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The reaction of [NEt4]2[Fe2OCl6] with sodium benzoate, 4,6-
dimethyl-2-hydroxypyrimidine (dmhp), and 1,1,1-tris(hydroxymethyl)-
ethane (H3thme) gives the undecametallic compound [NEt4]-
[Fe11O4(O2CPh)10(thme)4(dmhp)2Cl4]. X-ray crystallography, EPR
spectroscopy, bulk magnetic susceptibility studies, and low-
temperature single-crystal magnetic measurements were used to
characterize the compound. Magnetic measurements indicate an
S ) 11/2 ground state with the parameters g ) 2.03 and D )
−0.46 cm-1. Single-crystal magnetic studies show hysteresis of
molecular origin at T < 1.2 K with fast quantum mechanical
tunneling at zero field.

Iron-oxo clusters have been investigated for many years
for a variety of reasons. These range from biological models
for the iron oxo core of the iron storage protein ferritin,1 the
study of biomineralization processes that form iron-oxo
minerals,2 and more recently for single-molecule magnetism
(SMM) behavior. Although a variety of Mn-containing
SMMs have been reported in recent years,3 fewer Fe SMMs
are known.4-8 The requirement for SMM behavior is the

combination of a large spin ground state with a negativeD
value, but there are relatively few Fe(III) clusters with large
ground spin states: Fe4,S ) 5;5 Fe4,S ) 8;8,9 Fe8,S )
10;4 Fe10,S ) 11;6 Fe7,S ) 29/2;10 and Fe19,S ) 33/2;11

Following on from our recent success using the ligand 1,1,1-
tris(hydroxymethyl)ethane (H3thme) in Mn and Fe cluster
chemistry,12,13 we herein report the synthesis, structure, and
magnetic properties of a new undecametallic Fe cluster with
an S ) 11/2 spin ground state.

Reaction of [NEt4]2[Fe2OCl6] (1 equiv) with NaO2CPh (2
equiv), dmhp (1 equiv), and H3thme (1 equiv) in MeCN leads
to the formation of [NEt4][Fe11O4(O2CPh)10(thme)4(dmhp)2Cl4]
114 in e20% yield after 1 week.1 (Figure 1) crystallizes in
the monoclinic space groupP21/c.

The core of1 (Figure 2) consists of four fused butterfly
{Fe4O2}8+ motifs. The two butterflies in the center of the
core (Fe1, Fe2, Fe3, Fe5, and symmetry equivalents) share
a body Fe ion (Fe3) forming a planar central{Fe7O4}13+

unit (Fe1-Fe3-Fe1A ) 180.0°). The two peripheral but-
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terfly units (Fe2, Fe4, Fe5, Fe6, and symmetry equivalents)
are nonplanar and are situated, respectively, above and below
the plane of the central{Fe7O4}13+ core. The wing tip Fe
atoms (Fe2 and Fe6) lie respectively above and below the
plane of the body Fe atoms Fe4 and Fe5. The four thme3-

ligands are found in the peripheral{Fe4O2} units, with two
oxygen atoms acting asµ2-bridges, linking the Fe atoms
within the{Fe4O2} unit as well as between the{Fe4O2} and
{Fe7O4}13+ units. The third oxygen atom acts as aµ3-bridge
within the {Fe4O2} unit. The 10 PhCO2- ligands bridge in
their familiar µ2-mode, while the Cl- ions are all terminal.
The neutral dmhp ligands are also terminally bonded, with
the nitrogen atom protonated and hydrogen bonding to aµ2-
oxygen of a thme3- ligand (O14-N1, 2.796(8) Å).

{M4O2} butterfly units are common building blocks in the
structures of Fe(III) and Mn(III) clusters. The{M7O4}13+

subunit is also a common feature in larger clusters, including
Fe17/1911 and Fe11.15 In fact the Fe11 core is similar to a
Mn11 cluster reported by Christou and co-workers, but in
this case the peripheral units are [Mn4] cubes not butterflies.16

1 is only the second undecametallic Fe complex reported;

the original has no structural resemblance to1, being based
on a pentacapped trigonal prism.

Solid state dc magnetization measurements were per-
formed on1 in the range 2-300 K in a field of 0.2 T between
300 and 50 K, and 0.05 T between 50 and 2K. (Figure 3).
The room temperatureømT value of approximately 18.7 cm3

mol-1 K decreases to a minimum of 12.4 cm3 mol-1 K at
70 K, and then rises to a maximum of 15.4 cm3 mol-1 K at
12 K and then drops. This indicates that1 has a nonzero
spin ground state and that the ground spin state is higher
than9/2. In order to obtain the ground state spin, magnetiza-
tion data were collected in the ranges 2.0-6.0 K and 0.01-
5.5 T (Figure 4). The fits were made simultaneously on the
four different temperatures (2, 3, 4, and 6 K), assuming that
only the ground state is populated, giving a best fit ofS )
11/2, g ) 2.03, andD ) - 0.46 cm-1. The maximum value
of øMT at low temperature (15.4 cm3 mol-1 K) and the fact
that the magnetization data at 2 and 6 K can be fit with one
set of parameters strongly indicate that the ground state is
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Figure 1. The structure of the complex in1. Selected interatomic distances (Å): Fe3+-O, 1.827(18)-2.182(18), Fe3+-Cl, 2.266(8)-2.301(8).

Figure 2. The core of the complex in1.

Figure 3. Thermal variation oføMT in the ranges 300-50 K at 0.2 T and
50-2 K at 0.05 T.

Figure 4. Magnetization vsH/T plot at 2(0), 3(O), 4(4), and 6(3) K.
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indeedS) 11/2 and that the first excited state is rather high
in energy. The previously reported Fe11 complex has anS
) 1/2 spin ground state.

The polycrystalline EPR spectrum of1 at Q-band fre-
quency and 5 K (Figure 5) confirmed both the spin state
and magnitude and sign of the zero-field splitting deduced
from the magnetization curves. Significantly, it was impos-
sible to produce an adequate simulation of the spectrum
without inclusion of rhombicity (E * 0). Given the nature
of S and sign ofD, measurements were taken to see if1
acts as a SMM. Low-temperature (1.2-0.04 K) single-crystal
magnetic measurements were performed on1 using a micro-
SQUID instrument equipped with three orthogonal fields,
allowing the magnetic field to be scanned in all directions.

Below 1.2 K hysteresis loops are seen in magnetization
vs field studies whose coercivities increase with decreasing
temperature (Figure 6). A detailed study of the field sweep
rate dependence of the hysteresis loops showed that the
hysteresis at nonzero fields is due not to a phonon bottleneck
but to slow relaxation because of the anisotropy barrier. Slow
relaxation is seen atH ) 0, but the presence of strong
tunneling does not allow for a reliable Arrhenius plot. For
all SMMs the barrier is reduced atH ) 0 because of the
presence of tunneling. Even half-integer spin systems, which
in theory should not tunnel, do so because of coupling with
the environment: dipolar coupling between molecules,
hyperfine coupling, spin-spin cross relaxation, and other
multibody quantum processes. For example for a system with
S) 11/2, D ) -0.46 cm-1, E ) -0.055 cm-1 and assuming
an internal transverse field of approximately 10 mT, one can
estimate a tunnel splitting of ca. 2.8× 10-6 K and thus a
tunnel probability ofP ) 0.68 for a sweep rate of 0.1 T s-1,
in good agreement with our measurements. This has also
been observed in a [Mn4] cluster withS ) 9/2.17

Magnetic studies of{Fe4O2}8+ butterflies indicate com-
plexes with S ) 0 spin ground states,18 in contrast to
{Mn4O2}8+ complexes which usually exhibit anS) 3 spin
ground state.19 The difference has been explained by
considering the different competing exchange interactions
present: in{Mn4O2}8+ complexes the body-body interaction
is greater than the wing tip-body interaction, resulting in a
“frustrated” spin alignment of the wing tip ions and anS)
3 ground state. In{Fe4O2}8+ complexes the body-wing tip
exchange interaction dominates, resulting in anS ) 0 spin
ground state.1 contains four such{Fe4O2} units fused
together, creating a number of competing exchange interac-
tions leading to the stabilization of an intermediate spin
ground state ofS ) 11/2. 1 is only the second Fe11 cluster
reported (although various derivatives of the original Fe11
have been synthesized)20 and is the first to exhibit an
appreciable spin ground state. Combined with a negativeD
value this leads to1 being a new example of a SMM.
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Figure 5. Q-band EPR spectrum of1. Experimental:ν ) 33.9250 GHz;
T ) 5 K, power) 1.9 mW; modulation amplitude) 10 G; Simulation:g
) 2.03;D ) -0.38 cm-1; E ) 0.055 cm-1; ∆B ) 1300 G; Gaussian line
shapes were used.

Figure 6. Magnetization of1 (M) plotted as a fraction of maximum (Ms)
vs applied magnetic field (µ0H).
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