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Rare examples of (µ-η2:η2-disulfido)dicopper complexes have been
prepared from Cu(I) and Cu(II) complexes of â-diketiminate and
anilido−imine supporting ligands. A novel byproduct derived from
sulfur functionalization of the methine position of a â-diketiminate
ligand was identified. DFT calculations on [(LCu)2X2] (L )
â-diketiminate, X ) O or S) complexes rationalize the absence
of a bis(µ-sulfido)dicopper isomer, [Cu2(µ-S)2]2+, in the synthetic
reactions, yet predict that a [Cu2(µ-S)2]0 core is a stable product
of 2-electron reduction of the [Cu2(µ-η2:η2-S2)]2+ unit. Exchange
of the disulfido ligand was discovered upon reaction of a (µ-η2:
η2-disulfido)dicopper complex with a Cu(I) reagent.

Copper-sulfur coordination in metallobiomolecules is
generally limited to copper-thiolates, as exemplified by the
ubiquitous class of CuI,II-SR electron transfer sites (cupre-
doxins)1 and the CuIx(SR)y clusters found in metallothion-
eins.2 Synthetic models of these various sites have provided
extensive fundamental insights into the chemistry of Cu-
SR units in a variety of supporting ligand contexts.3 Recently,
a unique, redox active tetracopper-sulfide cluster was
identified in the bacterial denitrification enzyme nitrous oxide
reductase (N2OR)4 and shown to be the site of N2O
reduction.5 This discovery of the first example of a multiple
valence state Cux(µ-S) unit in biology raises many funda-

mental questions concerning the properties and redox
behavior of discrete copper-sulfide complexes. Indeed, Cux-
(µ-S) compounds that feature low coordinate, N-donor
supported copper ions with oxidation states> +1,6 as found
in the N2OR active site, are unknown. Likewise, synthetic
protocols for disulfido complexes [Cux(µ-S2)] are poorly
developed, with examples limited to preparations of (µ-η1:
η1-disulfido)- and (µ-η2:η2-disulfido)dicopper(II,II) com-
pounds supported by tetra- and tridentate N-donors, respec-
tively.7-9 Herein we present preliminary results of a syste-
matic exploratory study aimed at the preparation and charac-
terization of high valent copper-sulfide complexes supported
by low denticity N-donor ligands. We have developed prepar-
ative routes to a new class ofµ-η2:η2-disulfido complexes
with bidentate N-donor ligation, examined aspects of their
bonding via DFT calculations, and discovered an intriguing
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reaction between members of the class and an added CuI

complex involving exchange of theµ-S2
2- unit.

Initial syntheses involved treatment of the complexes
[LCuIICl]n

10 with (TMS)2S in CH3CN, using aâ-diketiminate
A or a backbone-protected analogueB11 as supporting ligand
L (Scheme 1). Instead of isolating targeted product(s) with

Cu(µ-S)Cu units, however, we isolated [(LCu)2(µ-S2)] (1 and
2) in low yields (17% and 29% based on copper, respec-
tively). Formation of the disulfido bond suggests a redox
process between CuII and the sulfur ligand(s). This notion
was corroborated by identification of LCuI(CH3CN)12 as a
coproduct for the case L) B and by isolation of a small
amount of a novel byproduct for the case L) A that was
identified by X-ray crystallography (Figure 1). This
byproduct (3) results from reduction of copper and addition
of sulfur to the central methine carbon of theâ-diketiminate
ligand, yielding a CuI4(SR)4 cluster where R is a diimine-
thiolate. Related derivatizations at the methine position of
â-diketiminates have been reported,13 which may be avoided
by using ligands such asB.

Complexes1 and 2 were more efficiently prepared by
addition of 1/8 equiv of S8 to LCu(CH3CN)10a,12 in CH3CN
(Scheme 1), providing the products in 54% and 59% isolated
yields, respectively. X-ray crystal structures of both com-
plexes (2, Figure 2;1, Figure S3, Supporting Information)
show 4-coordinate, square planar metal centers with similar
Cu-Cu distances (3.799(5) Å for1 and 3.8446(16) Å for2)

and S-S′ distances consistent with a single bond (2.2007(11)
Å for 1 and 2.165(3) Å for2), yet longer than the S-S′
distance in the only other reported (µ-η2:η2-disulfido)-
dicopper(II,II) complex (2.073(4) Å).8 UV-vis spectra of1
and2 (Figures S5 and S6, Supporting Information) contain
multiple intense features tentatively ascribed to ligand based
π f π* and/or S2

2- f CuII LMCT transitions,9 but exact
assignments await more detailed analysis.14 Both 1 and 2
are EPR silent and exhibit sharp1H NMR spectra, indicative
of strong antiferromagnetic coupling between the CuII ions.

In contrast to previous findings for oxygen analogues,15

[Cu2(µ-S)2]2+ isomers of the [Cu2(µ-S2)]2+ cores of1 and2
were notably absent from the aforementioned synthetic
reactions. In order to shed light on this structural preference,
DFT calculations on the series [(LCu)2X2] were performed,
for X ) O or S and L) the simplified â-diketiminate
HN(CH)3NH-.16,17Two energetic minima were found for X
) O, corresponding to different O-O distances (1.44 and
2.36 Å), in agreement with previous experimental and
theoretical results15 that indicate similar stabilities for some
(µ-η2:η2-peroxo)- and bis(µ-oxo)dicopper cores. For X) S,
however, only one minimum energy structure was found with
a short S-S ) 2.18 Å, in close agreement with the S-S
distances in1 and 2. This result suggests an intrinsic
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Scheme 1. Syntheses of Complexes

Figure 1. Drawing of 3 and a representation of its heteratom core from
an X-ray crystal structure, shown as 50% thermal ellipsoids. See Supporting
Information for interatomic distances and angles.

Figure 2. Representation of the X-ray crystal structure of2, with all non-
hydrogen atoms shown as 50% thermal ellipsoids. Selected bond distances
(Å) and angles (deg): Cu1-S1, 2.2011(17); Cu1-S1A, 2.2113(18); Cu1-
N1, 1.880(5); Cu1-N2, 1.922(5); Cu1‚‚‚Cu1A, 3.8446(16); S1-S1A, 2.165-
(3); S1-Cu1-N1, 103.5(17); S1-Cu1-N2, 158.8(17); S1A-Cu1-N1,
162.2(17); S1A-Cu1-N2, 100.1(17); N1-Cu1-N2, 97.7(2); S1-Cu1-
S1A, 58.8(8); Cu1-S1-Cu1A, 121.2(7); S1A-S1-Cu1, 60.9(7).
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instability for the [Cu2(µ-S)2]2+ core, an intriguing contrast
to what has been found for isoelectronic complexes with
group 10 metals.18 On the other hand, future synthetic efforts
are inspired by the additional finding that 2-electron reduction
of [(LCu)2(µ-S2)] results in scission of the S-S bond (S-S
) 3.24 Å) to yield a [Cu2(µ-S)2]0 core as the energetic
minimum, with structural parameters (Cu-Cu ) 3.34 Å,
Cu-S ) 2.32 Å) that are similar to those of known bis(µ-
thiolato)dicopper(II,II) complexes (Cu-Cu) 3.34 Å, Cu-S
) 2.33 Å).19

Finally, in an initial exploration of the reactivity of the
new disulfido complexes, we discovered that treatment of2
with (A)Cu(CH3CN) in CH3CN at room temperature cleanly
generated1 and (B)Cu(CH3CN) (Scheme 2). The unantici-
pated exchange process is drawn as an equilibrium because

of the observation of incomplete formation of1 when <4
equiv of (A)Cu(CH3CN) or different solvents (that solubilize
all the involved species) were used. To our knowledge, the
reaction in Scheme 2 is unprecedented in copper chemistry,
although it resembles a recently reported20 metal-metal
exchange reaction of a (µ-disulfido)dimanganese com-
plex.21

In conclusion, synthetic protocols for a new class of
(µ-η2:η2-disulfido)dicopper(II,II) complexes have been de-
veloped, the lack of isomeric bis(µ-sulfido)dicopper(III,III)
products in these reactions has been rationalized through DFT
calculations, and a new disulfido exchange reaction has been
discovered. Further spectroscopic, mechanistic, and reactivity
studies are planned, with a view toward developing prepara-
tive routes towardµ-sulfido species relevant to the N2OR
active site.
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Scheme 2. Disulfido Exchange Reaction
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