Inorg. Chem. 2003, 42, 6172–6174

What a Difference Ancillary Thienyl Makes: Unexpected Additional Stabilization of the Diruthenium(III,II) but Not the Diosmium(III,II) Mixed-Valent State in Tetrazine Ligand-Bridged Complexes

Biprajit Sarkar,[†] Wolfgang Kaim,^{*,†} Axel Klein,[†] Brigitte Schwederski,[†] Jan Fiedler,[‡] Carole Duboc-Toia,[§] and Goutam K. Lahiri^{||}

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany, J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic, Grenoble High Magnetic Field Laboratory, MPI-CNRS, 25, avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France, and Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India

Received January 31, 2003

The Ru₂^{III,II} mixed-valent state is strongly stabilized in [(bpy)₂Ru-(μ -bttz)Ru(bpy)₂]⁵⁺ (**3**⁵⁺), bttz = 3,6-bis(2-thienyl)-1,2,4,5-tetrazine, as evident from lowered oxidation potentials and isolability, a strongly increased comproportionation constant $K_c = 10^{16.6}$, and a high-energy intervalence charge transfer band at 10100 cm⁻¹. Curiously, no such effects were observed for the diosmium(III,II) analogue, whereas the related systems [(bpy)₂M(μ -bmptz)M-(bpy)₂]⁵⁺, bmptz = 3,6-bis(4-methyl-2-pyridyl)-1,2,4,5-tetrazine, exhibit conventional behavior, i.e., a slightly higher K_c value of the Os₂^{III,II} analogue. EPR signals were observed at 4 K for **3**⁵⁺ but not for the other mixed-valent species, and high-frequency (285 GHz) EPR was employed to study the diruthenium(II) radical complexes **2**³⁺ and **3**³⁺.

1,2,4,5-Tetrazines and especially the 3,6-bis(2-pyridyl) derivative bptz have become increasingly popular as bridging ligands with unusual electronic properties and the capacity for forming coordination oligomers and polymers.¹ One noted aspect¹⁻³ has been the capability of strongly π -accepting tetrazine bridges to stabilize mixed-valent intermediates.⁴

 \ast Author to whom correspondence should be addressed. E-mail: kaim@iac.uni-stuttgart.de.

- Indian Institute of Technology Bombay (IITB).
- (1) Kaim, W. Coord. Chem. Rev. 2002, 230, 127.
- (2) (a) Ernst, S.; Kasack, V.; Kaim, W. Inorg. Chem. 1988, 27, 1146. (b) Poppe, J.; Moscherosch, M.; Kaim, W. Inorg. Chem. 1993, 32, 2640.
 (c) Chellamma, S.; Lieberman, M. Inorg. Chem. 2001, 40, 3177. (d) Ernst, S. D.; Kaim, W. Inorg. Chem. 1989, 28, 1520. (e) Gordon, K. C.; Burrell, A. K.; Simpson, T. J.; Page, S. E.; Kelso, G.; Polson, M. I. J.; Flood, A. Eur. J. Inorg. Chem. 2002, 554.
- (3) (a) Roche, S.; Yellowlees, L. J.; Thomas, J. A. *Chem. Commun.* 1998, 1429. (b) Araújo, C. S.; Drew, M. G. B.; Félix, V.; Jack, L.; Madureira, J.; Newell, M.; Roche, S.; Santos, T. M.; Thomas, J. A.; Yellowlees, L. *Inorg. Chem.* 2002, *41*, 2250.

Whereas $[(H_3N)_4Ru(\mu\text{-bptz})Ru(NH_3)_4]^{5+}$ was established^{2a} with a comproportionation constant $K_c = 10^{15.0}$, the related $[(bpy)_2Ru(\mu\text{-bptz})Ru(bpy)_2]^{5+}$ (1⁵⁺) with the competing π acceptor ligands bpy = 2,2'-bipyridine still showed $K_c = 10^{8.5}$.² Dinuclear complexes of bptz with $[RuCl([9]aneS_3)]^{2+/+}$, $[9]aneS_3 = 1,4,7$ -trithiacyclononane,³ or $[Ru(acac)_2]^{+/0.2c}$ yielded K_c values of $10^{8.1}$ and 10^{13} , respectively.

Within attempts to modify bptz we now used 3,6-bis(4methyl-2-pyridyl)-1,2,4,5-tetrazine (bmptz) and 3,6-bis(2thienyl)-1,2,4,5-tetrazine (bttz)⁵ as bridging ligands in complexes 2^{n+} and 3^{n+} with [Ru(bpy)₂]^{3+/2+} and in complexes 4^{n+} and 5^{n+} with [Os(bpy)₂]^{3+/2+}, respectively. Electrochemical and spectroscopic data (UV-vis-NIR, EPR) are summarized in Table 1.

The complexes were originally obtained in the Ru₂^{II,II} and Os₂^{II,II} forms which are distinguished by the typical lowenergy metal-to-(tetrazine)ligand charge transfer (MLCT) transitions. The donor character of 2-thienyl vs 2-pyridyl or 2-(4-methylpyridyl) is evident from a hypsochromic shift of the MLCT bands for 3^{4+} vs those of 2^{4+} (Table 1) or $1^{4+.2d}$ The osmium(II) species 4^{4+} and 5^{4+} exhibit less variation

[†] Universität Stuttgart.

[‡] J. Heyrovsky Institute of Physical Chemistry, Prague.

[§] Grenoble High Magnetic Field Laboratory.

⁶¹⁷² Inorganic Chemistry, Vol. 42, No. 20, 2003

⁽⁴⁾ Kaim, W.; Klein, A.; Glöckle, M. Acc. Chem. Res. 2000, 33, 755.

^{(5) (}a) bmptz: Case, F. H. J. Heterocycl. Chem. 1968, 5, 431. (b) bttz: Sauer, J. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriver, E. F. V., Eds.; Elsevier Science Ltd.: Oxford, 1996; Vol. 6, p 901.

COMMUNICATION

Table 1. Electrochemical and Spectroscopic Data for Redox System	ystems
--	--------

	2^{n+} (Ru ₂ /bmptz)	3^{n+} (Ru ₂ /bttz)	4^{n+} (Os ₂ /bmptz)	5^{n+} (Os ₂ /bttz)		
Redox Potentials ^a						
$E_{1/2}(6+/5+)$	1.63	1.42	1.18	0.53		
$E_{1/2}(5+/4+)$	1.10	0.44	0.51	0.07		
$E_{1/2}(4+/3+)$	-0.45	-1.26	-0.65	-1.11		
$E_{1/2}(3+/2+)$	-1.36	-2.22	-1.62	-1.89		
$E_{1/2}(2+/0)$	-1.96	-2.54	-1.97	-2.24		
$K_{\rm c}(5+)^b$	109.0	1016.6	10 ^{11.4}	10 ^{7.8}		
Absorption Maxima ^c						
$\lambda_{\text{MLCT}}(4+)[\epsilon]$	700 [13100]	500 [7400], 580sh	1005 [7500], 670 [18000]	1148 [7800], 720 [15500]		
$\lambda(4+)[\epsilon]$	410 [7300], 280 [64000]	345 [38400], 290 [57700]	485 [1400], 451 [20000], 285 [5500]	520 [13000], 433sh, 290 [57000]		
$\lambda_{\text{IVCT}}(5+) [\epsilon; \Delta \nu_{1/2}]$	1490 [2700; 1100]	990 [1650; 2000]	1655 [1750; 1350]	1375 [1950; 1150]		
$\lambda(5+)[\epsilon]$	620 [12000]	583 [4650], 432 [14000],	1265 [8500], 955 [12000],	984 [1800], 605 [16000], 495 [14500],		
		353 [30300]	705 [10500], 455 [13000]	335sh, 285 [56500]		
EPR						
$g_1, g_2, g_3(5+)^d$	е	2.479, 2.313, 1.807	е	е		
$g_{\parallel}, g_{\perp}(3+)$	2.0130, 1.9869 ^f	$1.9929, 2.0053^{f}$	$2.0126, 2.0057^d$	$2.0238, 2.0051, 1.9565^d$		
$g_{ m iso}$	1.9985^{g}	2.0042^{h}	n.o. ^{<i>i</i>}	n.o.		

^{*a*} From cyclic voltammetry at 0.1 V/s in acetonitrile/0.1 mol dm⁻³ Bu₄NPF₆. Potentials in V vs ferrocenium/ferrocene. ^{*b*} $K_c = 10^{\Delta E(5+)59mV}$. ^{*c*} From OTTLE spectroelectrochemistry in acetonitrile/0.1 mol dm⁻³ Bu₄NPF₆. Wavelengths in nm, molar extinction coefficients in dm³ mol⁻¹ cm⁻¹, bandwidths at half-height in cm⁻¹. ^{*d*} In frozen acetonitrile solution at 4 K (X band, 9.5 GHz). ^{*e*} No signal observed down to 4 K. ^{*f*} In frozen CH₃CN at 4 K (285 GHz). ^{*g*} In acetonitrile at 298 K, tetrazine ¹⁴N hfs of ca. 0.55 mT. ^{*h*} In acetonitrile at 298 K, tetrazine ¹⁴N hfs of ca. 0.55 mT. ^{*h*} In acetonitrile at 298 K, tetrazine ¹⁴N hfs of ca. 0.51 mT. ^{*i*} Not observed.

with slightly lower absorption energies for the bttz complex 5^{4+} (Table 1). The spectra of the osmium analogues are more complicated⁶ because singlet-triplet transitions are enhanced by spin-orbit coupling. The redox potentials, two metal-centered one-electron oxidations and series of ligand-centered reduction processes, are shifted to more negative values in systems 3^{n+} vs 2^{n+} and 5^{n+} vs 4^{n+} (Figure 1, Table 1). Expectedly,⁶ the oxidation of the Os^{II} complexes occurs at lower potentials. As a result, the oxidation potential is lowest for complex ion 5^{4+} . The effect of the methyl groups in 2^{5+} vs 1^{5+} ^{2d,e} is marginal.

The most striking result is the unexpectedly strong stabilization of the $\operatorname{Ru}_2^{\operatorname{III,II}}$ state of 3^{5+} ($K_c = 10^{16.6}$) in comparison to 1^{5+} or 2^{5+} ($K_c = 10^{8.5}$ or $10^{9.0}$, respectively). This stability contributes to the facile isolation of $(3)(PF_6)_5$ through oxidation with NO⁺. Spectroscopic analysis of this isolated mixed-valent material as well as spectroelectrochemical investigation of the precursor $(3)(PF_6)_4$ (Figure 2) exhibits the weak ($\epsilon = 1650 \text{ M}^{-1} \text{ cm}^{-1}$) intervalence charge transfer (IVCT) band at 990 nm (10100 cm⁻¹), a high energy in comparison to the ca. 6700 cm⁻¹ (ca. 1500 nm) for 2^{5+} (Table 1) or $1^{5+,2e}$ Application of the Hush formula⁷ $\Delta v_{1/2}(\text{calc}) = (2310 v_{\text{IVCT}})^{1/2}$ for not completely delocalized mixed-valent systems (class II systems according to the Robin/Day classification⁸) yields 4830 cm⁻¹, a much larger number than the observed value of 2000 cm⁻¹. In agreement with the unusually large comproportionation constant the 3^{5+} ion is thus formulated as a fully delocalized class III species with averaged oxidation states. Accordingly, the interaction parameter H_{AB} is estimated at $v_{IVCT}/2 = 5050$ cm⁻¹, a comparatively high value.^{9,10}

(6) (a) Lay, A. P.; Magnuson, R. H.; Taube, H. *Inorg. Chem.* 1988, 27, 2364. (b) Hornung, F.; Baumann, F.; Kaim, W.; Olabe, J. A.; Slep, L. D.; Fiedler, J. *Inorg. Chem.* 1998, 37, 311 and 5402. (c) Scheiring, T.; Kaim, W.; Olabe, J. A.; Parise, A. R.; Fiedler, J. *Inorg. Chim. Acta* 2000, 300–302, 125. (d) Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J. *Chem. Rev.* 2001, 101, 2655.

Figure 1. Cyclic voltammograms of complexes $(2)(PF_6)_4 - (5)(PF_6)_4$ in acetonitrile/0.1 M Bu₄NPF₆ at a scan rate of 100 mV/s.

The application of Hush's formula to the diosmium analogue 5^{5+} yields $\Delta v_{1/2}(\text{calc}) = 4100 \text{ cm}^{-1}$, again much larger than the observed value of 1150 cm⁻¹ and thus indicative of a class III system.

⁽⁷⁾ Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391.

⁽⁸⁾ Robin, M. B.; Day, P. Adv. Inorg. Radiochem. 1967, 10, 247.

⁽⁹⁾ Creutz, C. Prog. Inorg. Chem. 1983, 30, 1.

⁽¹⁰⁾ Mosher, P. J.; Yap, G. P. A.; Crutchley, R. J. Inorg. Chem. 2001, 40, 1189.

Figure 2. UV-vis-NIR spectroelectrochemistry of the conversion $3^{4+} \rightarrow 3^{5+}$ and $3^{5+} \rightarrow 3^{6+}$ (from top to bottom) in acetonitrile/0.1 M Bu₄NPF₆.

In contrast to the diruthenium complexes the diosmium analogues exhibit a reversed pattern of electrochemical stability. The K_c value of the bmptz complex 4^{5+} is higher than that of the diruthenium species 2^{5+} (Table 1), in agreement with previous experience with π acceptor bridged $M_2^{III,II}$ compounds (M = Ru, Os).^{4,6,11} However, at 10^{7.8} the K_c of the diosmium complex 5^{5+} with the bttz ligand bridge is much smaller than the exceptional value of $10^{16.6}$ of the diruthenium species 3^{5+} , reflecting a π donor contribution¹⁰ attributed to the thienyl rings. This unexpected situation is further illustrated by the result that the K_c of the bttz complex (5^{5+}) is smaller in the diosmium complex series $4^{5+}/5^{5+}$ whereas it is much larger for the bttz diruthenium(III,II) complex 3^{5+} as compared to the bmptz system 2^{5+} (Table 1).

(11) Kaim, W.; Kasack, V. Inorg. Chem. 1990, 29, 4696.

The strong metal—metal coupling in 3^{5+} is also evident from EPR studies. Whereas 1^{5+} , 2^{5+} , 4^{5+} , and 5^{5+} are EPR silent even at 4 K due to rapid relaxation resulting from closelying paramagnetic states, complex 3^{5+} exhibits a typical Ru^{III} EPR spectrum (Table 1).

One-electron *reduction* of the (4+) complexes leads to tetrazine-centered radical anion complexes with tetrazine-¹⁴N EPR hyperfine splitting in fluid solution. Predominant ligand contribution to the singly occupied MOs is also evident from isotropic *g* values close to *g*(electron) = 2.0023 (Table 1) and from the results of high-frequency (285 GHz) EPR spectroscopy of 2^{3+} and 3^{3+} in frozen CH₃CN (Table 1).¹² The *g* anisotropies g_1-g_3 of the diruthenium(II) radical complexes 2^{3+} and 3^{3+} are comparable, but the axial splitting patterns are different, confirming again the difference between the electronic structures of systems 2^{n+} and 3^{n+} .

We attribute the exceptional stabilization of the Ru₂^{III,II} mixed-valent state in 3^{5+} after a seemingly minor modification to the special σ and π donor effect of the thienyl substituents at the tetrazine bridge. In contrast, triple thioether coordination in [([9]aneS₃)ClRu(μ -bptz)RuCl([9]aneS₃))]³⁺ did not greatly affect the K_c and ν_{IVCT} values³ in comparison to 1^{5+} or the slightly modified 2^{5+} . In a not necessarily⁴ parallel manner the electronic metal–metal interaction also increases significantly on going from 1^{5+} or 2^{5+} to 3^{5+} . The synergism of donor and acceptor functions in enhancing metal–metal interaction was reported recently;¹⁰ these results demonstrate that the metal–metal interaction in mixed-valent species is still difficult to estimate and that exploratory chemistry in this area can lead to materials of surprising stability.

Acknowledgment. This work was supported by the DFG (travel grant for J.F.), the DAAD (visiting fellowship for G.K.L.), and the Fonds der Chemischen Industrie.

Supporting Information Available: Synthetic procedures, analysis, and NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

IC034105P

^{(12) (}a) For details on high-frequency EPR measurements, see ref 12b. (b) Frantz, S.; Hartmann, S.; Doslik, N.; Wanner, M.; Kaim, W.; Kümmerer, H.-J.; Denninger, G.; Barra, A.-L.; Duboc-Toia, C.; Fiedler, J.; Ciofini, I.; Urban, C.; Kaupp, M. J. Am. Chem. Soc. 2002, 124, 10563.