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The Ru,™" mixed-valent state is strongly stabilized in [(bpy):Ru-
(u-bttz)Ru(bpy).lP* (3°), bttz = 3,6-bis(2-thienyl)-1,2,4,5-tetrazine,
as evident from lowered oxidation potentials and isolability, a
strongly increased comproportionation constant K, = 10'6¢, and
a high-energy intervalence charge transfer band at 10100 cm™2.
Curiously, no such effects were observed for the diosmium(lIi, 1)
analogue, whereas the related systems [(bpy).M(u-bmptz)M-
(bpy)o]**, bmptz 3,6-bis(4-methyl-2-pyridyl)-1,2,4,5-tetrazine,
exhibit conventional behavior, i.e., a slightly higher K, value of the
Os,"""" analogue. EPR signals were observed at 4 K for 35 but
not for the other mixed-valent species, and high-frequency (285
GHz) EPR was employed to study the diruthenium(ll) radical
complexes 22+ and 3%,

1,2,4,5-Tetrazines and especially the 3,6-bis(2-pyridyl)

derivative bptz have become increasingly popular as bridging
ligands with unusual electronic properties and the capacity

for forming coordination oligomers and polymé®ne noted
aspect 2 has been the capability of stronghraccepting
tetrazine bridges to stabilize mixed-valent intermediates.
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Whereas [(HN)4Ru(u-bptz)Ru(NH),]>" was establishéd
with a comproportionation constakt = 10*5C, the related
[(bpy)Ruu-bptz)Ru(bpy)]®* (15t) with the competingr
acceptor ligands bpy= 2,2-bipyridine still showedK.
10°°2 Dinuclear complexes of bptz with [RuCI([9]anglB™*,
[9]laneS = 1,4,7-trithiacyclononang,or [Ru(acacy ™ ¢
yielded K, values of 18! and 183, respectively.

Within attempts to modify bptz we now used 3,6-bis(4-
methyl-2-pyridyl)-1,2,4,5-tetrazine (bmptz) and 3,6-bis(2-
thienyl)-1,2,4,5-tetrazine (bttzas bridging ligands in com-
plexes2"t and 3" with [Ru(bpy)]3*?" and in complexes
4"t and 5" with [Os(bpy)}]3*/?*, respectively. Electro-
chemical and spectroscopic data (Uvis—NIR, EPR) are
summarized in Table 1.
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The complexes were originally obtained in the;Ruand
Os'"!" forms which are distinguished by the typical low-
energy metal-to-(tetrazine)ligand charge transfer (MLCT)
transitions. The donor character of 2-thienyl vs 2-pyridyl or
2-(4-methylpyridyl) is evident from a hypsochromic shift of
the MLCT bands fo3*" vs those o2*" (Table 1) or14+.2d
The osmium(ll) specieg*t and 5*" exhibit less variation
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Table 1. Electrochemical and Spectroscopic Data for Redox Systems

2" (Ru/bmptz) 3" (Ru/bttz) 4" (Os/bmptz) 5" (Os/bttz)
Redox Potentiafs
Evo6+/5+) 1.63 1.42 1.18 0.53
Eo(5+/4+) 1.10 0.44 0.51 0.07
E12(4+/3+) —0.45 —1.26 —0.65 -1.11
Eyx3+/2+) —-1.36 —2.22 —-1.62 —1.89
E2(2-+/0) -1.96 —2.54 -1.97 —2.24
Ko(5+)P 100 10166 1014 1078
Absorption Maximé
Amtet(41) [€] 700 [13100] 500 [7400], 580sh 1005 [7500], 670 [18000] 1148 [7800], 720 [15500]
A(4+) [€] 410 [7300], 280 [64000] 345 [38400], 290 [57700] 485 [1400], 451 [20000], 285 [5500] 520 [13000], 433sh, 290 [57000]
Jivet(5+) [€; Avyg] 1490 [2700; 1100] 990 [1650; 2000] 1655 [1750; 1350] 1375 [1950; 1150]
A(5+) [e] 620 [12000] 583 [4650], 432 [14000], 1265 [8500], 955 [12000], 984 [1800], 605 [16000], 495 [14500],
353 [30300] 705 [10500], 455 [13000] 335sh, 285 [56500]
EPR
01, G2, 93 (5+)¢ e 2.479, 2.313, 1.807 e e
g, 9o (3+) 2.0130, 1.9869 1.9929, 2.0053 2.0126, 2.005% 2.0238, 2.0051, 1.95685
Oiso 1.998% 2.0042 n.o! n.o.

aFrom cyclic voltammetry at 0.1 V/s in acetonitrile/0.1 mol dhBu;NPFs. Potentials in V vs ferrocenium/ferrocerfe, = 10AEGH59MV, ¢ From OTTLE
spectroelectrochemistry in acetonitrile/0.1 mol @nBusNPFRs. Wavelengths in nm, molar extinction coefficients indmol~! cm™1, bandwidths at half-
height in cntl. 4In frozen acetonitrile solutiontat K (X band, 9.5 GHz)¢ No signal observed down to 4 Kin frozen CHCN at 4 K (285 GHz)9In
acetonitrile at 298 K, tetrazin¥N hfs of ca. 0.55 mT" In acetonitrile at 298 K, tetrazin&N hfs of ca. 0.51 mT! Not observed.

with slightly lower absorption energies for the bttz complex
5% (Table 1). The spectra of the osmium analogues are more
complicate@ because singlettriplet transitions are enhanced

by spin—orbit coupling. The redox potentials, two metal-
centered one-electron oxidations and series of ligand-centered
reduction processes, are shifted to more negative values in
systems3"* vs 2"t and 5" vs 4"t (Figure 1, Table 1).
Expectedlys the oxidation of the Oscomplexes occurs at

ﬁ
lower potentials. As a result, the oxidation potential is lowest
for complex ion5*". The effect of the methyl groups B¥*
vs 15" 2d¢js marginal. .
) . 3
The most striking result is the unexpectedly strong
stabilization of the Ryl""' state of 3% (K. = 10'%9 in
comparison td>" or 25* (K. = 10%° or 19, respectively).
45+
0 1‘5 1.0 05 0‘0 —0‘5

This stability contributes to the facile isolation &)(PF)s

through oxidation with NO. Spectroscopic analysis of this
isolated mixed-valent material as well as spectroelectro-
chemical investigation of the precurs®)(PFs)4 (Figure 2)
exhibits the weakd = 1650 M1 cm™Y) intervalence charge
transfer (IVCT) band at 990 nm (10100 c#j a high energy

in comparison to the ca. 6700 cf(ca. 1500 nm) for25*
(Table 1) or 15*.2¢ Application of the Hush formufa

Avyp(calc) = (2310/yct)¥? for not completely delocalized
mixed-valent systems (class Il systems according to the
Robin/Day classificatiof) yields 4830 cm?, a much larger
number than the observed value of 2000 énin agreement
with the unusually large comproportionation constant3he

ion is thus formulated as a fully delocalized class Il species

with averaged oxidation states. Accordingly, the interaction 2
parameterHyg is estimated atycr/2 = 5050 cm?, a E(V) vs. Fc™
comparatively high valu@1o Figure 1. Cyclic voltammograms of complexe&)(PFs)4—(5)(PFs)4 in
acetonitrile/0.1 M BuNPF; at a scan rate of 100 mV/s.
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2364. (b) Hornung, F.; Baumann, F.; Kail.; Olabe, J. A.; Slep, L. . .
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The strong metatmetal coupling in3°" is also evident
from EPR studies. Whered8", 25t, 45t and5%" are EPR
silent even 84 K due to rapid relaxation resulting from close-
lying paramagnetic states, complé¥ exhibits a typical Rl
EPR spectrum (Table 1).

One-electrorreduction of the (4+) complexes leads to
tetrazine-centered radical anion complexes with tetrazine-
N EPR hyperfine splitting in fluid solution. Predominant
ligand contribution to the singly occupied MOs is also
evident from isotropig values close tg(electron)= 2.0023
400 500 600 700 800 900 1000 1100 1200 (Table 1) and from the results of high-frequency (285 GHz)

A [nm] EPR spectroscopy @™ and3%" in frozen CHCN (Table
1).12 Theg anisotropies—gs of the diruthenium(ll) radical
complexe3™ and3*" are comparable, but the axial splitting
patterns are different, confirming again the difference
between the electronic structures of systethisand 3"*.

We attribute the exceptional stabilization of the i
mixed-valent state i8>" after a seemingly minor modifica-
tion to the specialo and & donor effect of the thienyl
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Ty substituents at the tetrazine bridge. In contrast, triple thioether
5 coordination in [([9]aneZCIRu(u-bptz)RuCl([9]ane§)]**
T | did not greatly affect th&. andvcr values in comparison
0 to 1°* or the slightly modified25". In a not necessarity
" 400 500 600 700 800 900 1000 1100 parallel manner the electronic metahetal interaction also
A [nm] increases significantly on going frof§* or 25* to 3°*. The
Figure 2. UV—vis—NIR spectroelectrochemistry of the conversigt synergism of donor and acceptor functions in enhancing

— 3% and3°* — 3% (from top to bottom) in acetonitrile/0.1 M BNPF. metal-metal interaction was reported receriflyhese results

demonstrate that the metahetal interaction in mixed-valent
In contrast to the diruthenium complexes the diosmium gpecies is still difficult to estimate and that exploratory
analogues exhibit a reversed pattern of electrochemical chemistry in this area can lead to materials of surprising
stability. TheK value of the bmptz comple#®* is higher stability.

than that of the diruthenium specieS™ (Table 1), in
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