Inorg. Chem. 2004, 43, 1090–1099

Linear Hybrid Aminoborane/Phosphinoborane Chains: Synthesis, Proton-Hydride Interactions, and Thermolysis Behavior

Cory A. Jaska, Alan J. Lough, and Ian Manners*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6

Received August 6, 2003

The reaction of the lithiated phosphine-borane adducts Li[PPhR•BH₃] or Li[CH₂-PR₂•BH₃] with Me₂NH•BH₂Cl afforded the hybrid linear species $Me_2NH-BH_2-PPhR-BH_3$ (1, R = Ph; 2, R = H) or $Me_2NH-BH_2-CH_2-PR_2-BH_3$ (3, R = Ph; 4, R = Me). Single-crystal X-ray diffraction studies on 1 and 3, the first for linear hybrid aminoborane/ phosphinoborane adducts, confirmed the expected four-coordinate N–B–P–B and N–B–C–P–B frameworks. In addition, interactions between the protic N-H and hydridic B-H hydrogen atoms resulted in short intermolecular H····H contacts for 1, whereas 3 was found to possess an exceptionally short intramolecular H····H distance of 1.95 Å. Solution and solid state infrared studies on 3 and 4 also suggest that these dihydrogen interactions were maintained even in dilute solution. Hydrogen bond strengths in the range of 7.9 to 10.9 kJ mol⁻¹ indicate the presence of a relatively weak interaction. The thermal and catalytic dehydrocoupling reactivities of 1-4 were also investigated. Chain cleavage reactions were observed for 1 and 2 upon thermolysis at 130 °C to afford species such as $Me_2NH \cdot BH_3$, $[Me_2N-BH_2]_2$, $PhPRH \cdot BH_3$ (R = Ph, H), PhPRH (R = Ph, H), $Ph_2PH-BH_2-PPh_2-BH_3$, and also the low molecular weight polyphosphinoborane [PhPH–BH₂]_n ($M_{\rm w} \sim 5000$). Similar products were observed for the attempted catalytic dehydrocoupling reactions but under milder reaction conditions (50 °C). Thermolysis of 3 at 130 °C yielded the six-membered ring [BH2-CH2-PPh2]2 (5), which presumably results from the dissociation of Me₂NH•BH₃ from **3**. Thermolysis of **4** at 90 °C afforded Me₂NH•BH₃ and Me₃P•BH₃, in addition to a product tentatively assigned as $[BH_2-CH_2-PMe_2]_2$ (6).

Introduction

Thermal and transition-metal-catalyzed dehydrocoupling of main-group hydrides has recently emerged as a promising synthetic method for the synthesis of new cyclic and linear species involving group 13 and group 15 elements.^{1–11} For example, phosphorus macrocycles such as $(C_6H_4P_2)_8$ have

- (2) For metal-catalyzed dehydrocoupling routes involving group 13 or group 15 elements, see the following. B-Si: (a) Jiang, Q.; Carroll, P. J.; Berry, D. H. Organometallics 1993, 12, 177. Si-P: (b) Shu, R.; Hao, L.; Harrod, J. F.; Woo, H. G.; Samuel, E. J. Am. Chem. Soc. 1998, 120, 12988. Si-N: (c) He, J.; Lui, H. Q.; Harrod, J. F.; Hynes, R. Organometallics 1994, 13, 336. (d) Lui, H. Q.; Harrod, J. F. Organometallics 1992, 11, 822. B-C: (e) Coapes, R. B.; Souza, F. E. S.; Thomas, R. L.; Hall, J. J.; Marder, T. B. Chem. Commun. 2003, 614.
- (3) (a) Hoskin, A. J.; Stephan, D. W. Angew. Chem., Int. Ed. 2001, 40, 1865. (b) Etkin, N.; Fermin, M. C.; Stephan, D. W. J. Am. Chem. Soc. 1997, 119, 2954.
- (4) Böhm, V. P. W.; Brookhart, M. Angew. Chem., Int. Ed. 2001, 40, 4694.

been prepared from the Zr-catalyzed homodehydrocoupling of bis(phosphine) precursors.³ In addition, tetraphenyldiphosphine (Ph₂P–PPh₂) has been found to result from the dehydrocoupling of Ph₂PH in the presence of a Rh catalyst,⁴

- (5) Vogel, U.; Timoshkin, A. Y.; Scheer, M. Angew. Chem., Int. Ed. 2001, 40, 4409.
- (6) (a) Fazen, P. J.; Remsen, E. E.; Beck, J. S.; Carroll, P. J.; McGhie, A. R.; Sneddon, L. G. *Chem. Mater.* **1995**, *7*, 1942. (b) Fazen, P. J.; Beck, J. S.; Lynch, A. T.; Remsen, E. E.; Sneddon, L. G. *Chem. Mater.* **1990**, *2*, 96.
- (7) (a) Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I. Angew. Chem., Int. Ed. 1999, 38, 3321. (b) Dorn, H.; Singh, R. A.; Massey, J. A.; Nelson, J. M.; Jaska, C. A.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2000, 122, 6669. (c) Dorn, H.; Vejzovic, E.; Lough, A. J.; Manners, I. Inorg. Chem. 2001, 40, 4327. (d) Dorn, H.; Rodezno, J. M.; Brunnhöffer, B.; Rivard, E.; Massey, J. A.; Manners, I. Macromolecules 2003, 36, 291. (e) Jaska, C. A.; Dorn, H.; Lough, A. J.; Manners, I. Chem. Eur. J. 2003, 9, 271.
- (8) For a recent report of B(C₆F₅)₃ catalyzed formation of P–B bonds via dehydrocoupling, see: Denis, J.-M.; Forintos, H.; Szelke, H.; Toupet, L.; Pham, T.-N.; Madec, P.-J.; Gaumont, A.-C. *Chem. Commun.* 2003, 54.
- (9) Jaska, C. A.; Bartole-Scott, A.; Manners, I. Dalton Trans. 2003, 4015.
- (10) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Chem. Commun. 2001, 962.
- (11) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424.

10.1021/ic034938f CCC: \$27.50 © 2004 American Chemical Society Published on Web 01/08/2004

^{*} Author to whom correspondence should be addressed. Fax: (+1) 416-978-2450. E-mail: imanners@chem.utoronto.ca.

For a general review of catalytic dehydrocoupling routes to main group species, see: Gauvin, F.; Harrod, J. F.; Woo, H. G. Adv. Organomet. Chem. 1998, 42, 363.

and the thermal dehydrocoupling of P–H and Al/Ga–H bonds has been employed to yield donor stabilized phosphanylalane and -gallane species.⁵ Thermal heterodehydrocoupling of borazine has also been shown to afford polyborazylene, which is a useful polymeric precursor for the synthesis of boron nitride ceramics.⁶ Our group has recently reported that the catalytic dehydrocoupling of secondary phosphine–borane adducts yields either linear or cyclic oligophosphinoboranes, while the primary adducts give high molecular weight polyphosphinoboranes of the type [RPH– BH₂]_n (R = Ph, ⁱBu, etc.).^{7–9} We have also shown that secondary amine–borane adducts undergo dehydrocoupling at 25 °C in the presence of Rh precatalysts to yield the cyclic dimers [R₂N–BH₂]₂, while reactions with primary adducts or NH₃·BH₃ yield borazine [RN–BH]₃ derivatives.^{9–11}

During the course of our work on amine-boranes, we discovered that the catalytic dehydrocoupling of the linear adducts R₂NH-BH₂-NR₂-BH₃ yields the cyclic [R₂N-BH₂]₂.¹¹ This suggested that if the dehydrocoupling of analogous linear species could be induced by either thermal or catalytic methods, the formation of novel heterocyclic or polymeric products would result. In the early 1970s, Keller and co-workers reported the synthesis of the hybrid adducts $R_3N-BH_2-PMe_2-BH_3$ (R = H, Me) from the reaction of the appropriate amine R₃N with the salt Li[BH₃-PMe₂-BH₃].¹² High temperature (150–240 °C) thermolysis of these compounds resulted in the formation of [Me₂P-BH₂]₃ in all cases, and the appropriate amine-borane adduct R₃N·BH₃ or their thermal decomposition products (e.g. $[Me_2N-BH_2]_2$, [MeN-BH]₃, [HN-BH]₃). However, the compounds were not structurally characterized, and lower temperature (e.g. <150 °C) thermal and catalytic dehydrocoupling reactions were not investigated. In this paper, we present the synthesis and characterization of a series of new linear hybrid adducts with N-B-P-B (1 and 2) and N-B-C-P-B (3 and 4) frameworks, as well as an exploration of their thermal and catalytic dehydrocoupling chemistry.

As a further consideration, the presence of unconventional proton-hydride¹³ bonds ($H^{\delta+\dots\delta-}H$) have been detected in the solid state structures of the linear amine-borane adducts $R_2NH-BH_2-NR_2-BH_3$.^{11,14} This unique type of hydrogen bonding between protic and hydridic hydrogen atoms has been found to be highly directional in nature and moderately strong (13–29 kJ mol⁻¹) and can exert an influence on solid state physical and chemical properties.^{15–18} Such proton-hydride interactions would be anticipated in species **1–4**,

- (12) Schwartz, L. D.; Keller, P. C. Inorg. Chem. 1972, 11, 1931.
- (13) $H^{\delta+\dots\delta-}H$ interactions have also been described as dihydrogen bonds.
- (14) Nöth, H.; Thomas, S. Eur. J. Inorg. Chem. 1999, 1373.
- (15) For some recent reviews, see: (a) Desiraju, G. R. Acc. Chem. Res. 2002, 35, 565. (b) Custelcean, R.; Jackson, J. E. Chem. Rev. 2001, 101, 1963.
- (16) (a) Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M.; Richardson, T. B.; Crabtree, R. H. *J. Am. Chem. Soc.* **1999**, *121*, 6337. (b) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstein, O.; Rheingold, A. L.; Koetzle, T. F. Acc. Chem. Res. **1996**, *29*, 348.
- (17) For NMR studies on H···H interactions, see: (a) Güizado-Rodríguez, M.; Ariza-Castolo, A.; Merino, G.; Vela, A.; Nöth, H.; Bakhmutov, V. I.; Contreras, R. J. Am. Chem. Soc. 2001, 123, 9144. (b) Güizado-Rodríguez, M.; Flores-Parra, A.; Sánchez-Ruiz, S. A.; Tapia-Benavides, R.; Contreras, R.; Bakhmutov, V. I. Inorg. Chem. 2001, 40, 3243.

and would be expected to influence the thermal or catalytic dehydrocoupling reactivity. Correlation between proton—hydride bonding and the observed dehydrocoupling chemistry is of clear interest and will also be discussed.

Results and Discussion

Synthesis and Characterization of Me₂NH-BH₂-**PPhR**-**BH**₃ (1, **R** = **Ph**; 2, **R** = **H**). Recently, we have found that reaction of R₂NH·BH₂Cl with Li[NR₂·BH₃] results in the linear adducts $R_2NH-BH_2-NR_2-BH_3$ (R = Me; R = $1,4-C_4H_8$) in moderate yields.¹¹ This appears to be a general method for the synthesis of linear adducts with various N-substituents, particularly on the internal nitrogen atom. When the same method was applied but a lithiated phosphine-borane adduct was used, the linear hybrid adducts $Me_2NH-BH_2-RPPh-BH_3$ (1, R = Ph; 2, R = H) were synthesized (eq 1). For example, the treatment of Ph_2PH . BH₃ with ⁿBuLi gave Li[PPh₂•BH₃], which was then reacted with $Me_2NH \cdot BH_2Cl$ to give 1 in 48% yield. Compound 1 was fully characterized by ¹H, ¹¹B, ¹³C, and ³¹P NMR, mass spectrometry, infrared spectroscopy, elemental analysis, and also single-crystal X-ray diffraction. The ¹¹B NMR spectrum of **1** shows two resonances at δ -11.3 and -39.9 ppm, which were assigned to the internal (N-BH₂-P) and terminal (P-BH₃) boron atoms, respectively. These chemical shifts agree with those found for R₃N-BH₂-PMe₂-BH₃, which vary between δ -6.2 and -11.2 ppm for the BH₂ group, and δ -35.2 and -37.6 ppm for the BH₃ group.¹² The ³¹P NMR spectrum displays one resonance at δ –19.9 ppm, which is indicative of a PPh₂ unit between two boron atoms.^{7a-c}

Further characterization of **1** was performed using X-ray crystallography, and this species represents the first example of a structurally characterized, linear hybrid adduct with a N–B–P–B backbone. The molecular structure of **1** is shown in Figure 1a, while a list of the selected bond lengths and angles can be found in Table 1. Bond lengths of 1.598(2), 1.964(2), and 1.935(2) Å were found for the terminal N–B, internal B–P, and terminal P–B bonds, respectively. A similar arrangement of longer internal/shorter terminal B–P bonds was found in the crystal structures of other linear phosphine–borane adducts.^{7a–c,19} The angles around the four-coordinate nitrogen, boron, and phosphorus atoms were all found to be approximately tetrahedral. An interesting feature is the association of the chains in the solid state. Proton–hydride bonds (H^{δ+…,δ–}H) between N–H and B–H hydro-

⁽¹⁸⁾ For example, cyclotrigallazane [H₂Ga-NH₂]₃ possesses N-H^{δ+}··· ^δ-H-Ga interactions in the solid state, which leads to the formation of *cubic* GaN upon pyrolysis: (a) Campbell, J. P.; Hwang, J. W.; Young, V. G., Jr.; Von Dreele, R. B.; Cramer, C. J.; Gladfelter, W. L. *J. Am. Chem. Soc.* **1998**, *120*, 521. (b) Jegier, J. A.; McKernan, S.; Purdy, A. P.; Gladfelter, W. L. Chem. Mater. **2000**, *12*, 1003.

⁽¹⁹⁾ Greenwood, N. N.; Kennedy, J. D.; McDonald, W. S. J. Chem. Soc., Dalton Trans. 1978, 40.

Figure 1. Molecular structure of **1**. All hydrogen atoms bonded to carbon are omitted for clarity. Selected bond lengths and angles are presented in Table 1.

Table 1.	Selected Bond	l Lengths (Å)	and Angles	(deg) for 1	and $[1]_2$
----------	---------------	---------------	------------	-------------	-------------

N(1)-B(1) B(1)-P(1) P(1)-P(2)	1.598(2) 1.964(2)	N(1)-B(1)-P(1) B(1)-P(1)-B(2) C(1) = N(1) = C(2)	110.25(9) 115.19(7) 110.6(1)
P(1)-B(2) N(1)-H(1N) N(1)-C(1)	1.935(2) 0.81(2) 1.493(2)	C(1)-N(1)-C(2) C(1)-N(1)-B(1) C(2)-N(1)-B(1)	110.6(1) 109.8(1) 114.3(1)
N(1)-C(2) P(1)-C(3) P(1)-C(0)	1.471(2) 1.828(1) 1.821(1)	B(1)-P(1)-C(9) B(1)-P(1)-C(3) B(2)-P(1)-C(0)	107.48(6) 109.49(7)
	2.244	B(2) - P(1) - C(3) B(2) - P(1) - C(3)	111.15(7)
$H(1N)-H(3^{*})$ $H(1N)-H(4^{*})$ $H(1N)-H(5^{*})$	2.24^{a} 2.06^{a} 2.99^{a}	$N(1^*)-H(1N)-H(3)$ $N(1^*)-H(1N)-H(4)$ $B(2)-H(4)-H(1N^*)$	131.3 ^a 159.2 ^a 85.4 ^a
		B(2)-H(3)-H(1N*)	94.0 ^a

^{*a*} Using the normalized bond distances of d(N-H) = 1.03 Å and d(B-H) = 1.21 Å.

gen atoms link two molecules together to form a dimeric structure as shown in Figure 1b. Normalizing the N–H and B–H bond distances to 1.03 and 1.21 Å,^{16a} respectively, two short interaction distances of 2.24 and 2.06 Å were found. A third distance of 2.99 Å was found but is well beyond the sum of the van der Waals radii for two hydrogen atoms (2.40 Å).²⁰ Linear N–H···H angles of 131.3° and 159.2° and bent B–H···H angles of 85.4° and 94.0° were found and are consistent with other N–H···H–B proton–hydride bonded structures.^{11,14,16a} Proton–hydride bonding interactions to yield dimeric species in the solid state have also been

observed in the structures of $Me_2NH-BH_2-NMe_2-BH_3^{14}$ and $(1,4-C_4H_8)NH-BH_2-N(1,4-C_4H_8)-BH_3^{11}$

For compound 2, which was synthesized in 83% yield, similar chemical shifts were observed in the ^{11}B (δ -12.8 and -41.5 ppm) and ³¹P (δ -54.8 ppm) NMR spectra. In addition, further evidence for a P-H bond was found in the ¹H-coupled ³¹P NMR spectrum, in which the resonance at δ -54.8 ppm was found to split into a doublet ($J_{\rm PH} = 344$ Hz). In the ¹H NMR spectrum, the P-H resonance occurs as a doublet of sextets resulting from coupling to one phosphorus nucleus and five adjacent protons on boron ($J_{\rm HH}$ = 6 Hz). The crystal structure of 2 was also of interest as N-H···H-B and P-H···H-B contacts may be present simultaneously in the solid state, leading to a highly aggregated, proton-hydride bonded network. A low resolution X-ray structure was obtained which showed that the packing of the molecules did not allow for a favorable alignment for any P-H····H-B or N-H····H-B protonhydride interactions. However, numerous attempts to obtain a more accurate X-ray analysis were hampered by the formation of low quality crystals.

Attempted Thermal and Catalytic Dehydrocoupling of 1 and 2. Previous work has shown that thermolysis of the linear hybrid adducts $R_3N-BH_2-PMe_2-BH_3$ (R = H or Me) at temperatures of 150-240 °C results in skeletal bond cleavage (vide supra).¹² We found that thermolysis of 1 at 130 °C for 20 h also resulted in backbone cleavage, with the formation of a complex mixture of products (eq 2a). Ph_2PH (trace), $Ph_2PH-BH_2-PPh_2-BH_3$ (ca. 15%), Me_2NH . BH₃ (ca. 10%), [Me₂N-BH₂]₂ (ca. 40%), Ph₂PH•BH₃ (ca. 35%), and unreacted 1 were all identified by their respective ¹¹B and ³¹P NMR shifts. In contrast, we found that the thermolysis of 2 was complete in only 2 h at 130 °C, resulting solely in the formation of $[Me_2N-BH_2]_2$ and the polymer $[PhPH-BH_2]_n$ (eq 2c), which was isolated in quantitative yield after precipitation into pentane. The polymer [PhPH-BH₂]_n was characterized by ¹H, ¹¹B, and ³¹P NMR spectroscopy, which gave spectra identical with those of samples previously synthesized in our group by the Rh-catalyzed dehydrocoupling of PhPH₂•BH₃ at 90-130 °C.^{7a,b,d} Dynamic light scattering (DLS) on a solution of $[PhPH-BH_2]_n$ in THF resulted in a bimodal size distribution with peak values of $D_{\rm h} \approx 1.8$ and 163 nm. As previously observed, the two peaks may arise from the presence of single polymer chains $(D_{\rm h})$ \approx 1.8 nm) and large polymer aggregates ($D_{\rm h} \approx 163$ nm).^{7b} Indeed, after 4 days only a single size distribution was observed with $D_{\rm h} \approx 1.4$ nm, indicating that the larger aggregates had dissociated in a manner similar to that noted previously.^{7b} The small D_h values of 1-2 nm suggest that low molecular weight polymer is formed. Previous work on $[PhPH-BH_2]_n$ has shown that samples with a D_h of 1 nm correspond to an absolute weight-average molecular weight $(M_{\rm w})$ value of ca. 5000 by static light scattering (SLS).^{7b} We hoped that by utilizing a transition-metal catalyst, dehydrocoupling of 1 might proceed at lower temperatures to yield cyclic or polymeric $[Me_2N-BH_2-RPPh-BH_2]_n$ species. However, when 1 was treated with 1.5 mol % of [Rh(1,5 $cod)(\mu$ -Cl)]₂ (1,5-cod = 1,5-cyclooctadiene), chain cleavage

⁽²⁰⁾ Bondi, A. J. Phys. Chem. 1964, 68, 441.

products were again observed (eq 2b). Thus, after 24 h at 50 °C, signals associated with Me₂NH·BH₃ (ca. 5%), [Me₂N–BH₂]₂ (ca. 45%), and Ph₂PH·BH₃ (ca. 50%) as well as unreacted **1** were observed in the ¹¹B and ³¹P NMR spectra. After 48 h, an additional resonance due to free Ph₂PH (trace) was observed in the ³¹P NMR. Compound **1** was found to be completely consumed after 10 days. In contrast, under the same conditions in the absence of catalyst, only 35% conversion of **1** was detected. Similarly, when **2** was treated with 1.3 mol % of [Rh(1,5-cod)(μ -Cl)]₂ at 50 °C, complete conversion to Me₂NH·BH₃ (ca. 10%), PhPH₂ (trace), [Me₂N–BH₂]₂ (ca. 40%), and PhPH₂·BH₃ (ca. 50%) was detected after 10 days (eq 2d). In contrast, under the same conditions in the absence of catalyst, only 10% conversion of **2** was detected.

Synthesis and Characterization of Me₂NH-BH₂-CH₂- PR_2 -BH₃ (3, R = Ph; 4, R = Me). The incorporation of a spacer unit into the skeleton of compounds 1 and 2 may prevent chain cleavage and might potentially allow the formation of larger cyclic species or polymeric products via dehydrocoupling. A methylene group can be easily incorporated through the use of a tertiary phosphine-borane adduct containing a methyl group $MePR_2 \cdot BH_3$ (R = Ph, Me). Treatment with "BuLi affords Li[CH2-PR2•BH3], which was then reacted with Me₂NH·BH₂Cl to yield Me₂NH-BH₂- $CH_2-PR_2-BH_3$ (3, R = Ph; 4, R = Me) in yields of 20% and 32%, respectively (eq 3). The low yields result from a side reaction between the N-H proton of Me₂NH·BH₂Cl and Li[CH₂-PR₂•BH₃] regenerating MePR₂•BH₃ and forming Li[NMe₂·BH₂Cl]. The latter product then eliminates LiCl to form [Me₂N-BH₂]₂, which was frequently detected in the reaction mixture. The ³¹P NMR spectra of 3 and 4 showed broad quartets and at δ 16.6 ($J_{PB} = 79$ Hz) and 3.1 ppm $(J_{\rm PB} = 70$ Hz), respectively. The ¹¹B NMR spectrum of **3** showed two resonances for the BH₂ and BH₃ groups at δ -11.7 and -40.2 ppm, respectively. Similar ¹¹B shifts were observed for 4, but with resolved B-H couplings; a triplet at δ -9.9 ($J_{\rm BH}$ = 98 Hz) and a quartet of doublets at δ -40.2 ppm ($J_{BP} = 70$ Hz, $J_{BH} = 94$ Hz). The most interesting feature of the ¹³C NMR spectra arises from the resonance associated with the internal CH₂ group, which gave broad signals at δ 10.9 and 14.2 ppm for 3 and 4, respectively, due to the nearby quadrupolar boron nucleus. The ¹H NMR

Figure 2. Molecular structure of **3**. All hydrogen atoms bonded to carbon in the phenyl rings are omitted for clarity. Selected bond lengths and angles are presented in Table 2.

Table 2. Selected Bond Lengths (Å) and Angles (deg) for 3

^{*a*} Using the normalized bond distances of d(N-H) = 1.03 Å and d(B-H) = 1.21 Å.

spectra of **3** and **4** also show the presence of a broad resonance due to the internal CH_2 group at δ 1.31 and 0.54 ppm, respectively. Further characterization of **3** was per-

$$Me_2NH - BH_2CI + LiCH_2 - R_2P - BH_3 - LiCI$$

$$Me_2NH - BH_2 - CH_2 - PR_2 - BH_3 \qquad (3)$$

$$3: R = Ph$$

$$4: R = Me$$

formed using X-ray crystallography, the molecular structure of which is shown in Figure 2. A list of the selected bond lengths and angles for 3 can be found in Table 2. The terminal N-B and P-B adduct bonds were determined to be 1.619(2) and 1.928(2) Å, respectively, and are typical of N-B and P-B adduct bond distances. The internal B-C and C-P distances were found to be 1.634(2) and 1.801(2)Å, respectively, which are also normal distances for these types of bonds. One noteworthy feature of interest was the presence of an intramolecular proton-hydride interaction between the terminal N-H and B-H hydrogen atoms, effectively giving a seven-membered heterocycle. Using normalized B-H and N-H bond distances (vide supra), a H····H contact distance of 1.95Å was found. This is much shorter than the H····H distances found in 1 (2.06 and 2.24 Å), in which the bonding interaction is intermolecular in nature. This distance is also shorter than the shortest H····H distance (2.02(3) Å) found in the neutron diffraction study of NH₃•BH₃.^{16a}

Attempted Thermal and Catalytic Dehydrocoupling of 3 and 4. Thermolysis of 3 at 130 °C for 6 h was found to result in solidification of the initially liquid reactant. The NMR spectra of the reaction mixture indicated partial

conversion to a new product **5**, with the presence of new resonances at δ 7.7 (³¹P) and -33.6 ppm (¹¹B). The ¹¹B NMR spectrum also showed resonances at δ 3.5 and -13.4 ppm which were assigned to [Me₂N-BH₂]₂ and Me₂NH·BH₃, respectively. Further heating of the solid for 24 h was found to result in full conversion to the six-membered cyclic dimer [BH₂-CH₂-PPh₂]₂ (**5**) in 98% yield (eq 4a). The ¹³C NMR of **5** showed a broad resonance at δ 6.3 ppm attributed to the internal CH₂ group. The mass spectrum of **5** was also indicative of a dimeric species, with the parent ion for both the dimer and monomer occurring at m/z = 424 (10%) and 212 (6%), respectively. Heating of **4** at 90 °C in the absence

of solvent for 3 days was found to result in mainly sublimation of the volatile starting material. However, ¹H, ¹¹B, and ³¹P NMR spectra of the reaction mixture indicated partial conversion (ca. 50%) of 4 to Me₂NH·BH₃, Me₃P· BH₃, and a product that may be the cyclic dimer $[BH_2 CH_2 - PMe_2]_2$ (6). Evidence for the formation of 6 was obtained from the ¹H (δ 1.52 (d), Me), ¹¹B (δ -30.5 (dt)), ¹³C (δ 10.6 (d), Me), and ³¹P NMR (δ 6.0 (q)) spectra. This assignment is tentative, as the anticipated broad ¹H and ¹³C resonances for the CH₂ group were not observed due to overlapping signals. Attempts to isolate 6 from the reaction mixture by fractional sublimation were unsuccessful. Heating of 4 at 130 °C in solution was found to result in complete conversion to [Me₂N-BH₂]₂ and Me₃P·BH₃. The presence of Me₃P·BH₃ in the thermolysis reaction of 4 suggests that a different chain cleavage pathway is operating compared to that of **3**, as MePPh₂·BH₃ was not observed in the latter case.

Catalytic dehydrocoupling trials performed on both **3** and **4** with $[Rh(1,5-cod)(\mu-Cl)]_2$ (1-5 mol %) at either 25 or 50 °C were found to result in no observable reaction. Upon heating to 90 °C, **3** and **4** were completely consumed after 20 h. The only products that could be identified by NMR were MePPh₂•BH₃ (for **3**) and Me₃P•BH₃ (for **4**). Blank reactions for both **3** and **4** at 90 °C in the absence of catalyst were found to result in no significant conversion after 20 h.

The cyclic **5** was further characterized by X-ray crystallography, the molecular structure of which is shown in Figure 3. A list of the selected bond lengths and angles for **5** can be found in Table 3. The six-membered ring adopts a chair conformation, with typical B–P, P–C, and B–C bond lengths of 1.937(2), 1.800(2), and 1.645(3)Å, respectively. The angles around the four-coordinate P and B atoms are all approximately tetrahedral, ranging from 104.89(9)° to 113.2(1)° for phosphorus and 102.8(1)° to 113.5(1)° for

Figure 3. Molecular structure of **5**. All hydrogen atoms bonded to carbon in the phenyl rings are omitted for clarity. Selected bond lengths and angles are presented in Table 3.

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 5

P(1)-B(1)	1.937(2)	C(1) - P(1) - B(1)	110.4(1)
P(1) - C(1)	1.800(2)	C(1) - P(1) - C(2)	108.28(9)
P(1) - C(2)	1.816(2)	C(1) - P(1) - C(8)	108.3(1)
P(1) - C(8)	1.815(2)	B(1)-P(1)-C(2)	111.5(1)
$B(1) - C(1)^*$	1.645(3)	B(1) - P(1) - C(8)	113.2(1)
		P(1)-B(1)-C(1)*	109.4(2)
		P(1)-C(1)-B(1)*	112.1(1)

boron. There are three previous examples describing the synthesis of six-membered BCP rings,²¹ with [EtBR-CH₂-RPPh]₂ (R = 1,3-EtC=CMe-SiMe₂) being the lone example which has been characterized by X-ray crystallography to date.^{21a} Interestingly, the synthesis of [BH₂-CHPh-PHMes*]₂ (Mes* = 2,4,6-tri-*tert*-butylphenyl) is facilitated via dissociation of BH₃ and THF from the linear adduct BH₃-PHMes*-CHPh-BH₂-THF.^{21c}

Evaluation of Solid State Intra- or Intermolecular Proton-Hydride Interactions in 1–4 by Infrared Spectroscopy. To confirm the presence of proton-hydride bonding interactions in 1–4, solid state and solution IR spectroscopy was used. It has been acknowledged that the presence of hydrogen bonding in molecules can be inferred from the appearance of broadened, lower frequency stretching absorptions when compared with non-H-bonded systems. In particular, amine-borane adducts have been shown to participate in proton-hydride bonding through either self-association^{11,14,16a} or the presence of protic H atom sources (e.g. O–H or N–H).^{22–25} In these cases, the hydrogen bond acceptor becomes the hydridic H atoms attached to boron (or the B–H bond itself),²⁶ despite the lack of a lone pair of

- (22) Brown, M. P.; Heseltine, R. W. J. Chem. Soc., Chem. Commun. 1968, 1551.
- (23) Brown, M. P.; Heseltine, R. W.; Smith, P. A.; Walker, P. J. J. Chem. Soc. A 1970, 410.
- (24) Burg, A. B. Inorg. Chem. 1964, 3, 1325.
- (25) Patwari, G. N.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105, 8642.

^{(21) (}a) Köster, R.; Seidel, G.; Müller, G.; Boese, R.; Wrackmeyer, B. Chem. Ber. 1988, 121, 1381. (b) Ionkin, A. S.; Ignatéva, S. N.; Nekhoroshkov, V. M.; Efremov, J. U. J. A.; Arbuzov, B. A. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 53, 1. (c) Yoshifuji, M.; Takahashi, H.; Toyota, K. Heteroatom Chem. 1999, 10, 187.

Table 4.	Selected IR	Stretching	Frequencies	for	Compounds	1 - 4
----------	-------------	------------	-------------	-----	-----------	-------

compound	$\nu(\rm NH)$	$\nu(BH)_{asym}$	$\nu(BH)_{sym}$
Me ₃ N•BH ₃		2382	2263
Me ₂ NH•BH ₃	3204	2372	2260
$Me_2NH\cdot BH_3$ (pure liquid) ^b	3180	2366	2265
Me ₂ NH•BH ₃ (0.0021 M in CCl ₄) ^c	3300		
NH ₃ •BH ₃ ^d	3317	2329	2281
NH ₃ •BH ₃ ^e	3386	2427	2340
1 1 (0.005 M) ^f	3178 3224	2337 2376	2260 2279
2 (0.005 M) ^f	3178 3232	2342 2391	2267 2271
3 3 (0.005 M) ^f	3215 3209	2370 2380	2282 2284
4 4 (0.005 M) ^f	3200 3204	2345 2363	2286 2285

^{*a*} Spectra were obtained as Nujol mulls unless otherwise specified. ν reported in cm⁻¹. ^{*b*} Reference 24. ^{*c*} Reference 22. ^{*d*} Spectra obtained as a pressed KBr pellet. ^{*e*} Spectra obtained as isolated NH₃·BH₃ in an argon matrix on a CsI window at liquid hydrogen temperature. Reference 28. ^{*f*} Solution spectra were obtained in dry CH₂Cl₂.

electrons or a π system. However, to establish these protonhydride interactions, values for the non-H-bonding N-H and B-H stretching absorption were required. This was accomplished by obtaining the $v_{\rm NH}$ and $v_{\rm BH}$ stretching absorptions for the amine-borane adducts Me₃N·BH₃, Me₂NH· BH₃, and NH₃·BH₃, and also 1-4 (Table 4). For Me₃N·BH₃, which lacks $v_{\rm NH}$, non-H-bonded values of $v_{\rm BH}$ were observed at 2382 and 2263 $\rm cm^{-1}$, for the asymmetric (asym) and symmetric (sym) modes, respectively. For Me₂NH·BH₃, in which intermolecular N-H····H-B interactions are present in the solid state, values of 3204 cm^{-1} and of 2372 and 2260 cm⁻¹ were found for $v_{\rm NH}$ and $v_{\rm BH}$ (asym and sym), respectively. Brown has reported a value of 3300 cm⁻¹ for the non-H-bonded ν_{NH} for Me₂NH·BH₃ in dilute CCl₄ $(0.0021 \text{ M}).^{22}$ Thus, there is a frequency shift of $\Delta \nu = 96$ cm^{-1} for v_{NH} in H-bonded and non-H-bonded samples of Me₂NH•BH₃.²⁷ There appears to be little difference in the values of v_{BH} between Me₃N·BH₃ and Me₂NH·BH₃, with $\Delta \nu$ values of 10 (asym) and 3 cm⁻¹ (sym). The protonhydride interactions in Me₂NH·BH₃ are also preserved in the liquid state, with values of 3180 cm⁻¹ for $\nu_{\rm NH}$, and 2366 and 2265 cm⁻¹ for v_{BH} (asym and sym), respectively.²⁴ To confirm that $v_{\rm BH}$ does shift to lower frequency upon association via dihydrogen bonding, the spectrum of NH₃. BH₃ was obtained as a KBr disk yielding values of 2329 and 2281 cm⁻¹.²⁸ This was compared with that of an unassociated sample obtained in a rare gas matrix, which yielded values of 2427 and 2340 cm⁻¹.²⁹ Thus, there is a large frequency shift of $\Delta \nu = 98$ and 59 cm⁻¹ for $\nu_{\rm BH}$ on going from unassociated to associated samples of NH₃·BH₃. In addition, a large shift of $\Delta \nu = 69 \text{ cm}^{-1}$ results for ν_{NH} . These $\Delta \nu$ values are reasonable as the solid state structure of NH₃·BH₃ has been shown to be highly associated, with the presence of many long and short-range H····H interactions.^{16a,30}

In the case of 1, the solid state IR spectrum shows absorptions at 3178 cm⁻¹ due to $v_{\rm NH}$, and at 2337 and 2260 cm^{-1} due to v_{BH} (asym and sym) vibrations, respectively. Compared with unassociated Me₂NH·BH₃ in CCl₄, there is a large frequency shift of $\Delta \nu = 122 \text{ cm}^{-1}$ in the value of $\nu_{\rm NH}$. When compared with Me₃N·BH₃, $\Delta \nu$ values of 45 and 3 cm⁻¹ are obtained for $\nu_{\rm BH}$ (asym and sym, respectively). It has been noted that the asymmetric B-H stretch is affected by H-bonding to a greater extent than the symmetric stretch, resulting in a larger $\Delta \nu$ value.²³ When the solution IR spectrum of 1 was obtained in CH₂Cl₂ (0.005 M), there was an observed increase in the frequencies of the stretching absorptions to 3224 cm⁻¹ for $v_{\rm NH}$, and to 2376 and 2279 cm^{-1} for v_{BH} (asym and sym), respectively. This results in $\Delta \nu$ values between the solid and solutions samples of 46, 39, and 19 cm^{-1} , respectively. Thus, in dilute solution the intermolecular proton-hydride interactions in 1 are disrupted, as the stretching frequencies approach values for that of the unassociated molecules. For 2, similar Δv values of 54 cm⁻¹ for $v_{\rm NH}$, and 49 and 4 cm⁻¹ for $v_{\rm BH}$ (asym and sym), respectively, between the solid state and solution IR spectra were obtained, indicating the presence of proton-hydride interactions only in the solid state.

In the case of 3, the solid state IR spectrum shows absorptions at 3215 cm⁻¹ for $v_{\rm NH}$, and at 2370 and 2282 cm^{-1} for v_{BH} (asym and sym), respectively. Again, there is a large Δv value of 85 cm⁻¹ for $v_{\rm NH}$ when compared to the value of the free N-H stretch in Me₂NH•BH₃. However, a small Δv value of 12 cm⁻¹ results for the asymmetric $v_{\rm BH}$, while the symmetric $v_{\rm BH}$ shows an increase in frequency $(\Delta \nu = -19 \text{ cm}^{-1})$ when compared to the values obtained for Me₃N·BH₃. When the solution IR spectrum was obtained in CH₂Cl₂ (0.005 M), only minor frequency shifts are observed. In fact, the frequency of $v_{\rm NH}$ decreases to 3209 cm⁻¹, resulting in a $\Delta \nu$ value of -6 cm⁻¹, while the frequency of $v_{\rm BH}$ increases to 2380 and 2284 cm⁻¹, resulting in $\Delta \nu$ values of 10 and 2 cm⁻¹ for the asymmetric and symmetric modes, respectively. For 4, similar minor shifts in the stretching frequencies ($\Delta \nu = 4 \text{ cm}^{-1}$ for ν_{NH} , 18 and -1 cm^{-1} for ν_{BH} (asym and sym), respectively) were also observed between the solid state and solution samples. One explanation for the small changes in ν from solid state to solution may be due to the type of proton-hydride interaction present in 3 and 4 compared to 1 and 2. In 1 and 2, intermolecular proton-hydride bonding is present between molecules, which can easily be disrupted by high dilution. However, in 3 and 4, intramolecular proton-hydride bonding is present within the same molecule. High dilution would have little effect as the N-H and B-H bonds are still in close proximity to one another and the proton-hydride bonding would be unaffected.

⁽²⁶⁾ Li, J.; Zhao, F.; Jing, F. J. Chem. Phys. 2002, 116, 25.

⁽²⁷⁾ The frequency shift $(\Delta \nu)$ can be defined as $\Delta \nu = \nu (XH)_{\text{free}} - \nu (XH)_{\text{H-bonded}}$ where X = N or B.

⁽²⁸⁾ A reviewer suggested the possible formation of K[BH₃Br] from KBr and NH₃:BH₃. However, evidence for a N-B stretch was observed at ca. 950 cm⁻¹ in the IR spectrum. In addition, solid state CP-MAS ¹¹B NMR on samples of NH₃*BH₃ and KBr/NH₃*BH₃ (from the KBr pellet) showed identical resonances at δ = -35 ppm.

⁽²⁹⁾ Smith, J.; Seshadri, K. S.; White, D. J. Mol. Spectrosc. 1973, 45, 327.

⁽³⁰⁾ Additional evidence for H^{δ+...δ-}H interactions in NH₃·BH₃ has been provided by Raman spectroscopy: Trudel, S.; Gilson, D. F. R. *Inorg. Chem.* 2003, 42, 2814.

The frequency shifts $(\Delta \nu)$ can be used to estimate the hydrogen bond strengths of **1**–**4** in the solid state by using an empirical equation proposed by Iogansen (eq 5),³¹ which correlates ΔH° with the change in the stretching absorption upon hydrogen-bond formation. For **1** and **2**, values of $\Delta \nu = 122 \text{ cm}^{-1}$ result in proton—hydride bond strengths of $\Delta H^{\circ} = -2.61 \text{ kcal mol}^{-1} (-10.9 \text{ kJ mol}^{-1})$. Compounds **3** and **4** ($\Delta \nu = 85$ and 100 cm⁻¹, respectively) yield values of -1.9 and $-2.20 \text{ kcal mol}^{-1} (-7.9 \text{ and } -9.20 \text{ kJ mol}^{-1})$ for ΔH° , respectively. These hydrogen bond strengths are on the lower end of the range of values (3–7 kcal mol}⁻¹; 12.6–29.3 kJ mol⁻¹) determined for unconventional H^{$\delta+\cdots \delta-$}H hydrogen bonds, and are thus considered to be weak interactions.

$$\Delta H^{\circ} = \frac{-18\Delta\nu}{\Delta\nu + 720} \tag{5}$$

Mechanism for the Skeletal Cleavage Reactions for 1–4. Although the thermolysis chemistry of 1-4 led to a complex range of products, many of these can be explained by simple mechanistic considerations. The mechanism for the chain cleavage reactions of 1-4 in the presence or absence of catalyst may involve the initial dissociation of Me₂NH and BH₃ from the termini. The dissociation may occur simultaneously, or as a two-step process, to yield the monomers $PhPR-BH_2$ (R = Ph, H; from 1 and 2) or $BH_2 CH_2 - PR'_2$ (R' = Ph, Me; from 3 and 4) as transient species (eq 6). Oligomerization of these species would then give, for example, low molecular weight $[PhPH-BH_2]_n$ (from 2) or the cyclic [BH₂-CH₂-PPh₂]₂ (from 3). The free Me₂NH and BH₃ would be expected to combine to form Me₂NH· BH₃, which has been previously shown to undergo dehydrocoupling at 130 °C32 or in the presence of Rh precatalysts^{10,11} to yield [Me₂N-BH₂]₂. In the uncatalyzed chain cleavage reactions, products such as PhPH₂·BH₃ and Ph₂PH· BH₃ cannot be explained by the dissociative mechanism postulated. These species may form as a result of complex thermally induced hydrogen transfer reactions. In the case of the catalytic chain cleavage reactions, the mechanistic scenario is even more complex as oxidative addition/ reductive elimination reactions at the transition-metal center may also lead to the formation of the observed products.

The lack of catalytic chain cleavage at 50 °C for compounds 3 and 4, in contrast to the cases of 1 and 2, may be due to the *intramolecular* proton-hydride bonding present in solution. The N-H···H-B interactions between the chain

ends may effectively prevent dissociation at lower temperatures, and also help to sterically shield the active sites from the catalyst, thereby preventing chain cleavage. At higher temperatures (>90°C), the proton—hydride interactions may be disrupted, enabling dissociation and/or catalytic chain cleavage to occur.

Summary

Novel examples of linear hybrid aminoborane/phosphinoborane species have been synthesized and structurally characterized by X-ray crystallography. The compounds 1 and 2 possess intermolecular proton-hydride interactions in the solid state, as indicated by both single-crystal X-ray diffraction and IR studies, which are disrupted in solution. Compounds 3 and 4 possess intramolecular proton-hydride interactions in the solid state, which are preserved even in dilute solution as indicated by negligible IR frequency shift $(\Delta \nu)$ values for the N–H and B–H stretching absorptions between solid state and solution samples. The hydrogen bond strengths of 1-4 have been estimated to be in the range of 7.9 to 10.9 kJ mol⁻¹, which is indicative of weak interactions. The thermolysis of 2 and 3 yields, for example, low molecular weight poly(phenylphosphinoborane) [PPhH- $BH_2]_n$ ($M_w = ca. 5000$) and the six-membered ring 5 as chain cleavage products, respectively. Rather than catalytic dehydrocoupling, catalytic chain cleavage reactions were observed for 1-4 in the presence of $[Rh(1,5-cod)(\mu-Cl)]_2$, yielding mixtures of amine-boranes, aminoboranes, and phosphineboranes. Interestingly, these results suggest that transition metals may be capable of inducing the *cleavage* of B-N and B-P bonds, and this possibility will be the subject of more detailed studies.

Experimental Section

General Procedures and Materials. All reactions and product manipulations were performed under an atmosphere of dry nitrogen using standard Schlenk techniques or in a glovebox. All solvents were dried over the appropriate drying agents such as Na/benzophenone (toluene, hexanes, THF, Et₂O) or CaH₂ (CH₂Cl₂) and distilled prior to use. BH₃·SMe₂, BH₃·THF (1.0 M in THF), ⁿBuLi (1.6 M in hexane), HCl (1.0 M in Et₂O) (Aldrich), Me₂NH·BH₃, Me₃P, MePPh₂, Ph₂PH, and PhPH₂ (Strem Chemicals) were purchased and used as received. Ph₂PH·BH₃,^{7b} PhPH₂·BH₃,^{7b} Me₃P·BH₃,³³ and [Rh(1,5-cod)(μ -Cl)]₂³⁴ were synthesized via literature procedures.

Equipment. NMR spectra were recorded on either a Varian Gemini 300 MHz or a Unity 400 MHz (13 C) spectrometer. Chemical shifts are reported relative to residual protonated solvent peaks (1 H, 13 C) or external BF₃•Et₂O (11 B) and H₃PO₄ (31 P) standards. Spectra were obtained at 300 MHz (1 H), 96 MHz (11 B), 75 or 100 MHz (13 C), and 121 MHz (31 P). Infrared spectra were obtained on a Perkin-Elmer Spectrum One FT-IR spectrometer using KBr windows. Mass spectra were obtained with a VG 70-250S mass spectrometer operating in electron impact (EI) mode. Melting point determinations were performed in sealed capillaries and are uncorrected. Elemental analyses were performed by Quantitative

 ⁽³¹⁾ Iogansen, A. V. *Hydrogen Bond*; Nauka: Moscow, 1981, as cited in: Beringhelli, T.; D'Alfonso, G.; Panigati, M.; Mercandelli, P.; Sironi, A. *Chem. Eur. J.* 2002, *8*, 5340. Equation has units of kcal mol⁻¹.

⁽³²⁾ Burg, A. B.; Randolph, C. L., Jr. J. Am. Chem. Soc. 1949, 71, 3451.

⁽³³⁾ Schmidbaur, H.; Weiss, E.; Müller, G. Synth. React. Inorg. Met.-Org. Chem. 1985, 15, 401.

⁽³⁴⁾ Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218.

Table 5. Crystallographic Data and Summary of Data Collection and Refinement for Structures **1**, **3**, and **5**

	1	3	5
emp formula	C ₁₄ H ₂₂ B ₂ NP	$C_{15}H_{24}B_2NP$	C ₁₃ H ₁₄ BP
fw	256.92	270.94	424.04
temp (K)	150(1)	150(1)	150(1)
λ (Å)	0.71073	0.71073	0.71073
cryst syst	monoclinic	orthorhombic	monoclinic
space group	$P2_{1}/c$	Pbca	$P2_1/n$
cryst size (mm)	$0.30 \times 0.30 \times$	$0.40 \times 0.35 \times$	$0.22 \times 0.10 \times$
	0.20	0.30	0.08
a (Å)	11.2250(3)	11.9203(2)	6.7219(3)
b (Å)	9.3830(3)	9.6239(3)	21.27300(10)
<i>c</i> (Å)	15.3070(5)	28.7897(7)	8.4366(5)
α (deg)	90	90	90
β (deg)	106.4140(13)	90	102.033(2)
γ (deg)	90	90	90
$V(Å^3)$	1546.49(8)	3302.75(14)	1179.88(9)
Ζ	4	8	2
$D_{\rm C}$ (g/cm ³)	1.103	1.090	1.194
$\mu ({\rm mm^{-1}})$	0.160	0.153	0.195
F(000)	552	1168	448
θ range (deg)	3.61-27.49	2.81 - 27.48	2.65 - 25.09
index ranges	$-14 \le h \le 14$	$0 \le h \le 15$	$0 \le h \le 8$
	$-10 \le k \le 12$	$0 \le k \le 12$	$0 \le k \le 25$
	$-19 \le l \le 19$	$-37 \le l \le 0$	$-10 \le l \le 9$
reflns collected	11694	20296	8458
indep reflns	3523	3776	2083
R _{int}	0.0404	0.042	0.067
GOF on F^2	1.034	1.020	1.056
$R1^a (I > 2\sigma(I))$	0.0373	0.0405	0.0422
$wR2^b$ (all data)	0.0982	0.1038	0.1082
peak/hole (e Å ⁻³)	0.244/-0.319	0.252/-0.266	0.268/-0.312

$$R1 = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ ^{b} wR2 = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}$$

Technologies Inc., Whitehouse, NJ, or were obtained on a Perkin-Elmer Series 2400 CHNS analyzer maintained by the Analest facility at the University of Toronto. Dynamic light scattering was performed using a wide-angle laser light scattering photometer from Brookhaven Instruments Corp. See ref 7b for details on sample preparation and data analysis.

X-ray Structural Characterization. Crystallographic data and the summary of data collection and refinement for structures 1, 3, and 5 are presented in Table 5. Diffraction data were collected on a Nonius Kappa-CCD using graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). The data were integrated and scaled using the Denzo-SMN package.35 The structures were solved and refined with the SHELXTL-PC V5.1 software package.³⁶ Refinement was by full-matrix least squares on F^2 using all data (negative intensities included). Molecular structures are presented with thermal ellipsoids at a 30% probability level. In all structures, hydrogen atoms bonded to carbon were included in calculated positions and treated as riding atoms, while those attached to nitrogen or boron were located and refined with isotropic thermal parameters. CCDC-211991 (1), CCDC-211992 (3), and CCDC-211993 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc. cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax, (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Synthesis of MePPh₂·BH₃. To a solution of MePPh₂ (13.616 g, 68.0 mmol) in THF (200 mL) cooled to -30 °C was added BH₃·SMe₂ (6.7 mL, 5.367 g, 70.6 mmol) dropwise via syringe over 5 min. The mixture was slowly warmed to 25 °C and stirred

overnight. The volatiles were removed in vacuo to give MePPh₂· BH₃ as a colorless oil, which occasionally crystallized upon standing at 25 °C. Yield: 13.146 g, 90%. Mp: 48–50 °C. ¹H NMR (CDCl₃): δ 7.71–7.64 (m, Ph), 7.50–7.45 (m, Ph), 1.88 (d, $J_{\rm HP}$ = 10 Hz, Me), 1.02 (q, br, $J_{\rm BH}$ = 93 Hz, BH₃). ¹¹B{¹H} NMR (CDCl₃): δ -38.2 (d, $J_{\rm BP}$ = 56 Hz). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 131.9 (d, $J_{\rm CP}$ = 10 Hz, Ar), 131.4 (d, $J_{\rm CP}$ = 2 Hz, Ar), 130.7 (d, $J_{\rm CP}$ = 56 Hz, *ipso*-C), 129.0 (d, $J_{\rm CP}$ = 10 Hz, Ar), 12.1 (d, $J_{\rm CP}$ = 40 Hz, Me). ³¹P{¹H} NMR (CDCl₃): δ 11.2 (q, $J_{\rm PB}$ = 56 Hz). EI-MS (70 eV): 211 (M⁺ – 3H, 17%), 200 (MePPh₂, 100%), 185 (PPh₂, 30%).

Synthesis of Me₂NH·BH₂Cl. To a solution of Me₂NH·BH₃ (6.570 g, 111.5 mmol) in Et₂O (125 mL) cooled to 0 °C was added a solution of HCl in Et₂O (113 mL, 113 mmol) dropwise over 30 min. The mixture was stirred for 1 h at 0 °C, then warmed to 25 °C, and stirred for a further 1 h. The solvent was removed in vacuo to give a pale yellow oil, which was transferred to the bottom of a sublimation apparatus. The oil was distilled under dynamic vacuum (ca. 10^{-3} mmHg) and condensed onto a -15 °C coldfinger, which solidified to give Me₂NH·BH₂Cl as a white solid. The purified product was stored at -30 °C in the glovebox to prevent melting. Yield: 7.663 g, 74%. ¹H NMR (CDCl₃): δ 4.52 (br, NH), 2.61 (d, $J_{\text{HH}} = 5.8$ Hz, Me), 2.56 (q, br, $J_{\text{BH}} = 120$ Hz, BH₂). ¹¹B NMR (CDCl₃): δ 40.7 (Me).

Synthesis of Me₂NH-BH₂-PPh₂-BH₃ (1). A solution of ⁿBuLi in hexanes (3.0 mL, 4.8 mmol) was added dropwise to a solution of Ph₂PH·BH₃ (0.967 g, 4.83 mmol) in THF (15 mL) cooled to 0 °C. The reaction mixture was stirred at 0 °C for 30 min, followed by warming to 25 °C. After 2 h, the reaction mixture showed complete conversion to Li[PPh₂·BH₃]. ¹¹B{¹H} NMR (THF): δ -31.6 (d, $J_{BP} = 45$ Hz). ³¹P{¹H} NMR (THF): $\delta - 32.4$ (q, $J_{PB} =$ 45 Hz). The mixture was recooled to 0 °C, and a solution of Me₂NH·BH₂Cl (0.464 g, 4.97 mmol) in THF (10 mL) was added dropwise over 5 min. The mixture was allowed to warm to 25 °C and stirred overnight. The solvent was removed in vacuo, and the resulting solid was dissolved in toluene (50 mL) and filtered to remove LiCl. The solvent was removed to give 1 as a white powder. X-ray quality crystals of 1 were obtained from a toluene/hexanes (10:1) solution cooled to -30 °C. Yield: 0.591 g, 48%. Mp: 121-123 °C. ¹H NMR (CDCl₃): δ 7.76–7.68 (m, Ph), 7.36–7.30 (m, Ph), 4.76 (br, NH), 2.53 (d, $J_{\rm HH} = 5.1$ Hz, Me), 2.3 (br, BH₂), 0.93 (q, br, $J_{BH} = 106$ Hz, BH₃). ¹¹B{¹H} NMR (CDCl₃): $\delta - 11.3$ (d, $J_{\rm BP} = 76$ Hz, BH₂), -39.9 (d, $J_{\rm BP} = 59$ Hz, BH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 133.6 (d, J_{CP} = 48 Hz, *ipso*-C), 133.0 (d, J_{CP} = 8 Hz, Ar), 129.5 (d, $J_{CP} = 2$ Hz, Ar), 128.5 (d, $J_{CP} = 9$ Hz, Ar), 45.0 (d, $J_{CP} = 7$ Hz, Me). ³¹P{¹H} NMR (CDCl₃): δ -19.9 (br, no resolved J_{PB} coupling). EI-MS (70 eV): m/z 243 (M⁺ – BH₃, 99%), 186 (Ph₂PH, 100%). Elemental anal. Calcd (%) for C₁₄H₂₂B₂-NP (256.92): C 65.45, H 8.63, N 5.45. Found: C 65.81, H 8.86, N 5.33.

Synthesis of $Me_2NH-BH_2-PPhH-BH_3$ (2). 2 was synthesized by a procedure analogous to that used for 1. After filtration and solvent removal, the residue was washed with hexanes (15 mL) and extracted with Et₂O (20 mL). Recrystallization from toluene/ hexanes (10:1) at -30 °C afforded 2 as a white solid.

For Li[PPhH·BH₃]. ¹¹B{¹H} NMR (THF): δ -34.6 (d, J_{BP} = 32 Hz). ³¹P NMR (THF): δ -93.8 (dq, J_{PB} = 34 Hz, J_{PH} = 202 Hz).

For 2. Yield: 0.922 g, 83%. Mp: 70–71 °C. ¹H NMR (CDCl₃): δ 7.74–7.64 (m, Ph), 7.40–7.34 (m, Ph), 4.67 (br, NH), 4.61 (d (sextet), $J_{\rm HP}$ = 344 Hz, $J_{\rm HH}$ = 6 Hz, PH), 2.61 (dd, $J_{\rm HP}$ = 35 Hz, $J_{\rm HH}$ = 5.8 Hz, Me), 2.0 (br, BH₂), 0.74 (q, br, $J_{\rm BH}$ = 98 Hz, BH₃).

⁽³⁵⁾ Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307.

⁽³⁶⁾ Sheldrick, G. M. SHELXTL-PC V5.1; Bruker Analytical X-Ray Systems Inc.: Madison, WI, 1997.

¹¹B{¹H} NMR (CDCl₃): δ –12.8 (d, $J_{\rm BP}$ = 70 Hz, BH₂), -41.5 (d, $J_{\rm BP}$ = 50 Hz, BH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 133.4 (d, $J_{\rm CP}$ = 7 Hz, Ar), 129.7 (d, $J_{\rm CP}$ = 2 Hz, Ar), 128.9 (d, $J_{\rm CP}$ = 50 Hz, *ipso*-C), 128.6 (d, $J_{\rm CP}$ = 9 Hz, Ar), 44.7 (d, $J_{\rm CP}$ = 8 Hz, Me). ³¹P NMR (CDCl₃): δ –54.8 (d, br, $J_{\rm PH}$ = 344 Hz, no resolved $J_{\rm PB}$ coupling). EI-MS (70 eV): m/z 180 (M⁺ – H, 9%), 167 (M⁺ – BH₃, 58%), 123 (PhPH–BH₃, 4%), 110 (PhPH₂, 51%), 58 (Me₂NH–BH₂, 100%). Elemental anal. Calcd (%) for C₈H₁₈B₂NP (180.83): C 53.14, H 10.03, N 7.75. Found: C 52.40, H 10.10, N 8.00.

Thermolysis of 1. A sample of **1** (0.151 g, 0.588 mmol) was heated at 130 °C under nitrogen for 20 h in the absence of solvent. The reaction mixture showed the presence of the following products by NMR (CDCl₃): Ph₂PH (³¹P{¹H} NMR δ -40.3; trace), Ph₂PH•BH₃ (¹¹B{¹H} NMR δ -40.0; ³¹P{¹H} NMR δ 1.5; ca. 35%), Ph₂PH-BH₂-PPh₂-BH₃ (¹¹B{¹H} NMR δ -33.3 (BH₂), -37.4 (BH₃); ³¹P{¹H} NMR δ -3.5 (Ph₂PH), -18.6 (PPh₂); ca. 15%), [Me₂N-BH₂]₂ (¹¹B NMR δ 4.9 (t); ca. 40%), Me₂NH•BH₃ (¹¹B NMR δ -14.1 (q); ca. 10%), unreacted **1** and an unidentified product (¹¹B{¹H} NMR δ -35.6; ³¹P{¹H} NMR δ -26.8; ca. 5%).

Thermolysis of 2. A sample of **2** (2.569 g, 14.21 mmol) was heated at 130 °C under nitrogen for 2 h in the absence of solvent. The ¹¹B and ³¹P NMR spectra of the reaction mixture showed the presence of only $[Me_2N-BH_2]_2$ and $[PhPH-BH_2]_n$. The semisolid was evacuated at 25 °C for 24 h to remove $[Me_2N-BH_2]_2$. The residue was then dissolved in CHCl₃ and precipitated into hexanes, giving $[PhPH-BH_2]_n$ as a white solid. Yield: 1.724 g, 99%. ¹H NMR (CDCl₃): δ 7.5–6.9 (br, Ph), 4.4 (br d, $J_{HP} = 309$ Hz, PH), 2.1–1.1 (br, BH₂). ¹¹B{¹H} NMR (CDCl₃): δ –49.5 (br d, $J_{PH} = 309$ Hz). Dynamic light scattering (THF): after 3 h, $D_h = 1.8$ nm, 163 nm; after 4 days: 1.43 nm. The peak at $D_h = 1.4-1.8$ nm corresponds to an absolute value of M_w of ca. 5000.^{7b}

Attempted Catalytic Dehydrocoupling of 1. (a) To a solution of 1 (0.319 g, 1.24 mmol) in toluene (2 mL) was added [Rh(1,5cod)(μ -Cl)]₂ (0.009 g, 0.02 mmol, 1.5 mol %). The mixture was heated to 50 °C and monitored periodically by ¹¹B and ³¹P NMR spectroscopy. Complete conversion of 1 to form [Me₂N-BH₂]₂ (ca. 45%), Me₂NH•BH₃ (ca. 5%), Ph₂PH•BH₃ (ca. 50%), and Ph₂PH (trace) was observed after 10 days. (b) Blank reaction: A sample of 1 heated at 50 °C in toluene in the absence of catalyst indicated the presence of chain cleavage products (35%) after 10 days. The chain cleavage products were found to be the same as those identified above, with the exception of [Me₂N-BH₂]₂, which was not formed from Me₂NH•BH₃ in the absence of a transition-metal catalyst.¹¹

Attempted Catalytic Dehydrocoupling of 2. (a) To a solution of 2 (0.086 g, 0.48 mmol) in toluene (2 mL) was added [Rh(1,5cod)(μ -Cl)]₂ (0.003 g, 0.006 mmol, 1.3 mol %). The mixture was heated to 50 °C and monitored periodically by ¹¹B and ³¹P NMR spectroscopy. Complete conversion of 2 to form [Me₂N-BH₂]₂ (ca. 40%), Me₂NH•BH₃ (ca. 10%), PhPH₂•BH₃ (¹¹B{¹H} NMR δ –40.8 (br); ³¹P{¹H} NMR δ –49 (v br); ca. 50%), and PhPH₂ (³¹P{¹H} NMR δ –123.8, trace) was observed after 10 days. (b) Blank reaction: A sample of 2 heated at 50 °C in toluene in the absence of catalyst indicated the presence of chain cleavage products (ca. 10%) after 10 days. The chain cleavage products were found to be the same as those identified above, with the exception of [Me₂N-BH₂]₂, which was not formed from Me₂NH•BH₃ in the absence of a transition-metal catalyst.¹¹

Synthesis of Me₂NH–BH₂–CH₂–PPh₂–BH₃ (3). To a solution of MePPh₂•BH₃ (1.168 g, 5.46 mmol) in THF (10 mL) cooled to 0 °C was added a solution of ⁿBuLi in hexanes (3.6 mL, 5.8 mmol)

dropwise via syringe. The mixture was stirred for 30 min at 0 °C, then warmed to 25 °C, and stirred for a further 90 min. ¹¹B and ³¹P NMR of the reaction mixture indicated complete conversion to Li[CH₂-PPh₂·BH₃]: ¹¹B{¹H} NMR (THF), δ -36.1 (d, J_{BP} = 76 Hz); ${}^{31}P{}^{1}H$ NMR (THF), δ 19.2 (q, $J_{PB} = 76$ Hz). The mixture was recooled to -30 °C, and a solution of Me₂NH·BH₂Cl (0.526 g, 5.63 mmol) in THF (5 mL) was added. The mixture was allowed to warm slowly to 25 °C and stirred overnight. The volatiles were removed in vacuo, and the resulting oil was redissolved in toluene (15 mL) and filtered to remove LiCl. The solution was concentrated to ca. 5 mL, added to hexanes (20 mL), and filtered. Upon standing at 25 °C, colorless crystals of X-ray quality were formed over 3-4 days. Yield: 0.294 g, 20%. Mp: 106-108 °C. ¹H NMR (CDCl₃): δ 7.74-7.66 (m, Ph), 7.44-7.36 (m, Ph), 5.12 (br, NH), 2.53 (d, $J_{\rm HH} = 5.7$ Hz, Me), 1.31 (m, br, CH₂), 0.97 (m, br, BH₂ and BH₃). ¹¹B{¹H} NMR (CDCl₃): δ -11.7 (BH₂), -40.2 (BH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 132.9 (d, J_{CP} = 55 Hz, *ipso*-C), 132.1 (d, $J_{CP} = 8$ Hz, Ar), 130.5 (d, $J_{CP} = 2$ Hz, Ar), 128.6 (d, $J_{CP} = 10$ Hz, Ar), 42.4 (s, Me), 10.9 (s, br, CH₂). ³¹P{¹H} NMR (CDCl₃): δ 16.6 (q, $J_{PB} = 79$ Hz). EI-MS (70 eV): m/z 257 (M⁺ – BH₃, 75%). Elemental anal. Calcd (%) for $C_{15}H_{24}B_2NP$ (270.94): C 66.49, H 8.93, N 5.17. Found: C 66.44, H 8.95, N 5.03.

Synthesis of $Me_2NH-BH_2-CH_2-PMe_2-BH_3$ (4). A procedure analogous to that of 3 was used. After filtration to remove LiCl, the oily residue was recrystallized (Et₂O/hexanes (5:1), -30 °C) to afford a mixture of 4 and Me₃P·BH₃. The solid mixture was fractionally sublimed at 25 °C: Me₃P·BH₃ was first removed under static vacuum, followed by sublimation of the residue under dynamic vacuum, which afforded 4 as a white solid.

For Li[**CH**₂**-PMe**₂**·BH**₃]. ¹¹B{¹H} NMR (THF): δ -34.1 (d, $J_{BP} = 85 \text{ Hz}$). ³¹P{¹H} NMR (THF): δ 1.7 (q, $J_{PB} = 85 \text{ Hz}$).

For 4. Yield: 0.506 g, 32%. Mp: 71–73 °C. ¹H NMR (C₆D₆): δ 4.89 (br, NH), 2.16 (q, br, BH₃), 1.88 (d, $J_{\text{HH}} = 5.7$ Hz, NMe), 1.14 (q, br, BH₂), 1.00 (d, $J_{\text{HP}} = 10.6$ Hz, PMe), 0.54 (m, br, CH₂). ¹¹B NMR (C₆D₆): δ –9.9 (t, $J_{\text{BH}} = 98$ Hz, BH₂), -40.2 (dq, $J_{\text{BP}} = 70$ Hz, $J_{\text{BH}} = 94$ Hz, BH₃). ¹³C{¹H} NMR (100 MHz, C₆D₆): δ 41.8 (s, NMe), 14.2 (m, br, CH₂), 13.4 (d, $J_{\text{CP}} = 38$ Hz, PMe). ³¹P{¹H} NMR (C₆D₆): δ 3.1 (q, $J_{\text{PB}} = 70$ Hz). EI-MS (70 eV): m/z 133 (M⁺ – BH₃, 100%), 88 (CH₂–PMe₂–BH₂, 24%). Elemental anal. Calcd (%) for C₅H₂₀B₂NP (146.82): C 40.90, H 13.73, N 9.54. Found: C 41.14, H 13.49, N 9.68.

Thermolysis of 3; Synthesis of $[BH_2-CH_2-PPh_2]_2$ (5). A sample of 3 (0.166 g, 0.613 mmol) was heated at 130 °C for 24 h in the absence of solvent. The mixture was cooled to 25 °C, giving 5 as a white solid. X-ray quality crystals were grown from an ether solution at -20 °C. Yield: 0.127 g, 98%. Mp: 253 °C. ¹H NMR (CDCl₃): δ 7.71 (m, Ph), 7.38 (m, Ph), 1.62 (br, CH₂), 2.3-0.8 (br, BH₂). ¹¹B{¹H} NMR (CDCl₃): δ -33.6 (br, BH₂). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ 132.0 (d, $J_{CP} = 9$ Hz, Ar), 131.4 (d, $J_{CP} = 54$ Hz, *ipso*-C), 130.6 (s, Ar), 128.8 (d, $J_{CP} = 9$ Hz, Ar), 6.3 (br, CH₂). ³¹P{¹H} NMR (CDCl₃): δ 7.7 (br, PPh₂). EI-MS (70 eV): m/z 424 (M⁺, 10%), 346 (M⁺ - C₆H₆, 33%), 313 (M⁺ - PPhH - H₂, 36%), 237 (M⁺ - PPh₂ - H₂, 100%), 212 (M⁺/2, 6%). Elemental anal. Calcd (%) for C₁₃H₁₄BP (212.02): C 73.64, H 6.65. Found: C 73.23, H 6.57.

Attempted Catalytic Dehydrocoupling of 3. (a) A sample of 3 (0.035 g, 0.13 mmol) and [Rh(1,5-cod)(μ -Cl)]₂ (0.003 g, 0.006 mmol, 5 mol %) were dissolved in toluene in a 5 mm NMR tube with a D₂O insert. No reaction was observed by ¹¹B or ³¹P NMR after 24 h at 25 °C, or after 24 h at 50 °C. Heating at 90 °C for 20 h resulted in chain cleavage, with the only identified product being MePPh₂•BH₃. (b) Blank reaction: Heating of 3 in toluene at 90 °C in the absence of catalyst resulted in no reaction after 20 h.

Thermolysis of 4. (a) A sample of **4** (0.143 g, 0.974 mmol) was heated at 90 °C for 3 days in the absence of solvent. Colorless crystals of **4** were observed to sublime to the top of the reaction vessel. Partial decomposition (ca. 50%) to give Me₂NH·BH₃ (ca. 20%), Me₃P·BH₃ (¹¹B NMR δ –37.4 (qd); ³¹P{¹H} NMR δ –1.89 (q); ca. 20%) and a product tentatively assigned as [BH₂–CH₂– PMe₂]₂ (**6**) was observed. Selected NMR characterization for **6**: yield (11% by NMR); ¹H NMR (C₆D₆) δ 1.52 (d, J_{HP} = 13 Hz, Me); ¹¹B NMR (C₆D₆) δ –30.5 (dt, J_{BP} = 61 Hz, J_{BH} = ca. 91 Hz); ¹³C{¹H} NMR (C₆D₆) δ 10.6 (d, J_{CP} = 37 Hz, Me); ³¹P{¹H} NMR (C₆D₆) δ 6.0 (q, br). (b) A sample of **4** (0.048 g, 0.33 mmol) was heated at 130 °C in DMF-*d*₇. After 5 h, the mixture contained only [Me₂N–BH₂]₂ and Me₃P·BH₃.

Attempted Catalytic Dehydrocoupling of 4. (a) A sample of 4 (0.061 g, 0.42 mmol) and $[Rh(1,5-cod)(\mu-Cl)]_2$ (0.003 g, 0.006 mmol, 1 mol %) were dissolved in THF and stirred at 25 °C for 2 days. No reaction was observed according to the ¹¹B and ³¹P spectra obtained. Heating at 90 °C in toluene for 20 h resulted in chain cleavage, with the only identified product being Me₃P·BH₃. (b)

Blank reaction: Heating of **4** in toluene at 90 °C in the absence of catalyst resulted in no reaction after 20 h.

Acknowledgment. This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants program. C.A.J. thanks the Ontario and Canadian Governments for an Ontario Graduate Scholarship in Science and Technology (OGS-ST) (2001–2002) and an NSERC Scholarship (2002–2004), and I.M. thanks the Ontario Government for a PREA award (1999–2004), the University of Toronto for a McLean Fellowship (1997–2003), and the Canadian Government for a Canada Research Chair.

Supporting Information Available: Crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC034938F