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Reduction of [Cr(N;;N)] (1) {(N3N)3_ = ((S|M63NCH2CH2)3N)3_}
with sodium powder in THF affords the vyellow, extremely
air-sensitive amidochromate(ll) [Na(THF),Cr(NsN)] (2) in good yield.
Complex 2 has an effective magnetic moment of 5.1 ug indicative
of a d* high-spin electronic configuration. *H NMR spectroscopy
in solution and single-crystal X-ray crystallography show that
compound 2 is composed of idealized Cs symmetric contact ion
pairs, in which trigonal-monopyramidal [Cr"(N3N)]~ anions are linked
to the [Na(THF),]* countercations by two bridging amide ligands.
DFT calculations of 1, 2, and the anion [Cr(N3N)]~ at the RI-BP86/
TZVPP level of theory provide in combination with extended Huickel
calculations a rationale for the observed structural changes from
1to 2

Triamidoamine ligands, [(RNCHCH,)3N]®™ (R = SiR’3,
aryl, alkyl), are an interesting class of tripodal ligands, which
bind to transition metals in a tetradentate manner to form
mostly complexes with a rigid, distorted trigonal-bipyramidal
or trigonal-monopyramidal coordination geometrythe

alkylidynes? or the synthesis of complexes with a metal
pnictogen triple bond.In comparison, studies on related
chromium complexes have been very rare sd ffe set
out to explore the chemistry of chromium with triamidoamine
ligands and discovered some marked differences from that
of the heavier group 6 elements. For example, [GR)Y
(1) is a very stable compléxand a useful starting material
for the synthesis of Cf triamidoamine complexéswhere-
as no evidence was found so far for the existence of
[M{(RNCH,CH,)3N}] (M = Mo, W).1Pe2>d3Fyrthermore,
complex1 reacts with Li[BEtH] to give the hydridochro-
mate(lll) [Li(THF)Cr(N3N)H],® which does not have any
molybdenum or tungsten counterparts. In this paper, we pro-
vide another example for the diverse chemistry of chromium
with the synthesis and full characterization of the trigonal-
monopyramidal amidochromate(ll) [Na(THExr(NsN)] (2).
Reduction of [Cr(NN)] (1) with 6 equiv of sodium powder
in THF affords selectively the chromium(ll) triamidoamine
complex [Na(THF)Cr(NsN)] (2), which was isolated after
crystallization from pentane as yellow, highly air-sensitive
cubes in 67% yield (see equation). Compkaxelts at 125

salient feature of these ligands is their ability to create a

sterically protected, 3-fold-symmetric pocket, in which two
metal-centeredr orbitals (approximately dand d,) and a
o orbital (approximately g) are available for bonding to

additional ligands. This stereoelectronic situation has enabled
a variety of remarkable transformations at molybdenum and

tungsten centers, such as the activation of dinitréga
carbon monoxidéthe C-C coupling of acetylide complexes
and o, a-dehydrogenation of alkyl complexes to give metal
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128°C and is readily soluble in hydrocarbons, diethyl ether,
and THF to give amber colored solutions, which turn
instantaneously brown upon exposure to air. The amido-
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Figure 1. DIAMOND plot of the molecular structure ¢ with thermal
ellipsoids drawn at the 40% probability level. Hydrogen atoms and split
positions (C44S and C54S) are omitted for clarity. Selected bond lengths
(A) and angles (deg) (see also Table 1): -N¥2 = 2.402(2), Na-N3 =
2.462(2), Na-O1 = 2.342(2), Na-02 = 2.336(2), Cr-N2—Na = 88.06(8),
Cr—N3—Na= 86.16(7), N2-Na—N3 = 80.97(7), O+ Na—02 = 91.96(10),
0O1-Na—N3 = 145.79(9), O2-Na—N2 = 123.19(9).

chromate is a strong reductant and behaves like a molecular
source of metallic sodium being oxidized even by Teflon to
give 1.1° Similarly, the reaction o2 with [(CsMes)Ge][BF]**
affords only the electron-transfer reaction produttand
[Ge(GMes),].

Complex2 was characterized by IR and NMR spectros-
copy and single-crystal X-ray crystallography (Figure 1,
Supporting Information)? The IR spectrum of in Nujol
resembles that of [Li(THF)Cr(dN)H]® in the fingerprint
region, indicating the structural similarity of these com-
pounds. The effective magnetic momemis of 2 was
determined in €@Dg at 308 K using the Evans methidand
was corrected for the underlying diamagneti$nihe mean
value of 5.1ug is close to the spin-only value of & High-
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spin electronic configuration (4.90g). Consequently, the
IH NMR spectrum of2 in C¢D¢ displays broadened and
shifted signals for the protons of the triamidoamine and THF
ligands (Supporting Information). On the basis of the relative
intensities, line widths, and chemical shifts, the sharper, less
shifted resonances &t2.98 andt-1.49 ppm are assigned to
the a- andS-protons of the THF ligand®,the broader, low-
field shifted resonances at36.1 and+30.1 ppm to the
SiMe; groups, and the three very broad resonancesiat8,
—50.1, and—143 ppm to methylene protons of the tri-
amidomine ligand backbori€.The integrating ratio of the
SiMe; resonances of 1:2 and the high solubility ®fin
hydrocarbons suggest that over@llsymmetric contact ion
pairs are present in weakly coordinating solvents, as found
in the solid state by X-ray crystallograph¥ln the 13C{*H}
NMR spectrum of2, only two shifted and broadened
resonances for the- and-carbons of the THF ligands are
observed at 76.4 and 27.0 ppm, respectively.

The crystal structure confirms thatis composed ofC;
(roughly Cs) symmetric contact ion pairs. Each ion pair
contains a [CHN3N)]~ anion, that is linked to the sodium
countercation through the nitrogen atoms of two bridging
amido groups (Figure 1). Thereby, a puckered-R2—Na—

N3 ring results (folding angle N2Cr—N3/N2—Na—N3 =
25.2), with the sodium atom being inclined toward the
vacant, apical coordination site at chromium. The tetrahedral
coordination sphere of sodium is completed by two THF
molecules and is strongly distorted as evidenced by the
bonding angles at the Na atom and by the dihedral angle
N2—Na—N3/01-Na—02 of 68.83. The chromium center
exhibits a trigonal-monopyramidal coordination geometry
with the bridgehead amine nitrogen atom N4 residing at the
apex of the pyramid. This coordination polyhedron is
unprecedented in chromium(ll) chemistry, all the other re-
ported Ct¥ amides displaying a trigonal-planar, square-planar,
or square-pyramidal coordination geométhin general,
most chromium(ll) complexes are octahedral suctrass
[CrMe,(dmpe)],?° or square-planar such as j{timeda)-
CrMey] (tmeda= Me,NCH,CH,NMe,).?1?2 The chromium
atom in2 is displaced from the equatorial plane defined of
the three amide nitrogen atoms N3 by 0.23 A toward
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Table 1. Selected Calculated Bond Lengths (A) and Angles (ded), of
[Cr(N3N)]~, and2 at the RI-BP86/TZVPP Level of Thedty

! [Cr(NaN)] - 2
calcd expt calcd calcd expt
Cr—N1 1.889  1.870(3) 2.011 1.958 1.988(2)
Cr—N2 1.889 1.886(3) 2.024 2.083 2.063(2)
Cr—N3 1.889 1.874(3) 2.031 2.098 2.077(2)
Cr—N4 2.329  2.243(3) 2.358 2282 2.251(2)
N1-Cr—N2 1185 118.8(2) 118.8 124.8  124.94(9)
N1-Cr—N3 118.6 118.6(2) 129.3 132.4  131.78(9)
N2—Cr—N3  118.7 119.6(2) 105.6 98.3 99.46(8)
N1-Cr—N4 83.1 83.8(2) 82.2 83.7 84.03(8)
N2-Cr—N4 83.1 84.5(2) 82.1 83.0 83.38(7)
N3—Cr—N4  83.1 84.4(2) 80.7 82.7 83.43(8)

aThe experimental values df and 2 are also listed for comparison
reasons.

the vacant coordination site. Coordination of the nitrogen
atoms N2 and N3 to sodium reduces the local symmetry of
the CrNsN core fromCs to C; and is accompanied by a
pyramidalization of the bridging amide groups, a reduction
of the N2-Cr—N3 angle to 99.46(8)(cf. N1-Cr—N2 =
124.94(93, N1-Cr—N3 = 131.78(9}) and an elongation
of the Cr—N bonds of the bridging amide groups (X2

= 2.063(2) A, CN3 = 2.077(2) A) with respect to the
Cr—N bond of the terminal, planar amide group (N1 =
1.988(2) A, sum of angles at N& 359.9) (Table 1). The
terminal CrNamige bond 0f 2 is considerably longer than
those ofl (1.877 A (mean valuef)whereas the GFNamine
bond length of (2.251(2) A) compares well with that df
(2.243(3) A). Density functional theoretical calculations of
1, 2, and the anion [Cr(BN)]~ were carried out at the RI-
BP86/TZVPP level of theory to rationalize these structural
trends (Supporting Information). Compléxwas found to
have a quartet ground state witla symmetry, and [Cr(BN)]~
and2 have a quintet ground state wi€ symmetry in full
agreement with the experimental results (vide supii)e
lowest energy doublet excited stateloénd triplet excited
states of [Cr(NN)]~ and2 are 56.7, 89.5, and 95.3 kJ mé|
higher in energy than the ground states, respectively. The
geometrical parameters of the optimized minimum struc-
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Figure 2. Frontier orbitals ofl (top) and2 (bottom) from extended Hikel
calculations on the RI-BP86/TZVPP optimized structures.
tures compare reasonably well with the experimental values
(Table 1).

The frontier orbitals ofl are a pair of almost degenerate
metal-based (mainlysgdand d,) singly occupied molecular
orbitals (SOMO, SOMO+ 1), a metal-based (mainly2j
singly occupied molecular orbital at higher energy (SOMO
+ 2), and a pair of degenerate LUMOSs, resulting from the
ol antibonding interaction of the metal,éind g2_2 orbitals
with the lone-pair orbitals of the i atoms (Figure 2).
Addition of one electron td to give [Cr(NsN)]~ occurs at
one of the degenerate LUMOs and causes a Jaktier
distortion, which lifts the degeneracy of thg/d,>-,>-based
orbitals upon reduction of the NXr—N3 angle from 118.7
(1) to 105.6, and decreases thereby the energy of the corre-
sponding SOMO (-2 orbital). Coordination of [Na(THR)*
to the C; symmetric anion [Cr(BN)]~ to give 2 mainly
enforces the distortion by further reduction of the-N2r—

N3 angle to 98.3(Table 1), and shifts thed »-based orbital
(SOMO+ 2) to even lower energy than the-thased orbital
(SOMO+ 3, Figure 2). Occupation of thezd,>-based orbital
with one electron in [Cr(BN)]~ and2 causes an elongation
of the Cr—Namige boNnds (cf. withl, Table 1) due to the Cr
Namige @ntibonding character of this orbital. Similarly, the
presence of one electron in the-tased orbital, that is
antibonding with respect to the €Naminelinkage, provides
a rationale for the long CfNamine bonds of1, 2, and the
anion [Cr(NsN)]~ (Table 1, Figure 2).

Analogous molybdenum(ll) and tungsten(ll) triamido-
amine complexes witR are presently unknown, underlining
the peculiarity of chromium among the group 6 elements.
Efforts are continued to uncover new reaction modes of
chromium triamidoamine complexes.
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Supporting Information Available: Experimental section
including the synthesis and characterizatior2oFigure showing
the *H NMR spectrum of2. X-ray crystallographic files in CIF
format for 2. Details of DFT and extended 'ldkel calculations.
This material is available free of charge via the Internet at http://
pubs.acs.org. The crystallographic data dfhave also been
deposited with the Cambridge Crystallographic Data Center under
the file number CCDC-212962. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from
the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax
(+44)1223-336033, e-mail deposit@ccdc.cam.ac.uk).
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