylamido functionality.

Recent studies have noted that aromatic cyclic counterparts to R₂N, such as pyrrolyl, indolyl, and carbazolyl exhibit a reduced π -donor capability as a result of the nitrogen π -orbital being involved in the aromatic π -system.⁹ Therefore, in an effort to obtain tetradentate tripodal nitrogen ligands for which the π -donor properties are reduced from that of the $[N(CH_2CH_2NR)_3]^{3-}$ class, we sought to synthesize derivatives in which the nitrogen atom donors are components of heterocyclic rings. A clear indication that delocalization of the electron density on nitrogen may have a profound effect on the electron donating properties of such ligands is illustrated by the pK_a 's of some simple derivatives: thus, the p K_a 's of pyrrole (17.5), indole (17.0) and carbazole (16.5)¹⁰ are significantly lower than those of simple amines, e.g. Pri₂NH (35.7),¹¹ (Me₃Si)₂NH (29.5),¹¹ and Ph₂-NH (22.4).¹² In addition to modulating the donor property of the ligand, another reason for using heterocyclic donors is that it should prevent so-called "cage decomposition" reactions of [N(CH₂CH₂NR)₃]³⁻ which involve cleavage of

- (6) (a) Schrock, R. R. Acc. Chem. Res. 1997, 30, 9–16. (b) Schrock, R. R. Pure Appl. Chem. 1997, 69, 2197–2203.
- (7) Bradley, D. C.; Chisholm, M. H. Acc. Chem. Res. 1976, 9, 273–280.
- (8) Cummins, C. C. Prog. Inorg. Chem. 1998, 47, 685-836.
- (9) See, for example: (a) Riley, P. N.; Parker, J. R.; Fanwick, P. E.; Rothwell, I. P. Organometallics **1999**, *18*, 3579–3583. (b) Riley, P. N.; Fanwick, P. E.; Rothwell, I. P. J. Chem. Soc., Dalton Trans. **2001**, 181–186. (c) Harris, S. A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. **2001**, *40*, 1987–1988. (d) Tanski, J. M.; Parkin, G. Organometallics **2002**, *21*, 587–589. (e) Zhu, G.; Tanski, J. M.; Parkin, G. J. Chem. Crystallogr. **2002**, *32*, 461–467.
- (10) Catalan, J.; Abboud, J. L. M.; Elguero, J. Adv. Heterocycl. Chem. 1987, 41, 187–274.
- (11) Fraser, R. R.; Mansour, T. S. J. Org. Chem. 1984, 49, 3442–3443.
 (12) Stewart, R.; Dolman, D. Can. J. Chem. 1967, 45, 925–928.

^{*} To whom correspondence should be addressed. E-mail: parkin@ chem.columbia.edu.

⁽¹⁾ Common examples of tripod nitrogen donors include neutral *tris*-(pyrazolyl)methane and *tris*(pyridyl)methane, monoanionic *tris*(pyrazolyl)hydroborato, and trianionic *tris*[(amido)methyl]ethane. See, for example: Gade, L. H. *Acc. Chem. Res.* **2002**, *35*, 575–582.

Scheme 1

one of the N-CH₂CH₂NR bonds and the formation of a vinyl amide fragment, CH_2 =CHNR.¹³

Focusing first on the incorporation of the indolyl fragment, we have found that tris[(2-indole)methyl]amine, N(CH₂inH)₃, may be readily obtained by reaction of methyl 2-bromomethyl-1-indolecarboxylate¹⁴ with NH₃, followed by deprotection with NaOMe/MeOH (Scheme 1).15 N(CH2inH)3 has been characterized spectroscopically and by an X-ray diffraction study on the protected form, N(CH₂inCO₂Me)₃.¹⁶ The structure of N(CH₂inH)₃ is closely related to that of tris-[(2-benzimidazolyl)methyl]amine, N(CH₂bimH)₃,^{17,18} differing merely in the formal substitution of a CH group by N in the 5-membered heterocyclic ring. Despite the structural similarity, however, the two molecules are electronically quite distinct because N(CH₂inH)₃ can only operate as a tetradentate ligand once it has been triply deprotonated, *i.e.* [N(CH₂in)₃]³⁻, whereas N(CH₂bimH)₃ may operate as a tetradentate ligand in its neutral form. The ability of the latter to act as a neutral donor is merely a consequence of the fact that the 5-membered imidazolyl ring already has a twocoordinate nitrogen that may function as a donor. In principle, deprotonation of N(CH₂bimH)₃ would enable it to act as an anionic ligand, but the deprotonated nitrogen would undoubtedly be a site of subsequent reactivity and thereby render the ligand non-innocent; deprotonated N(CH₂bimH)₃ has thus found little application as a ligand to date.¹⁹

Another feature of N(CH₂bimH)₃ that hinders its application to early transition metal chemistry is its insolubility in inert solvents. Indeed, transition metal derivatives of N(CH₂bimH)₃ are mainly limited to those of the later metals²⁰ and are commonly obtained by reactions that employ alcohols

- (13) See, for example: (a) Freundlich, J. S.; Schrock, R. R.; Davies, W. M. J. Am. Chem. Soc. 1996, 118, 3643–3655. (b) Freundlich, J. S.; Schrock, R. R.; Davies, W. M. Organometallics 1996, 15, 2777–2783.
- (14) Nagarathnam, D. Synthesis 1992, 743-745.
- (15) For a related example of the synthesis of a *tris*[(2-pyrrolyl)methyl]amine, see: Treibs, A.; Jacob, K. *Liebigs Ann. Chem.* **1970**, 737, 176– 178.
- (16) See Supporting Information.
- (17) See, for example: (a) Thompson, L. K.; Ramaswamy, B. S.; Seymour, E. A. Can. J. Chem. 1977, 55, 878-888. (b) Oki, A. R.; Bommarreddy, P. R.; Zhang, H.; Hosmane, N. Inorg. Chim. Acta 1995, 231, 109-114. (c) Su, C.-H.; Kang, B.-S.; Du, C.-X.; Yang, Q.-C.; Mak, T. C. W. Inorg. Chem. 2000, 39, 4843-4849.
- (18) Alkylated derivatives, N(CH₂bimR)₃, are also known. See, for example: (a) Reference 17c. (b) Hendriks, H. M. J.; Birker, P.; Verschoor, G. C.; Reedijk, J. J. Chem. Soc., Dalton Trans. **1982**, 623– 631.
- (19) We are aware of one example where a coordinated N(CH₂bimH)₃ ligand has been triply deprotonated, namely {[N(CH₂bimH)₃]Co-(NCS)}⁺; the deprotonated nitrogen atoms are, however, readily reprotonated, thereby indicating the non-innocent nature of the deprotonated ligand. See: Hammes, B. S.; Kieber-Emmons, M. T.; Sommer, R.; Rheingold, A. L. *Inorg. Chem.* **2002**, *41*, 1351–1353.
- (20) For example, there are no structurally characterized N(CH₂bimH)₃ derivatives of the groups 4 and 5 transition metals listed in the Cambridge Structural Database (Version 5.23).

Figure 1. Molecular structures of $[\eta^4-N(CH_2in)_3]Ta(NAr)(NMe_2H)$ (1) and $[\eta^4-N(CH_2in)_3]Ta(NMe_2)Cl$ (5).

Scheme 2

as solvents. In contrast, N(CH₂inH)₃ is soluble in benzene, thereby facilitating the synthesis of derivatives of the early transition metals, as specifically described here for tantalum.

The synthesis of [N(CH₂in)₃]-tantalum derivatives may be achieved by the reactions of N(CH₂inH)₃ with dimethylamido tantalum complexes, reactions that are accompanied by elimination of Me₂NH. For example, N(CH₂inH)₃ reacts with $(Me_2N)_3Ta(NAr)$ $(Ar = 2,6-C_6H_3Pr_2^{i_2})^{21}$ at room temperature to give the arylimido complex $[\eta^4-N(CH_2in)_3]Ta$ -(NAr)(NMe₂H) (1), as illustrated in Scheme 2. The molecular structure of $[\eta^4-N(CH_2in)_3]Ta(NAr)(NMe_2H)$ has been determined by X-ray diffraction (Figure 1)¹⁶ and illustrates several important features. Firstly, the six Ta-N bond lengths of the distorted octahedral [TaN₆] entity span the substantial range of 1.78–2.38 Å, varying according to the nature of the different donors which fall into three categories: (i) Ta=N_{imido} double bond [1.778(6) Å], (ii) Ta-N_{indolyl} single bond [2.11(2) Å (av)], and (*iii*) Ta←N dative bond, *i.e.* Ta←NR₃ [2.380(5) Å] and Ta←NMe₂H [2.344(5) Å]. Secondly, the average Ta $-N_{indolyl}$ bond length of 2.11(2) Å is distinctly longer than the Ta-Namido bond lengths in

⁽²¹⁾ Hermann, W. A.; Baratta, W.; Herdtweck, E. J. Organomet. Chem. 1997, 541, 445–460.

COMMUNICATION

{[N(CH₂CH₂NR)₃]Ta} derivatives. For example, the mean Ta–N_{amido} bond length in structurally characterized {[N(CH₂-CH₂NR)₃]Ta} derivatives listed in the Cambridge Structural Database is 2.02(3) Å, *ca*. 0.1 Å shorter than the average Ta–N_{indolyl} bond length of [η^4 -N(CH₂in)₃]Ta(NAr)(NMe₂H). The mean Ta–N_{amine} bond length [2.36(6) Å] for {[N(CH₂-CH₂NR)₃]Ta} derivatives, however, is comparable to that for [η^4 -N(CH₂in)₃]Ta(NAr)(NMe₂H) [2.380(5) Å], indicating that the difference in Ta–N_{indolyl} and Ta–N_{amido} bond lengths is a manifestation of the different π -donor abilities of the nitrogen donors. Thirdly, the [N(CH₂in)₃]^{3–} ligand is flexible and the local coordination geometry may deviate substantially from *C*₃ symmetry. For example, the N–Ta–N bond angles between the indolyl donors are quite disparate, with values of 86.9(2)°, 110.1(2)°, and 137.3(2)°.

Dissociation of Me₂NH from $[\eta^4-N(CH_2in)_3]Ta(NAr)-(NMe_2H)$ generates 5-coordinate $[\eta^4-N(CH_2in)_3]Ta(NAr)$ (2). However, the dissociation is reversible, such that isolation of $[N(CH_2in)_3]Ta(NAr)$ requires removal of the liberated Me₂NH, which may be achieved by treatment with MeI (Scheme 2).²² The isolation of $[\eta^4-N(CH_2in)_3]Ta(NAr)-(NMe_2H)$ is also noteworthy in that it is stable with respect to proton transfer from the Me₂NH ligand to the arylimido ligand that would thereby form $[N(CH_2in)_3]Ta(HNAr)-(NMe_2)$. This observation is consistent with the notion that the nitrogen lone pair interacts strongly with the electron deficient tantalum center, thereby rendering the nitrogen unsusceptible to protonation.^{23,24}

Coordination of the *tris*[(2-indolyl)methyl]amine ligand to tantalum may also be achieved by a two step sequence that involves the initial reaction of Ta(NMe₂)₅^{9a,25} with N(CH₂-inH)₃ at 70 °C to give [η^3 -N(CH₂in)₂(CH₂inH)]Ta(NMe₂)₃ (**3**) (Scheme 2). The latter complex, which has been structurally characterized by X-ray diffraction (Figure 2), features a tridentate [η^3 -N(CH₂in)₂(CH₂inH)]²⁻ ligand in which only two of the indolyl donors coordinate to tantalum, with the uncoordinated indole fragment remaining protonated.

Figure 2. Molecular structure of $[\eta^3-N(CH_2in)_2(CH_2inH)]Ta(NMe_2)_3$ (3).

Coordination of the third indolyl group may be achieved by deprotonation with MeLi to give $[\eta^4-N(CH_2in)_3]Ta-(NMe_2)_2$ (4) (Scheme 2). The molecular structure of $[\eta^4-N(CH_2in)_3]Ta(NMe_2)_2$ has been determined by X-ray diffraction, demonstrating that the structure may be described as distorted octahedral with *cis* NMe₂ ligands. The Ta-N_{indolyl} bonds [2.13(2) Å (av)] are longer than those of the Ta-NMe₂ bonds [1.95(5) Å (av)], thereby providing a further demonstration that indolyl nitrogen atoms are poorer donors than the planar amide nitrogen atoms.

 $[\eta^4-N(CH_2in)_3]Ta(NMe_2)_2$ reacts with Me₃SiCl to yield $[\eta^4-N(CH_2in)_3]Ta(NMe_2)Cl$ (5). The molecular structure of $[\eta^4-N(CH_2in)_3]Ta(NMe_2)Cl$ has been determined by X-ray diffraction, as illustrated in Figure 1,²⁶ and demonstrates that the Ta-N_{indolyl} bond [2.08(3) Å (av)] is also longer than the Ta-NMe₂ [1.941(5) Å] bond in this complex.

In summary, $[N(CH_2in)_3]^{3-}$ has been shown to be an efficient tetradentate trianionic ligand for tantalum. In this regard, while the $[N(CH_2in)_3]^{3-}$ ligand has a structural similarity to that of $[N(CH_2CH_2NR)_3]^{3-}$, it differs electronically from the latter due to its reduced π -donor capability, which is a direct result of the nitrogen being a component of the aromatic π -system of the indolyl fragment. Furthermore, the trianionic nature of $[N(CH_2in)_3]^{3-}$ ligand promises access to a fundamentally different class of chemistry than that provided by its neutral isosteric benzimidazole counterparts, $N(CH_2bimH)_3$ and $N(CH_2bimR)_3$, as illustrated by the tantalum complexes reported here.

Acknowledgment. We thank the U. S. Department of Energy, Office of Basic Energy Sciences (DE-FG02-93ER14339) for support of this research.

Supporting Information Available: Experimental details (pdf) and crystallographic CIF files. This material is available free of charge via the Internet at http://pubs.acs.org.

IC026182A

⁽²²⁾ The interconversion of $[\eta^4-N(CH_2in)_3]Ta(NAr)(NMe_2H)$ and $[\eta^4-N(CH_2in)_3]Ta(NAr)$ is also rapid on the NMR time-scale, as indicated by ¹H NMR spectroscopy.

⁽²³⁾ Cundari, T. R. J. Am. Chem. Soc. 1992, 114, 7879-7888.

⁽²⁴⁾ In this regard, it is also worth noting that other dimethylamine-imido complexes are known, *e.g.* [Me₂C(C₅H₄)₂M(NAr)(NMe₂H)]⁺ (M = Nb, Ta; Ar = 2,6-C₆H₃Pr¹₂)^a and (ArO)₃Nb(NMe)(NMe₂H) (Ar = 2,6-C₆H₃Ph₂).^b Furthermore, the relative inertness of many linear Ta= NR linkages has been noted.^c (a) Reference 21. (b) Chesnut, R. W.; Fanwick, P. E.; Rothwell, I. P. *Inorg. Chem.* **1988**, *27*, 752–754. (c) Pugh, S. M.; Trösch, D. J. M.; Skinner, M. E. G.; Gade, L. H.; Mountford, P. Organometallics **2001**, *20*, 3531–3542.

⁽²⁵⁾ Bradley, D. C.; Thomas, I. M. Can. J. Chem. 1962, 40, 1355-1360.

⁽²⁶⁾ The iodide complex $[\eta^4-N(CH_2in)_3]Ta(NMe_2)I$ has also been structurally characterized.