Inorganic Chemistry

Synthesis, Structures, and Solution Behavior of Di- and Trinuclear Titanium(IV)–Cyclophosphato Complexes

Sou Kamimura,[†] Tsukasa Matsunaga,[†] Shigeki Kuwata,[‡] Masakazu Iwasaki,[§] and Youichi Ishii^{*,II}

Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan, Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan, Department of Applied Chemistry, Faculty of Engineering, Saitama Institute of Technology, Okabe, Saitama 369-0293, Japan, and Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Received June 18, 2004

The reaction of the cyclotetraphosphate ion (P₄O₁₂⁴⁻) with [Cp*TiCl₃] (Cp* = η^{5} -C₅Me₅) gives [(Cp*Ti)₂(P₄O₁₂)₂]²⁻ where the P₄O₁₂ ligands adopt a saddle conformation, while that with [(Cp*TiCl)₃(μ -O)₃] leads to [(Cp*Ti)₃(μ -O)₃(P₄O₁₂)]⁻ containing a crown form P₄O₁₂ ligand; both products feature their unique cage structures. On the other hand, the reactions of the cyclotriphosphate ion (P₃O₉³⁻) with [(Cp*TiCl)₂(μ -O)] and [(Cp*TiCl)₃(μ -O)₃] afford [(Cp*Ti)₂(μ -O)(P₃O₉)₂]²⁻ and [(Cp*Ti)₃(μ -O)₃Cl(P₃O₉)]⁻, respectively, and in both cases the P₃O₉ ligands bridge two titanium centers with an η^2 : η^1 mode.

Organotransition metal complexes with O-donor ligands have recently been attracting considerable attention, because they serve as molecular models of metal species bound on oxo surfaces of heterogeneous catalysts.¹ They are also expected to provide effective single source precursors for structurally controlled inorganic materials.² In this context, a variety of three-dimensional coordination structures have successfully been constructed by using monophosphates,³ monophosphonates,^{4–6} and monophosphinates⁶ as building

- [‡] Tokyo Institute of Technology.
- § Saitama Institute of Technology.
- " Chuo University.
- (a) Feher, F. J.; Budzichowski, T. A. *Polyhedron* **1995**, *14*, 3239. (b)
 Gouzerh, P.; Proust, A. *Chem. Rev.* **1998**, *98*, 77. (c) Murugavel, R.;
 Voigt, A.; Walawalkar, M. G.; Roesky, H. W. *Chem. Rev.* **1996**, *96*, 2205.
- (2) Walawalkar, M. G.; Roesky, H. W. Acc. Chem. Res. 1999, 32, 117.
- (3) Lugmair, C. G.; Tilley, T. D. Inorg. Chem. 1998, 37, 1821.
- (4) Walawalkar, M. G.; Horchler, S.; Dietrich, S.; Chakraborty, D.; Roesky, H. W.; Schäfer, M.; Schmidt, H.-G.; Sheldrick, G. M.; Murugavel, R. Organometallics 1998, 17, 2865.
- (5) (a) Chakraborty, D.; Chandrasekhar, V.; Bhattacharjee, M.; Kratzner, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. *Inorg. Chem.* 2000, *39*, 23. (b) Guzyr, O. I.; Siefken, R.; Chakraborty, D.; Roesky, H. W.; Teichert, M. *Inorg. Chem.* 2000, *39*, 1680. (c) Mehring, M.; Guerrero, G.; Dahan, F.; Mutin, P. H.; Vioux, A. *Inorg. Chem.* 2000, *39*, 3325.

10.1021/ic049206h CCC: \$27.50 © 2004 American Chemical Society Published on Web 09/08/2004

blocks. In contrast, structural diversity of oxo-bridged inorganic—organometallic hybrids based on inorganic polyphosphates, especially that of oxophilic early transition metal derivarives, has been much less explored.^{7,8} In this Communication, we disclose that the di- and trinuclear Ti(IV) complexes built up with Cp*Ti units and cyclophosphato ligand(s) possess unique three-dimensional structures, where the cyclophosphato ligands take coordination structures considerably different from those observed in late transition metal complexes.

When $(PPN)_4(P_4O_{12})\cdot 5H_2O^{7b}$ (PPN = $(PPh_3)_2N^+$) was allowed to react with 1 equiv of $[Cp*TiCl_3]$ in CH_2Cl_2 at room temperature, the dianionic dinuclear complex $(PPN)_2$ - $[(Cp*Ti)_2(P_4O_{12})_2]$ (1) was obtained as red crystals in 28% yield (Scheme 1).⁹ The ³¹P{¹H} NMR spectrum of **1** shows a singlet at δ -30.3 assignable to the P₄O₁₂ ligand, while the ¹H NMR spectrum shows a Cp* signal at δ 2.17 (s), suggesting that the complex has a highly symmetric structure. The solid-state structure of **1**·2C₂H₄Cl₂ has been established by an X-ray diffraction study (Figure 1a).¹⁰ The molecule has a crystallographic center of symmetry. The anionic part of **1** is composed of two Cp*Ti and two P₄O₁₂ units, where

(9) Although the formation of 1 and 2 seemed to be clean, difficulty in isolating them by recrystallization resulted in the significant loss of the yield.

Inorganic Chemistry, Vol. 43, No. 20, 2004 6127

^{*} To whom correspondence should be addressed. E-mail: ishii@ chem.chuo-u.ac.jp.

[†] The University of Tokyo.

⁽⁶⁾ Guerrero, G.; Mehring, M.; Mutin, P. H.; Dahan, F.; Vioux, A. J. Chem. Soc., Dalton Trans. 1999, 1537.

Several cyclophosphato complexes of late transition metals have been synthesized by us and others. (a) Kamimura, S.; Kuwata, S.; Iwasaki, M.; Ishii, Y. Dalton Trans. 2003, 2666. (b) Kamimura, S.; Kuwata, S.; Iwasaki, M.; Ishii, Y. Inorg. Chem. 2004, 43, 399. (c) Besecker, C. J.; Day, V. W.; Klemperer, W. G. Organometallics 1985, 4, 564.
 (d) Day, V. W.; Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2345. (e) Klemperer, W. G.; Main, D. J. Inorg. Chem. 1990, 29, 2355. (f) Day, V. W.; Klemperer, W. G.; Lockledge, S. P.; Main, D. J. J. Am. Chem. Soc. 1990, 112, 2031. (g) Day, V. W.; Eberspacher, T. A.; Klemperer, W. G.; Planalp, R. P.; Schiller, P. W.; Yagasaki, A.; Zhong, B. Inorg. Chem. 1993, 32, 1629. (h) Klemperer, W. G.; Inong, B. Inorg. Chem. 1993, 32, 2597. (j) Attanasio, D.; Bachechi, F.; Suber, L. J. Chem. Soc., Dalton Trans. 1993, 2373.

⁽⁸⁾ Ryu, S.; Whang, D.; Kim, J.; Yeo, W.; Kim, K. J. Chem. Soc., Dalton Trans. 1993, 205.

Figure 1. ORTEP drawings for the anionic parts of $1\cdot 2C_2H_4Cl_2$ (a) and $2\cdot 0.5C_6H_5CH_3$ (b). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) for $1\cdot 2c_2H_4Cl_2$: Ti-O(1), 1.963(3); Ti-O(2), 1.980(3); Ti $-O(9)^*$, 1.969-(3); Ti $-O(11)^*$, 1.995(2). For $2\cdot 0.5C_6H_5CH_3$: Ti(1)-O(1), 1.921(2); Ti(1)-O(3), 1.906(2); Ti(1)-O(4), 2.011(2); Ti(1)-O(5), 2.023(2); Ti(2)-O(1), 1.774(2); Ti(2)-O(2), 1.833(2); Ti(2)-O(6), 1.927(2); Ti(3)-O(2), 1.834(2); Ti(3)-O(3), 1.780(2); Ti(3)-O(7), 1.916(2).

Scheme 1

each P_4O_{12} ligand takes a saddle conformation and bridges the two titanium atoms to form an unprecedented cage structure. Interestingly, the cage structure of **1** has a channel which penetrates the two side faces defined by the characteristic 12-membered Ti₂P₄O₆ rings. Considering the van der Waals radius of oxygen (1.4 Å) as well as the O(5)···O(7)*, O(1)···O(11), and Ti···Ti* interatomic distances at 3.683(4), 4.783(3), and 6.134(1) Å, respectively, the size of the rectangular entrance of the channel is estimated to be 0.9 Å × 2.0 Å.

On the other hand, the reaction of $(PPN)_4(P_4O_{12}) \cdot 5H_2O$ with 1 equiv of the oxo-bridged trinuclear complex $[(Cp*TiCl)_3(\mu-O)_3]^{11}$ afforded the monoanionic complex $(PPN)[(Cp*Ti)_3(\mu-O)_3(P_4O_{12})]$ (2) as orange crystals in 28% Scheme 2

yield (Scheme 1).⁹ An X-ray diffraction study of $2 \cdot 0.5$ CH₂Cl₂ has revealed that the core of complex 2 is a cage composed of a crown form P₄O₁₂ ligand and a Ti₃O₃ six-membered ring (Figure 1b).¹⁰ One of the three titanium centers (Ti(1)) adopts a four-legged piano stool geometry, while the geometry of the other two is a three-legged piano stool. It should be pointed out that **1** and **2** are rare examples of P₄O₁₂ complexes,^{7b} and to the best of our knowledge, **2** provides the first example of the coordination compound containing a crown conformation P₄O₁₂ ligand.

In the ³¹P{¹H} and ¹H NMR spectra of **2** in CD₂Cl₂ at room temperature, only one broad signal at δ -33.6 (s) for the P₄O₁₂ ligand and one singlet at δ 2.15 for the Cp* groups are observed, respectively. These spectral features, which are inconsistent with the local C_s symmetry of the anion of **2** in the solid state, indicate that the complex **2** is fluxional in solution. In fact, the broad ³¹P{¹H} NMR signal coalesces at -20 °C and splits to two pseudodoublets (δ -30.3 (J = 32 Hz), -37.0 (J = 32 Hz)) at -80 °C in the variable temperature ³¹P{¹H} NMR spectra (162 MHz), though there is no apparent change in the ¹H NMR over this temperature range. This fluxionality is rationalized by the rotation of the Ti₃O₃ unit on the P₄O₁₂ platform, and the ΔG^{\ddagger} value for the

(11) Carofiglio, T.; Floriani, C.; Sgamellotti, A.; Rosi, M.; Chiesi-Villa, A.; Rizzoli, C. J. Chem. Soc., Dalton Trans. 1992, 1081.

⁽¹⁰⁾ Crystal data for 1.2C₂H₄Cl₂ follow: formula C₉₆H₉₈Cl₄N₂O₂₄P₁₂Ti₂, M = 2273.17, triclinic, a = 12.28(1) Å, b = 14.16(2) Å, c = 12.28(1)15.65(2) Å, $\alpha = 87.08(4)^{\circ}$, $\beta = 72.44(2)^{\circ}$, $\gamma = 85.39(4)^{\circ}$, V = 2585(5) Å³, $P\overline{1}$, Z = 1, $\mu = 5.15$ cm⁻¹, $D_c = 1.460$ g cm⁻³, 50474 reflections measured, 11675 unique ($R_{int} = 0.041$), R1 = 0.047, wR2 = 0.123. For 2.0.5C₆H₅CH₃: formula C_{69.5}H₇₉NO₁₅P₆Ti₃, M =1497.93, triclinic, a = 11.2743(9) Å, b = 13.313(1) Å, c = 26.442(2)Å, $\alpha = 79.799(3)^{\circ}$, $\beta = 89.912(5)^{\circ}$, $\gamma = 65.218(2)^{\circ}$, $V = 3534.6(5)^{\circ}$ Å³, PI, Z = 2, $\mu = 5.32$ cm⁻¹, $D_c = 1.407$ g cm⁻³, 31333 reflections measured, 15682 unique ($R_{int} = 0.040$), $R_1 = 0.055$, $wR_2 = 0.121$. For 3·CH₂Cl₂: formula $C_{93}H_{92}Cl_2N_2O_{19}P_{10}Ti_2$, M = 2018.20, triclinic, a = 13.021(3) Å, b = 19.841(4) Å, c = 19.899(5) Å, $\alpha =$ 98.981(10)°, $\beta = 105.971(13)°$, $\gamma = 105.740(11)°$, V = 4607.0(17)Å³, $P\overline{1}$, Z = 2, $\mu = 4.76$ cm⁻¹, $D_c = 1.455$ g cm⁻³, 68686 reflections measured, 19935 unique ($R_{int} = 0.040$), R1 = 0.050, wR2 = 0.098. For **4**·0.5C₂H₄Cl₂: formula C₆₇H₇₇Cl₂NO₁₂P₅Ti₃, M = 1457.82, triclinic, a = 11.44(1) Å, b = 14.128(4) Å, c = 22.247(8) Å, $\alpha =$ 94.55(4)°, β = 97.81(4)°, γ = 92.84(4)°, V = 3544.6(4) Å³, P¹, Z = 2, μ = 5.76 cm⁻¹, D_c = 1.366 g cm⁻³, 16918 reflections measured, 16914 unique ($R_{int} = 0.045$), R = 0.051, $R_w = 0.056$ [7948 data I > $3\sigma(I)$

Figure 2. ORTEP drawings for the anionic parts of **3**·CH₂Cl₂ (a) and **4**·0.5C₂H₄Cl₂ (b). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg) for **3**·CH₂Cl₂: Ti(1)-O(1), 1.859(3); Ti(1)-O(2), 2.046(2); Ti(1)-O(3), 2.028(3); Ti(1)-O(1), 2.061(3); Ti(2)-O(1), 1.819(2); Ti(2)-O(4), 2.044(2); Ti(2)-O(12), 2.025(2); Ti(2)-O(13), 2.041(2); Ti(1)-O(7), 2.103(4); Ti(1)-O(9), 2.025(4); Ti(1)-O(10), 1.910(4); Ti(1)-O(1), 1.882-(4); Ti(2)-O(10), 1.771(4); Ti(3)-O(12), 1.828(4).

rotation at the coalescence temperature (-20 °C) is estimated to be $45\pm2 \text{ kJ/mol}$ (see Supporting Information).

The P₃O₉ ligand exhibited rather different coordination behavior. Although the reaction of (PPN)₃(P₃O₉)•H₂O with [Cp*TiCl₃] failed to give isolable products, that with 0.5 equiv of $[(Cp*TiCl_2)_2(\mu-O)]^{12}$ in CH₂Cl₂ at room temperature afforded the dianionic complex $(PPN)_2[(Cp*Ti)_2(\mu-O)-$ (P₃O₉)₂] (3) as red crystals in 80% yield (Scheme 2). Its ³¹P{¹H} NMR spectrum (CDCl₃) clearly shows the presence of three nonequivalent phosphorus atoms in the P₃O₉ ligand $(\delta - 21.4 \text{ (dd, } J = 14 \text{ Hz}, J = 19 \text{ Hz}), -24.4 \text{ (dd, } J = 14 \text{ Hz})$ Hz, J = 24 Hz), -26.7 (dd, J = 19 Hz, J = 24 Hz)), while the ¹H NMR spectrum displays one singlet at δ 2.16 (s) assignable to the Cp* ligand. The molecular structure of **3**•CH₂Cl₂ has been confirmed by an X-ray study (Figure 2a).¹⁰ In complex **3**, each P_3O_9 ligand bridges the two titanium atoms in a $\kappa^2 O, O': \kappa O''$ fashion. It should be noted that in the P_3O_9 complexes reported so far only the monomeric κ^3 - or κ^2 -coordination mode has been observed; the above bridging coordination mode is unprecedented for the P_3O_9 ligand.

Finally, treatment of (PPN)₃(P₃O₉)•H₂O with [(Cp*TiCl)₃- $(\mu$ -O)₃] resulted in the formation of the monoanionic complex (PPN)[(Cp*Ti)₃(µ-O)₃Cl(P₃O₉)] (4) in 84% yield (Scheme 2). The structure of the anion is shown in Figure 2b. In contrast to the P_4O_{12} complex 2, only two of the three titanium centers are bound to the terminal oxygen atoms of the P_3O_9 ligand in 4, and the remaining titanium atom (Ti(3)) remains coordinated by a chloro ligand (Figure 2b).¹⁰ Again, the P₃O₉ ligand adopts a $\kappa^2 O, O': \kappa O''$ coordination mode, making the trititanium core unsymmetrical. Conversely, the ${}^{31}P{}^{1}H$ NMR spectra (CDCl₃) of **4** exhibit one triplet (δ -23.4, J = 15 Hz) and one doublet (δ -26.7, J = 15 Hz) assignable to the P_3O_9 ligand, and the ¹H NMR spectra display two Cp* singlets at δ 2.10 (30H) and 2.09 (15H), suggesting an apparent C_s symmetry of the complex in solution. Although no temperature dependence of the spectra was observed over the range 20 to -60 °C, these spectral features are explained by the fast migration of the specific oxygen atom (O*) between the titanium centers Ti(1) and Ti(2) (Scheme 3), but not by the rotation of the P_3O_9 ligand as observed in the P_4O_{12} complex 2.

In summary, we have disclosed that cyclophosphate anions are versatile building blocks to construct organotitanium phosphate hybrids with diversified structures, in which the P_4O_{12} and P_3O_9 ligands take unique coordination modes. The closed cage structures have been found for the P_4O_{12} complexes, while more open structures have been observed with the P_3O_9 ligands.

Acknowledgment. This work was supported by a Grantin-aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a grant from the Research Institute of Science and Engineering, Chuo University, Japan.

Supporting Information Available: Experimental details describing the synthesis and characterization data; a table of crystal data for 1-4; complete X-ray structural data for 1-4 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC049206H

⁽¹²⁾ Palacious, F.; Royo, P.; Serrano, R. J. Organomet. Chem. 1989, 375, 51.