Inorganic Chemistry

Synthesis and Characterization of Ammonioundecafluoro-*closo*-dodecaborates(1–). New Superweak Anions

Sergei V. Ivanov, Jennifer A. Davis, Susie M. Miller, Oren P. Anderson, and Steven H. Strauss*

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523 Received April 19, 2003

The ammonioborane monoanion H₃NB₁₂H₁₁⁻ was per-B-fluorinated with elemental fluorine in liquid hydrogen fluoride to yield the first member of a new class of weakly coordinating anions, $H_3NB_{12}F_{11}$ (isolated as $[N(n-Bu)_4]_2[H_2NB_{12}F_{11}]$ in 41% yield). The pK_a of the $H_3NB_{12}F_{11}^{-}$ anion is 9.6. Several salts of the tri-N-alkylated anions $Me_3NB_{12}F_{11}^-$ and $Dd_3NB_{12}F_{11}^-$ (Dd = $n-C_{12}H_{25}$) were also prepared. The structure of [CPh₃][Me₃NB₁₂F₁₁] was determined by single-crystal X-ray diffraction: monoclinic, space group $P2_1/c$, a = 18.053(3) Å, b = 33.139(5) Å, c = 9.600(2) Å, $\beta =$ 91.459(4)°, V = 5742(2) Å³, Z = 8, T = 173(2) K, $R_1 = 0.045$. It revealed that the only direct interactions between the undecafluoroammonioborate monoanions and the trityl cations in the two independent ion pairs were long and weak BF···CPh₃ interactions of 2.992(6) and 2.942(6) Å. Salts of the new anions were chemically, electrochemically, and thermally stable. The conductivity of Li(Me₃NB₁₂F₁₁) in dimethoxyethane was comparable to that of $LiPF_6$ but less than half the value of $Li(1-Me-CB_{11}F_{11})$.

Ever since the seminal reports by Reed and co-workers that $CB_{11}H_{12}^{-}$ is a robust weakly coordinating anion,¹ several groups have prepared more weakly coordinating derivatives (i.e., superweak anions²) by substituting some or all of the hydrogen atoms with halogen atoms and/or hydrocarbyl or haloalkyl groups.^{3–7} Many of these derivatives are even more robust than $CB_{11}H_{12}^{-}$ with respect to thermal or electro-

* Author to whom correspondence should be addressed. E-mail: strauss@lamar.colostate.edu.

- (a) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1985, 107, 5955. (b) Shelly, K.; Reed, C. A.; Lee, Y. J.; Scheidt, W. R. J. Am. Chem. Soc. 1986, 108, 3117.
- (2) (a) Ivanova, S. M.; Nolan, B. G.; Kobayashi, Y.; Miller, S. M.; Anderson, O. P.; Strauss, S. H. *Chem.-Eur. J.* 2001, 7, 503. (b) Lupinetti, A. J.; Strauss, S. H. *Chemtracts-Inorg. Chem.* 1998, 11, 565. A superweak anion is defined as the conjugate base of an actual or putative neutral superacid.
- (3) (a) Reed, C. A.; Kim, K.-C.; Stoyanov, E. S.; Stasko, D.; Tham, F. S.; Mueller, L. J.; Boyd, P. D. W. J. Am. Chem. Soc. 2003, 125, 1796.
 (b) Kim, K.-C.; Reed, C. A.; Long, G. S.; Sen, A. J. Am. Chem. Soc. 2002, 124, 7662. (c) Stasko, D.; Reed, C. A. J. Am. Chem. Soc. 2002, 124, 1148.
- (4) (a) Moss, S.; King, B. T.; de Meijere, A.; Kozhushkov, S. I.; Eaton, P. E.; Michl, J. Org. Lett. 2001, 3, 2375. (b) Zharov, I.; King, B. T.; Havlas, Z.; Pardi, A.; Michl, J. J. Am. Chem. Soc. 2000, 122, 10253. (c) King, B. T.; Michl, J. J. Am. Chem. Soc. 2000, 122, 10255.

10.1021/ic0344160 CCC: \$25.00 © 2003 American Chemical Society Published on Web 06/25/2003

chemical degradation, to strong acids, bases, electrophiles, or nucleophiles, or to strong oxidizing or reducing agents.

We recently reported that $B_{12}F_{12}^{2-}$, in spite of its 2– charge, is more weakly ion paired with the CPh₃⁺ cation in the solid state than is the BF_4^- anion with related triarylcarbenium ions.⁸ We proposed that if a 1– derivative of $B_{12}H_{12}^{2-}$ could be highly fluorinated, the resulting anion might be a useful (and potentially less expensive) alternative to the 1-R-CB₁₁F₁₁⁻ class of superweak anions.⁹ We now report that the ammonioborane monoanion H₃NB₁₂H₁₁⁻, first prepared in 1964,¹⁰ can be per-B-fluorinated and then trialkylated to yield the first two members of a new class of weakly coordinating anions, Me₃NB₁₂F₁₁⁻ and Dd₃NB₁₂F₁₁⁻ (Dd = n-C₁₂H₂₅).

In contrast to the monofluorination of $CB_{11}H_{12}^{-}$ in liquid anhydrous HF (LAHF) in 4 h at 25 °C,¹¹ Cs(H₃NB₁₂H₁₁) was recovered unchanged after treatment with LAHF for 2 days at 25 °C. However, Cs(H₃NB₁₂H₁₁) was converted to Cs(H₃NB₁₂F₁₁) with elemental fluorine in LAHF, as shown below:

$$H_{3}NB_{12}H_{11}^{-} + \text{excess } F_{2} \xrightarrow{\text{LAHF}} xH_{3}NB_{12}F_{11}^{-} + 11xHF + yBF_{4}^{-} + zNH_{4}^{+}$$

[CAUTION: Both HF and F_2 are extremely hazardous materials and should be handled only by trained personnel].¹²

- (6) Ingleson, M. J.; Mahon, M. F.; Patmore, N. J.; Ruggiero, G. D.; Weller, A. S. Angew. Chem., Int. Ed. 2002, 41, 3694.
- (7) (a) Strauss, S. H. Spec. Publ.—R. Soc. Chem. 2000, No. 253, 44. (b) Lupinetti, A. J.; Havighurst, M. D.; Miller, S. M.; Anderson, O. P.; Strauss, S. H. J. Am. Chem. Soc. 1999, 121, 11920. (c) Ivanova, S. M.; Ivanov, S. V.; Miller, S. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. Inorg. Chem. 1999, 38, 3756.
- (8) Ivanov, S. V.; Miller, S. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 2003, 125, 4694.
- (9) The current prices of 100 g of $Cs_2(B_{12}H_{12})$ and $Cs(CB_{11}H_{12})$ are \$720 and \$4017, respectively (source: Katchem, Ltd., info@katchem.cz).
- (10) Hertler, W. R.; Raasch, M. S. J. Am. Chem. Soc. 1964, 86, 3661.
- (11) Ivanov, S. V.; Lupinetti, A. J.; Miller, S. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. *Inorg. Chem.* **1995**, *34*, 6419.
- (12) Details of the synthesis of new compounds and the determination of the pK_a of the $H_3NB_{12}F_{11}^-$ anion are given in the Supporting Information.

Inorganic Chemistry, Vol. 42, No. 15, 2003 4489

^{(5) (}a) Tsang, C.-W.; Yang, Q.; Sze, E. T.-P.; Mak, T. C. W.; Chan, D. T. W.; Xie, Z. *Inorg. Chem.* **2000**, *39*, 5851. (b) Tsang, C.-W.; Yang, Q.; Sze, E. T.-P.; Mak, T. C. W.; Chan, D. T. W.; Xie, Z. *Inorg. Chem.* **2000**, *39*, 3582. (c) Xie, Z.; Tsang, C.-W.; Xue, F.; Mak, T. C. W. *J. Organomet. Chem.* **1999**, *577*, 197.

Figure 1. Negative-ion electrospray-ionization mass spectrum (H₂O solution), ¹¹B NMR spectrum (96.3 MHz, CD₃CN, δ (BF₃·OEt₂) = 0), and ¹⁹F{¹¹B} NMR spectrum (282.4 MHz, anhydrous CD₃CN, δ (CFCl₃) = 0) of anhydrous Li(Me₃NB₁₂F₁₁).

The BF_4^- anion and the NH_4^+ cation, which are attributed to the degradation of some of the $H_3NB_{12}H_{11}^-$ anions under the reaction conditions, were observed in NMR spectra of the crude product. No other boron-containing products were observed by ¹¹B NMR spectroscopy.

Neither the Cs⁺ nor the N(*n*-Bu)₄⁺ salts of H₃NB₁₂F₁₁⁻ and BF₄⁻ could be efficiently separated from one another because their solubilities in water are too similar. However, when the mixture of (Cs/NH₄)(H₃NB₁₂F₁₁) and (Cs/NH₄)-BF₄ was dissolved in a large volume of 0.5 M aqueous KOH and treated with N(*n*-Bu)₄Cl, the compound [N(*n*-Bu)₄]₂-[H₂NB₁₂F₁₁], containing the aminoborate dianion H₂NB₁₂F₁₁²⁻, precipitated with virtually no N(*n*-Bu)₄BF₄ contamination.¹² After drying, the yield of [N(*n*-Bu)₄]₂[H₂NB₁₂F₁₁] was 41% based on Cs(H₃NB₁₂H₁₁).

The ammonioborate monoanion $H_3NB_{12}F_{11}^-$ is a weak Brønsted acid in water. Its p K_a value, 9.6, was determined by monitoring ¹⁹F NMR peaks at various pH values:¹² only $H_3NB_{12}F_{11}^-$ was observed at pH 1 and below; only $H_2NB_{12}F_{11}^{2-}$ was observed at pH 12.6 and above; an average set of resonances for rapidly exchanging $H_3NB_{12}F_{11}^-$ and $H_2NB_{12}F_{11}^{2-}$ were observed at intermediate pH values.

The ammonio group can be mono-, di-, or trialkylated. Details about mono- and dialkylation will be reported in the full paper. Here we report the trimethyl and tridodecyl derivatives. When the fluorination product mixture containing $H_3NB_{12}F_{11}^{-}$, BF_4^{-} , and NH_4^+ was dissolved in 0.5 M aqueous KOH and treated with excess (MeO)₂SO₂, the compound [NMe₄][Me₃NB₁₂F₁₁] was isolated in 27% yield based on $Cs(H_3NB_{12}H_{11})$.¹² The salts $Li(Me_3NB_{12}F_{11})$ and [CPh₃][Me₃NB₁₂F₁₁] were prepared by metathesis reactions.¹² Similarly, the compound $Li(Dd_3NB_{12}F_{11})$ was prepared in 42% yield by treatment of $[N(n-Bu)_4]_2[H_2NB_{12}F_{11}]$ in 0.5 M aqueous KOH with excess DdBr followed by Li⁺/N(n- $Bu)_4^+$ metathesis.¹² The ¹¹B and ¹⁹F{¹¹B} NMR spectra and a negative-ion electrospray ionization mass spectrum of Li- $(Me_3NB_{12}F_{11})$ are shown in Figure 1. Other spectroscopic data are given in the Supporting Information.

Crystals of $[CPh_3][Me_3NB_{12}F_{11}]$ suitable for X-ray diffraction were grown from a saturated dichloromethane

Figure 2. Thermal ellipsoid plot of one of the two nearly identical ion pairs in $[CPh_3][Me_3NB_{12}F_{11}]$ (50% probability ellipsoids; hydrogen atoms omitted for clarity). Selected distances (Å) and angles (deg): C1...F5, 2.992-(6); C1–C, 1.437(5)–1.454(5); C–C1–C, 119.4(3)–120.7(4); N1–C, 1.475(5)–1.493(5); C–N1–C, 105.1(4)–108.3(4); B1–N1, 1.576(5); B–F, 1.378(4)–1.394(5). The C…F distance in the other ion pair is 2.942(6) Å.

solution.¹³ The structure of one of the two independent ion pairs is shown in Figure 2. The B-B and B-F distances are similar to those observed in $[CPh_3]_2[B_{12}F_{12}]$ and in compounds containing various 1-R-CB₁₁F₁₁⁻ ions.^{7b,c,8,14} The two B-N distances, 1.576(5) and 1.568(6) Å, can be compared with the B-N distance in Cs(H₃NB₁₂H₁₁)·2MeOH, 1.54(1) Å.¹⁵ The most significant feature of the structure is the long, weak C1...F5 distance of 2.992(6) Å, which is only 0.18 Å shorter than the 3.17 Å sum of van der Waals radii for carbon and fluorine.¹⁶ The next longest C1···F contact is greater than 3.6 Å. Furthermore, the sum of the three C-C1-C angles is 359.9(3)°, indicating no significant distortion of the carbenium carbon atom geometry from planarity. The shortest and next shortest C···F distances for the second ion pair are 2.942(6) and >3.5 Å, respectively. Note that the shortest C····F distance in each of the two [CPh₃][Me₃NB₁₂F₁₁] ion pairs is far longer than the related BF····CAr₃ distances in $[CPh_2(p-OMe-C_6H_4)][BF_4]$ and [CPh(*p*-OMe-C₆H₄)₂][BF₄], 2.68 and 2.58 Å, respectively.¹⁷ This indicates that $Me_3NB_{12}F_{11}^{-1}$ is a more weakly basic anion than BF_4^- .

To further probe the weakly basic nature of $Me_3NB_{12}F_{11}^{-}$, we measured the conductivity of Li($Me_3NB_{12}F_{11}$) and several related salts as 0.01 M solutions in dimethoxyethane.¹⁸ The conductivity (σ) of Li($Me_3NB_{12}F_{11}$), 68 μ S cm⁻¹, is considerably higher than that of LiCF₃SO₃ (4 μ S cm⁻¹), somewhat

- (15) Nachtigal, C.; Häckel, O.; Preetz, W. Z. Anorg. Allg. Chem. 1997, 623, 1385.
- (16) Bondi, A. J. Phys. Chem. 1964, 68, 441.
- (17) (a) Bleasdale, C.; Clegg. W.; Ellwood, S. B.; Golding, B. T. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991, 47, 550. (b) Laube, T. Chem. Rev. 1998, 98, 1277.
- (18) Solution conductances were measured in a helium-filled glovebox at 24 ± 1 °C using a YSI model 3403 conductivity cell calibrated for inverted use (k = 0.9988 cm⁻¹) and a YSI model 32 conductivity bridge operated at 1 kHz. All of the lithium salts were anhydrous as determined by ¹H NMR spectroscopy.

⁽¹³⁾ Crystal data for [CPh₃][Me₃NB₁₂F₁₁]: red-orange; monoclinic; $P2_1/c$, a = 18.053(3) Å, b = 33.139(5) Å, c = 9.600(2) Å; $\beta = 91.459(4)^{\circ}$; Z = 8; T = 173(2) K; R = 0.045, $R_{\rm w} = 0.110$; GOF = 0.686.

⁽¹⁴⁾ Ivanov, S. V.; Rockwell, J. J.; Polyakov, O. G.; Gaudinski, C. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 1998, 120, 4224.

higher than that of Li(Dd₃NB₁₂ F_{11}) (54 μ S cm⁻¹), comparable to that of LiPF₆ (73 μ S cm⁻¹), and less than half that of Li(1-Me-CB₁₁F₁₁) (190 μ S cm⁻¹). The difference in σ values for Li(Me₃NB₁₂F₁₁) and Li(Dd₃NB₁₂F₁₁) is probably due to the lower anion mobility of the larger $Dd_3NB_{12}F_{11}^{-}$ anion. The difference in σ values for Li(Me₃NB₁₂F₁₁) and $Li(1-Me-CB_{11}F_{11})$ is more significant. Although the $Me_3NB_{12}F_{11}^{-}$ anion has the same icosahedral shape, the same number of B-F bonds, and the same overall 1- charge as the 1-Me-CB₁₁ F_{11}^{-} anion, it is a zwitterion with a 1+ ammonium moiety connected to a $B_{12}F_{11}^{2-}$ moiety. The individual fluorine atoms in Me₃NB₁₂F₁₁⁻ may accumulate more negative charge density than the fluorine atoms in 1-Me-CB₁₁ F_{11}^{-} , and therefore Me₃NB₁₂ F_{11}^{-} is more strongly ion pairing, and is probably more strongly coordinating, than 1-Me-CB₁₁ F_{11}^{-} . An alternative explanation is that the zwitterionic nature of Me₃NB₁₂F₁₁⁻ results in a much greater charge asymmetry along the pseudo-5-fold symmetry axis in $Me_3NB_{12}F_{11}^-$ than along the corresponding axis in 1-Me-CB₁₁F₁₁⁻. The greater charge asymmetry renders $Me_3NB_{12}F_{11}^{-}$ a more "polar" anion than 1-Me-CB₁₁F₁₁⁻.

The $H_3NB_{12}F_{11}^{-1}$ anion did not react with 20% aqueous DCl or, except for deprotonation to $H_2NB_{12}F_{11}^{2-}$, with 0.5 M aqueous NaOH during 18 days. As far as electrochemical stability is concerned, a cyclic voltammogram of Cs(Dd₃NB₁₂F₁₁) showed no oxidation wave up to 2.0 V vs Ag/AgCl (0.001 M acetonitrile solution containing 0.1 M N(*n*-Bu)₄PF₆). The compounds Li(Dd₃NB₁₂F₁₁) and Cs(Dd₃NB₁₂F₁₁) were recovered unchanged after heating (in a purified dinitrogen atmosphere) at 185 °C for 18 h and 200 °C for 0.5 h, respectively. When Cs(Dd₃NB₁₂F₁₁) was heated at 300 °C for 0.5 h, the Hofmann-degradation products Dd₂HNB₁₂F₁₁⁻ and DdH₂NB₁₂F₁₁⁻ were observed in ¹H NMR and mass spectra along with intact Dd₃NB₁₂F₁₁⁻, but

COMMUNICATION

no degradation of the B_{12} cage and no cleavage of B-N bonds were observed. Finally, the ¹H and ¹⁹F NMR spectra of Cs(Dd₃NB₁₂F₁₁) in toluene- d_8 were unchanged after the addition of 3 or 100 equiv of AlEt₃ except for the resonances due to AlEt₃ in the ¹H NMR spectrum.

As far as other halogen derivatives of $H_3NB_{12}H_{11}^{-}$ are concerned, Miller and co-workers reported the synthesis of a series of $R_3NB_{12}H_{11-n}X_n^-$ salts in 1965 (R = Me, X = Br, n = 1, 8; R = Et, X = Br, n = 6; R = Et, X = Cl,n = 7).¹⁹ Surprisingly, the only evidence reported at that time was elemental analysis, and no followup reports have appeared since then. Accordingly, we have started to re-explore the chlorination and bromination of the H₃NB₁₂H₁₁⁻ anion. When $Cs(H_3NB_{12}H_{11})$ was heated with N-chlorosuccinimide or bromine in refluxing acetic acid, mixtures of H₃NB₁₂Cl₁₁⁻/H₃NB₁₂HCl₁₀⁻ or H₃NB₁₂Br₁₁⁻/H₃NB₁₂HBr₁₀⁻, respectively, were observed by negative-ion electrosprayionization mass spectrometry. Compositionally pure salts of the H₃NB₁₂Cl₁₁⁻ and H₃NB₁₂Br₁₁⁻ anions, free from $H_3NB_{12}HX_{10}^-$ contamination, have not yet been isolated. We are continuing to investigate the N-alkylated and per-B-halogenated derivatives of H₃NB₁₂H₁₁⁻.

Acknowledgment. This research was supported by NSF Grant CHE-9905482. We also thank Air Products and Chemicals Inc. for financial support.

Supporting Information Available: Synthetic details and selected NMR spectral data for new compounds and crystallographic data in CIF format for [CPh₃][Me₃NB₁₂F₁₁]. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0344160

⁽¹⁹⁾ Miller, E. C.; Hertler, W. R.; Muetterties, E. L.; Knoth, W. H.; Miller, N. E. Inorg. Chem. 1965, 4, 1216.