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The reactions of 2-, 3-, and 4-cyanopyridine with NaN; in the Scheme 1
presence of H,O and Lewis acid (ZnCl,) afford discrete monomer,
(2-PTZ),Zn(H,0); (1), 3D diamondoid-like network (3-PTZ),Zn (2),
and 2D layered network (4-PTZ)Zn(OH)(H,0) (3), respectively
(PTZ = 5-(pyridyl)tetrazolato).Their solid state structures and
natures give new insight into the Sharpless reaction of 5-substituted
1H-tetrazole. Interestingly, 2 crystallizes in a noncentrosymmetric
space group and its powdered sample is second-harmonic

generation active.

water may offer organic chemists an opportunity to optimize
reaction conditions. We have been interested in the construc-
tion of novel supramolecular motifs through in situ hydro-
thermal reaction$Inspired by Sharpless'’s pioneering wdrk,
we have studied reactions of nitriles 4-cyanopyridine (4-CN-
PY), 3-cyanopyridine (3-CN-PY), and 2-cyanopyridine (2-
CN-PY) with ZnCk and NaN in water under hydrothermal
The tetrazole functional group has found a wide range of conditions to probe these reactions (Scheme 2). To our
applications in coordination chemistry as ligands, in me- surprise, the composition and solid state structures of
dicinal chemistry as a metabolically stable surrogate for a
carboxylic acid group, and in materials science as high-
density energy materialsEarlier routes to tetrazoles in the
literature usually involve expensive and toxic metal, suffer
from severe water sensitivity, or use hydrazoic acid, which
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is highly toxic, volatile, and explosive? Recently, Sharpless
et al. explored the preparation of 5-substitutétitétrazoles
in water (Scheme 1) with zinc salts as catal§dthis new
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synthesis is a breakthrough and offers a safe, convenient,
and environmentally friendly synthetic route to tetrazoles.
As pointed ouf, the exact role of zinc and the mechanistic
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pathway(s) in this new synthesis of tetrazoles are not clear. (4 (4 iong, R-G.; Xue, X.: Zhao, H. You, X.-Z.: Abrahams, B. F.;

A solid precipitate/intermediate, presumably (PhdzEn,
was observedl Trapping and characterizing the “intermedi-
ate” in this new preparation of 5-substituteld-1etrazole in
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Scheme 2

Figure 1. Solid state structure df.

apical water molecules, resulting in the formation of a

products isolated are quite different, and depend on com- monomeric Zn compleX.The result here well supports

plexing ability of the metal ions toward tetrazole and hydroxy Sharpless’s proposed structures of the intermediate precipi-
groups. Some of novel supramolecular motifs formed in situ fates: ) ] ] ] .
under the hydrothermal conditions are not accessible in direct  More interestingly, in the solid structure af(Figure 2),
preparation from Znx and tetrazoles in solutiomnder ~ the Zn atom only coordinates to four N atoms from the
ambient conditionsin addition, these results provide a direct tétrazole of 3-PTZ ligands while the N atom of the pyridyl
support to Sharpless’s proposed mechanism in the formationing fails to bond to the Zn atom, resulting in the formation
of 5-substituted Bi-tetrazoles from nitriles in water. Herein ~ ©f @ 3D diamondoid-like framework, as shown in Figure S1
we report the solid state structures and second harmonic(S€€ Supporting Informatiofff° It is worth noting that water
generation (SHG) response of these intermediates whichfailed to coord!nate to the Zn atom. Similarly, the result!ng
provide the fascinating synthetic method for novel supramo- Product of2 still supports Sharpless’s proposed formation
lecular motif constructions in situ. mechanism of tetrazole.
Bis[5-(2-pyridyl)tetrazolato]diaquazinc(ll) [(2-PTZn- Unexpectedly, however, in the solid state structure of
(H-0), (1)], bis[5-(3-pyridyl)tetrazolato]zinc(ll) [(3-PTZZn (Figure 3) the Zn atom not only coordinates to two atoms
(2)], and {[mono(5-(4-pyridyl)tetrazolato)hydroxyzinc(ll)] ~ from the pyridyl ring and tetrazole of the 4-PTZ ligand,
monoaguh (4-PTZ)Zn(OH)(HO) (3) were prepared in the respectively, but also binds to two hydroxy groups, which
hydrothermal reactions from the corresponding cyanopyri- are presumably formed from water in situ. Th@8shows a
dine, NaN, and ZnC} respectively, under hydrothermal two-dimensional layered structural feature with an interca-
reaction condition8.IR spectra of the products showed that lated water molecule through hydrogen bonding between two
typical peaks £2100 cm?) of the cyano groups in the
corresponding cyanopyridine ligands disappeared and gave (8) gf_yséég $§§?730£:b%2{421§:,1£(212{])’% = 379253%(';1)02%0”1155221(/&_
peaks (ca. 1500 cm) of the tetrazole group. @2F, o=y =90.00, V= 755.53(12) R 'Z=2 D= 1731 Mg
Figure 1 gives the solid state structure Iofin that the m~% R1=3.76%, WR2=9.57%.T = 293 K, = 1.659 mm*, S=
local coordination geometry around the Zn center can be best A e f%:g%gﬁfﬁfﬁ?j; 000
described as a slightly distorted octahedron with four V = 1394.3(2) B, Z = 4, D, = 1.704 Mg n13, R1 = 0.0305,
equatorial nitrogen atoms from two 2-PTZ ligands and two WR2=0.0711T = 293 K, = 1.788 mnT%, S= 0.502, Flack =

0.010(19).3: CgH7NsO2Zn, M = 246.54, orthorhombicPbca a =
14.5401(12) Ab = 6.5807(5) Ac = 16.5221(13) A ==y =

(7) Preparation of ©H12N1002Zn (1): Hydrothermal treatment of Zngl 90.00, V= 1580.9(2) B, Z= 8,D. = 2.072 Mg n73, R1= 0.0453,
(1.0 mmol), 2-cyanopyridine (2.0 mmol), NakB.0 mmol), and water WR2=0.1302,T = 296 K,u = 3.082 mm%, S= 1.027. The goodness
(3.0 mL) over 1 day at 10%C yielded a colorless prismatic crystalline of fit (S is always based oR?, and its definition is given belovs =
product. The yield ofl was about 85% based on 2-CN-PY. Anal. {[W(Fe2 — F®3/(n — p)}¥2wheren is the number of reflections and
Calcd for G2oH12N1g02Zn (1): C, 36.58; H, 3.05; N, 35.56. Found: p is the total number of parameters refined.
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Figure 3. (a) The local coordination geometry around the Zn cent& in
(b) 2D framework of3 highlighting the Zn tetrahedron.

stituted H-tetrazoles from nitrile in water can be classified

into the following three cases: (a) simple monomer such as
Figure _2. (a) T_he local cqordination geometry_ arc_)und t_he Zn centa in (R-CN4)2M(HZO)2 in which two tetrazoles bind to the metal
(b) A diamond-like net o in which the pyridyl ring is omitted for clarity. atoms as bidentate ligand; (b) 2D coordination polymer in
which hydroxy ligands (from water) as a bridging spacer,
5-substituted coordinating group, and tetrazole all take part
in the coordination to the metal atom, resulting in the
formation of a 2D framework; (c) 3D coordination polymer
gn which tetrazole as a bidentate bridging ligand connects
two Zn atom centers, resulting in the formation of 3D
coordination polymer.

layers (see Supporting Information). This result is unex-
pected, probably suggesting that water is also a reactant.
It is also interesting to note thatcrystallizes in an acentric
space group. Preliminary experimental results show 2hat
displays a moderate powder SHG response, ca. 0.4 time
that of urea. This feature is similar to that of KDP also with
an diamond-like network! Furthermore, thermal stability ) )
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