

Novel Nucleophilic Reactivity of Disulfido Ligands Coordinated Parallel to M-M (M = Rh, Ir) Bonds

Takanori Nishioka,^{*,†} Hiroaki Kitayama,[†] Brian K. Breedlove,^{†,‡} Kimie Shiomi,[†] Isamu Kinoshita,[†] and Kiyoshi Isobe^{*,†,§}

Department of Material Science, Graduate School of Science, Osaka City University, Sumiyoshi-ku Osaka 558-8585 Japan, Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi 980-8578, Japan

Received February 4, 2004

Reaction of *trans*-[(MCp^{*})₂(μ -CH₂)₂Cl₂] (M = Rh, Ir; Cp^{*} = η^{5} -C₅Me₅) with Li₂S₂ afforded the disulfido complexes [(MCp^{*})₂(μ -CH₂)₂(μ -S₂-*S*:*S*')] which were easily oxidized by O₂ to give the oxygenated complexes [(MCp^{*})₂($(\mu$ -CH₂)₂(μ -SG₂-*S*:*S*')]. Although [(RhCp^{*})₂($(\mu$ -CH₂)₂($(\mu$ -S₂-*S*:*S*')] gave a complicated mixture when reacted with CH₂Cl₂ or CHCl₃, [(IrCp^{*})₂($(\mu$ -CH₂)₂($(\mu$ -CH₂)₂($(\mu$ -S₂-*S*:*S*')] reacted with both CH₂Cl₂ and CHCl₃ to give the dithioformato complexe [(IrCp^{*})₂($(\mu$ -CH₂)₂($(\mu$ -S₂-*S*:*S*')] cl and the cyclotetrasulfido complex [{(IrCp^{*})₂($(\mu$ -CH₂)₂]₂($(\mu$ -S₄-*S*:*S*':*S*'')]Cl₂. The oxygenated complexes [(RhCp^{*})₂($(\mu$ -CH₂)₂($(\mu$ -SSO₂-*S*:*S*')] reacted with hydrocarbyl halides to afford bridging hydrocarbyl thiolato complexes accompanied by the generation of SO₂ gas. These complexes have been characterized by NMR spectroscopy, ESI-MS, and X-ray diffraction.

Introduction

Being able to adopt a wide range of oxidation states from -2 to +6, sulfur has rich redox chemistry and is involved in many important biological, mineralogical, and industrial processes.¹ Disulfide, an oxidized form of sulfide (S²⁻), is a π donor ligand and adopts a variety of bridging modes when coordinated to two metal ions, Scheme 1, and several examples have been reported.² There are two possible coordination modes in which the disulfido ligand is parallel to the M····M axis: with and without a formal M–M bond.

- [‡] Tohoku University.
- § Kanazawa University.
- (a) Oae, S. Organic Sulfur Chemistry: Structure and Mechanism;, CRC Press: Boca Raton, FL, 1992.
 (b) Müller, A.; Krebs, B. Sulfur, Its Significance for Chemistry, for the Geo., Bio., and Cosmosphere and Technology; Elsevier: Amsterdam, 1984.
- (2) (a) Müller, A.; Jaegermann, W. Inorg. Chem. 1979, 18, 2631. (b) Bolinger, C. M.; Rauchfuss, T. B.; Rheingold, A. L. Organometallics 1982, 1, 1551. (c) Boorman, P. M.; Kerr, K. A.; Kydd, R. A.; Moynihan, K. J.; Valentine, K. A. J. Chem. Soc., Dalton Trans. 1982, 1401. (d) Bolinger, C. M.; Rauchfuss, T. B.; Rheingold, A. L. J. Am. Chem. Soc. 1983, 105, 6321. (e) McConnachie, C. A.; Stiefel, E. I. Inorg. Chem. 1999, 38, 964. (f) Goh, L. Y.; Mak, T. C. W. J. Chem. Soc., Chem. Commun. 1986, 1474. (g) Wachter, J. Angew. Chem., Int. Ed. Engl. 1989, 28, 1613 and references therein. (e) Müller, A.; Jaegermann, W.; Enemark, J. H. Coord. Chem. Rev. 1982, 46, 245.

5688 Inorganic Chemistry, Vol. 43, No. 18, 2004

Matsumoto and co-workers reported a Ru complex, [{RuCl₂-[P(OMe)₃]₂}₂(μ -S₂)(μ -Cl)(μ -N₂H₄)]⁺, without an M–M bond,³ in which the disulfido ligand undergoes oxygenation to give an S₂O₅ ligand. Only a small number of complexes with a disulfido ligand parallel to an M–M bond have been reported.² The M–M bond creates a more rigid structure reducing the possible coordination modes that the S–S ligand can adopt, and therefore, parallel coordinated disulfido ligands are expected to have different reactivity compared to complexes without an M–M bond.

In our studies, we have been examining both the oxidation and oxygenation of inorganic sulfur compounds coordinated to a methylene bridged dirhodium unit with a Rh–Rh single bond, {(RhCp*)₂(μ -CH₂)₂} with each Rh ion having only

^{*} Authors to whom correspondence should be addressed. E-mail: nishioka@sci.osaka-cu.ac.jp (T.N.); isobe@cacheibm.s.kanazawa-u.ac.jp (K.S.).

[†] Osaka City University.

⁽³⁾ Matsumoto, K.; Koyama, T.; Koide, Y. J. Am. Chem. Soc. 1999, 121, 1, 10913.

one coordination site available. In most cases, the dinuclear structure is maintained during reactions involving the ligands except under certain conditions.⁴ For example, $[(RhCp^*)_2 (\mu-CH_2)_2(\mu-SH)]^+$ (Cp^{*} = η^5 -C₅Me₅)⁵ is oxidized by S₈ or O₂ with excess H₂S to give the cyclotetrasulfido complex $[\{(RhCp^*)_2(\mu-CH_2)_2\}_2(\mu-S_4-S:S':S''')]^{2+.6}$ [$\{(RhCp^*)_2(\mu-CH_2)_2\}_2(\mu-S_4-S:S':S''')]^{2+.6}$ [$\{(RhCp^*)_2(\mu-CH_2)_2\}_2(\mu-CH_2)_2\}_2(\mu-S_2-S:S')$] (1).⁷ In this paper, we report the direct synthesis of the Rh (1) and the corresponding Ir (2) disulfido complexes using Li₂S₂ and their reactivity with oxygen and alkyl halides, including C–H activation by the Ir complex. In addition, the reactivity of the oxygenated species with electrophiles is also reported.⁸

Experimental Section

Materials. All solvents were purchased from Nacalai Tesque for the reactions and from Sigma-Aldrich Japan or Merck for the measurements. MeOH was distilled from Mg and I₂ under Ar, and toluene was distilled from Na and benzophenone under Ar. Other solvents were used without further purification. The dichloro dirhodium complex, *trans*-[(RhCp*)₂(μ -CH₂)₂Cl₂]⁹, and Li₂S₂¹⁰ were synthesized by literature procedures. The dichloro diiridium complex, *trans*-[(IrCp*)₂(μ -CH₂)₂Cl₂], was synthesized by modifying the procedure for the corresponding Rh analogue.⁹ All other reagents were used as received.

General Procedure. All reactions were performed in a dry glovebox filled with N₂ or using standard Schlenk techniques under Ar. NMR spectra were recorded on JEOL Lambda300 and 400 and Bruker AVANCE600 FT-NMR spectrometers, and chemical shifts were referenced to tetramethylsilane. Fast atom bombardment (FAB) and electrospray ionization (ESI) mass spectrometry were performed on JEOL JMS-700T and Applied Biosystem Mariner spectrometers, respectively. IR spectra were measured on a JASCO FT/IR-420 spectrometer. Elemental analyses were performed by the Analytical Research Service Center at Osaka City University on Perkin-Elmer 240C or FISONS Instrument EA108 elemental analyzers.

Preparation of [(MCp*)₂(*μ*-CH₂)₂(*μ*-S₂-S:S')] (M = Rh (1), Ir (2)). A suspension of *trans*-[(IrCp*)₂(*μ*-CH₂)₂Cl₂] (120 mg, 0.16 mmol) in MeOH (50 mL) was added to a solution of Li₂S₂ (24 mg, 0.31 mmol) in MeOH (10 mL) under N₂. After stirring the reaction mixture for 4 h, the solvent was removed under reduced pressure to give crude [(IrCp*)₂(*μ*-CH₂)₂(*μ*-S₂-S:S')] (2) as a brown residue. Toluene (30 mL) was added to the crude product and the insoluble matter was filtered off. Pure 2 was obtained as a brown solid by evaporation of the solvent. Yield 46 mg, 39%. Single crystals suitable for X-ray diffraction studies were obtained from a solution of 2 in α,α',α''-trifluorotoluene by slow evaporation of the solvent. ¹H NMR (300 MHz, CD₃OD): δ 8.01 (2H, s, μ -CH₂), 7.64 (2H, s, μ -CH₂), 1.87 (30H, s, Cp*). ¹³C NMR (75 MHz, CD₃OD): δ 107.7 (μ -CH₂), 97.3 (s, C₅Me₅), 10.6 (C₅Me₅). HRMS (ESI+): m/z calcd for ¹²C₂₂¹H₃₅¹⁹¹Ir₂³²S₂ ([M + H]⁺): 745.1392. Found: 745.1405.

Complex 1 was prepared in a similar manner using *trans*-[(RhCp*)₂(μ -CH₂)₂Cl₂] (90 mg, 0.16 mmol) instead of *trans*-[(IrCp*)₂(μ -CH₂)₂Cl₂], and the reaction was stirred for only 1 h. Yield: 51 mg, 58%. ¹H NMR (CD₃OD): δ 9.92 (dt, ²J_{H-H} = 3.8 Hz, ²J_{H-Rh} = 1.9 Hz, 2H, μ -CH₂), 9.10 (dt, ²J_{H-H} = 3.8 Hz, ²J_{H-Rh} = 1.5 Hz, 2H, μ -CH₂), 1.74 (s, 30H, Cp*). MS (FAB+): m/z = 569 ([M + H]⁺).

Due to the high reactivity of 1 and 2 with O_2 , accurate elemental analyses for the disulfido complexes have not been obtained.

Preparation of $[(RhCp^*)_2(\mu-CH_2)_2(\mu-SSO-S:S')]$ (3) and $[(\mathbf{RhCp}^*)_2(\mu - \mathbf{CH}_2)_2(\mu - \mathbf{SSO}_2 - S:S')]$ (4). A mixture of trans- $[(RhCp^*)_2(\mu-CH_2)_2Cl_2]$ (58 mg, 0.10 mmol) and Li₂S₂ (16 mg, 0.20 mmol) in MeOH (50 mL) was stirred for 1 h under N2 then exposed to air. After stirring for 10 min, the solvent was removed under reduced pressure to give a dark reddish brown solid. A mixture of 3 and 4 (first fraction, 45 mg) was obtained via silica gel column chromatography (ϕ 2.5 cm \times 30 cm) using CH₂Cl₂/MeOH (49:1) as the eluent. These complexes were separated by silica gel column chromatography (ϕ 2.5 cm \times 30 cm) using CH₂Cl₂/MeCN/MeOH (4:6:1) as the eluent. The first and second fractions contained 3 and 4, respectively. Yield: 23 mg, 39% for 3; 13 mg, 22% for 4 based on Rh. Single crystals for X-ray diffraction studies were obtained by diffusion of Et_2O for **3** or AcOEt for **4** into a solution of each in CH₂Cl₂. Complex **3**. ¹H NMR (400 MHz, CDCl₃): δ 9.53 (m, 2H, µ-CH₂), 8.45 (m, 2H, µ-CH₂), 1.81 (s, 15H, Cp*), 1.74 (s, 15H, Cp*). ¹³C NMR (100 MHz, CDCl₃): δ 172.3 (dd, ${}^{1}J_{C-Rh} = 24$ and 30 Hz, μ -CH₂), 161.8 (t, ${}^{1}J_{C-Rh} = 25$ Hz, μ -CH₂), 101.8 (s, C_5 Me₅), 100.3 (d, ${}^{1}J_{C-Rh} = 4$ Hz, C_5 Me₅), 9.9 (C₅Me₅), 9.6 (C₅Me₅). MS (FAB+): m/z = 556 ([M + H]⁺). Anal. Calcd for 3: C, 45.21; H, 5.86. Found: C, 44.34; H, 5.68. Complex 4. ¹H NMR (400 MHz, CDCl₃): δ 9.72 (m, 2H, μ -CH₂), 8.90 (m, 2H, µ-CH₂), 1.82 (s, 15H, Cp*), 1.73 (s, 15H, Cp*). ¹³C NMR (100 MHz, CDCl₃): δ 172.0 (t, ${}^{1}J_{C-Rh} = 25$ Hz, μ -CH₂), 102.6 (d, ${}^{1}J_{C-Rh} = 6$ Hz, $C_{5}Me_{5}$), 101.3 (d, ${}^{1}J_{C-Rh} = 6$ Hz, $C_{5}Me_{5}$), 9.7 (C_5Me_5) . MS (FAB+): m/z = 601 ([M + H]⁺). Anal. Calcd for 4: C, 44.01; H, 5.71. Found: C, 43.73; H, 5.40.

Preparation of $[(IrCp^*)_2(\mu-CH_2)_2(\mu-SSO_2-S:S')]$ (5). A suspension of *trans*-[(IrCp*)₂(µ-CH₂)₂Cl₂] (120 mg, 0.16 mmol) in MeOH (50 mL) was added to a solution of Li₂S₂ (24 mg, 0.31 mmol) in MeOH (10 mL) under N₂. The reaction mixture was stirred for 4 h and then exposed to air. After the mixture was stirred for another 18 h, the solvent was removed under reduced pressure to give an orange solid. CH₂Cl₂ (20 mL) was added to the solid and the insoluble material was filtered off. Removal of the solvent gave 5 as an orange solid (yield 83 mg, 69% based on Ir). Single crystals suitable for X-ray structure analysis were obtained by diffusion of hexane into a solution of 5 in CH2Cl2. ¹H NMR (300 MHz, CDCl₃): δ 7.97 (2H, s, μ-CH₂), 7.58 (2H, s, μ-CH₂), 1.93 (15H, s, Cp*), 1.83 (15H, s, Cp*). ¹³C NMR (75 MHz, CDCl₃): δ 108.5 $(\mu$ -CH₂), 97.5 (C_5 Me₅), 95.7 (C_5 Me₅), 9.6 (C_5 Me₅), 9.5 (C_5 Me₅). MS (FAB+): m/z (% relative intensity) = 777 (4), 778 (1.6), 779 (13), 780 (4), 781 (11), 782 (4), 783 (1.5), 784 (0.6) ([M + H]⁺); 799 (8), 800 (2), 801 (28), 802 (9), 803 (31), 804 (7), 805 (3), 806 (1) ([M + Na]⁺). Anal. Calcd for **5**: C, 33.92; H, 4.40. Found: C, 33.90; H, 4.31.

^{(4) (}a) Nishioka, T.; Isobe, K.; Kinoshita, I.; Ozawa, Y.; Vázquez de Miguel, A.; Nakai, T.; Miyajima, S. Organometallics 1998, 17, 1637.
(b) Kaneko, Y.; Suzuki, T.; Isobe, K. Organometallics 1998, 17, 996.
(c) Kaneko, Y.; Suzuki, N.; Nishiyama, A.; Suzuki, T.; Isobe, K. Organometallics 1998, 17, 4875.

⁽⁵⁾ Ozawa, Y.; Vázquez de Miguel, A.; Isobe, K. J. Organomet. Chem. 1992, 433, 183.

⁽⁶⁾ Isobe, K.; Ozawa, Y.; Vázquez de Miguel, A.; Zhu, T.-W.; Zhao, K.-M.; Nishioka, T.; Ogura, T.; Kitagawa, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 1882.

⁽⁷⁾ Nishioka, T.; Nakamura, S.; Kaneko, Y.; Suzuki, T.; Kinoshita, I.; Kiyooka, S.; Isobe, K. Chem. Lett. 1995, 911.

⁽⁸⁾ Shiomi, K.; Breedlove, B. K.; Kitayama, H.; Nishioka, T.; Kinoshita, I.; Koga, N.; Isobe, K. Chem. Commun. 2002, 1756.

⁽⁹⁾ Isobe, K.; Barley, P. M.; Schofield, P.; Gauntlett, J. T.; Nutton, A.; Maitlis, P. M. J. Chem. Soc., Chem. Commun. 1982, 425.

⁽¹⁰⁾ Tatsumi, K.; Inoue, I.; Kawaguchi, H.; Kohsaka, M.; Nakamura, A.; Cramer, R. E.; Van Doorne, W.; Taogoshi, G. J.; Richmann, P. N. Organometallics **1993**, *12*, 352.

Preparation of [(RhCp*)₂(µ-CH₂)₂(µ-SMe)](BPh₄) (6). Methyl iodide (4.7 μ L, 0.075 mmol) was added to a solution of 4 (30 mg, 0.050 mmol) in 5 mL of MeOH under N₂. After the mixture was stirred for 14 h, a solution of NaBPh₄ (50 mg, 0.146 mmol) in 5 mL of MeOH was added to the reaction mixture to give a red precipitate of 6, which was collected by filtration. Yield 27 mg, 63%. Single crystals suitable for X-ray crystallography were obtained by diffusion of toluene into a solution of 6 in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃): δ 8.44 (1H, m, μ -CH₂), 7.82 (1H, m, μ-CH₂), 7.73 (1H, m, μ-CH₂), 7.49 (1H, m, μ-CH₂), 7.41 (8H, m, o-H-Ph₄B), 7.03 (8H, t, $J_{H-H} = 7.3$ Hz, m-H-Ph₄B), 6.88 (4H, t, $J_{\rm H-H} = 7.2$ Hz, *p*-H–Ph₄B), 1.73 (30H, s, Cp*), 1.34 (3H, t, ${}^{3}J_{\rm H-Rh}$ = 1.7 Hz, MeS). ¹³C NMR (100 MHz, CDCl₃): δ 165.7 (t, J_{C-Rh} = 25 Hz, μ -CH₂), 164.2 (q, J_{C-B} = 49 Hz, BPh₄), 164.1 (t, J_{C-Rh} = 24 Hz, μ -CH₂), 136.3 (BPh₄), 125.3 (q, ${}^{3}J_{C-B} = 2.5$ Hz, BPh₄), 121.5 (BPh₄), 101.8 (C₅Me₅), 10.0 (C₅Me₅), 7.5 (SMe). MS (FAB+): m/z = 551 ([M]⁺). Anal. Calcd for 6: C, 64.84; H, 6.60. Found: C, 64.54; H, 6.57.

Preparation of $[(RhCp^*)_2(\mu-CH_2)_2(\mu-SCH_2CHCH_2)](BPh_4)$ (7). Complex 7 was synthesized in a manner similar to 6 using allyl iodide (6.8 μ L, 0.075 mmol) instead of methyl iodide. Yield: 30 mg, 69%. ¹H NMR (400 MHz, CDCl₃): δ 8.47 (1H, m, μ-CH₂), 7.75 (1H, m, μ-CH₂), 7.71 (1H, m, μ-CH₂), 7.51 (1H, m, μ -CH₂), 7.41 (8H, m, *o*-H–Ph₄B), 7.03 (8H, t, $J_{H-H} = 7.3$ Hz, m-H–Ph₄B), 6.88 (4H, t, $J_{H-H} = 7.1$ Hz, p-H–Ph₄B), 5.54 (1H, m, CH₂=CHCH₂S), 5.08 (1H, d, $J_{H-H} = 15.6$ Hz, CHH = CHCH₂S), 5.05 (1H, d, $J_{H-H} = 10.0$ Hz, CH $H = CHCH_2S$), 2.58 $(2H, d, J_{H-H} = 7.1 \text{ Hz}, CH_2 = CHCH_2S), 1.73 (30H, s, Cp*).$ ¹³C NMR (100 MHz, CDCl₃): δ 164.8 (t, $J_{C-Rh} = 21$ Hz, μ -CH₂), 164.5 (t, $J_{C-Rh} = 25$ Hz, μ -CH₂), 164.2 (q, $J_{C-B} = 48$ Hz, BPh₄), 136.3 (BPh₄), 134.2 (SCH₂CHCH₂), 125.4 (q, ${}^{3}J_{C-B} = 2.7$ Hz, BPh₄), 121.5 (BPh₄), 118.1 (SCH₂CHCH₂), 102.1 (C₅Me₅), 28.2 (SCH_2CHCH_2) , 10.2 (C_5Me_5) . MS (FAB+): $m/z = 577 ([M]^+)$. Anal. Calcd for 7: C, 65.64; H, 6.63. Found: C, 65.43; H, 6.59.

Preparation of [{(RhCp*)₂(μ -CH₂)₂}₂(μ , μ -SCH₂CH₂CH₂S)]-(BPh₄)₂ (8). A mixture of 4 (25 mg, 0.041 mmol) in 15 mL of MeOH and 1,3-diiodopropane (2.6 µL, 0.022 mmol) was refluxed for 14 h under Ar. After the reaction mixture was cooled to room temperature, a solution of NaBPh₄ (50 mg, 0.146 mmol) in 5 mL of MeOH was added to give a red precipitate which was collected by filtration. Yield: 11 mg, 31%. Single crystals suitable for X-ray crystallography were obtained by diffusion of Et₂O into a solution of 8 in CH₂Cl₂. ¹H NMR (600 MHz, CD₂Cl₂): δ 8.51 (2H, s, µ-CH₂), 7.86 (2H, s, µ-CH₂), 7.84 (2H, s, µ-CH₂), 7.63 (2H, s, μ -CH₂), 7.34 (16H, m, *o*-H–Ph₄B), 7.04 (16H, t, $J_{H-H} = 7.4$ Hz, m-H-Ph₄B), 6.89 (8H, t, $J_{H-H} = 7.2$ Hz, p-H-Ph₄B), 1.96 (4H, t, $J_{\rm H-H} = 7.3$ Hz, SCH₂CH₂CH₂S), 1.81 (60H, s, Cp*), 1.41 (2H, q, $J_{\rm H-H} = 7.3$ Hz, SCH₂CH₂CH₂S). ¹³C NMR (125 MHz, CD₂Cl₂): δ 165.6 (t, $J_{C-Rh} = 25$ Hz, μ -CH₂), 164.7 (t, $J_{C-Rh} = 26$ Hz, μ -CH₂), 164.4 (q, $J_{C-B} = 49$ Hz, BPh₄), 136.3 (BPh₄), 126.0 (q, ${}^{3}J_{C-B} =$ 2.8 Hz, BPh₄), 122.1 (BPh₄), 102.5 (C₅Me₅), 34.4 (SCH₂CHCH₂S), 24.5 (SCH₂CHCH₂S), 10.4 (C₅Me₅). MS (ESI+): m/z = 1433 ([M + BPh₄]⁺), m/z = 557 ([M]²⁺). Anal. Calcd for 8·CH₂Cl₂: C, 62.73; H, 6.36. Found: C, 62.39; H, 6.32.

Preparation of [{(**RhCp***)₂(μ -**CH**₂)₂}₂{p-(μ -**SCH**₂)₂(C₆**H**₄)}]-(**BPh**₄)₂ (9). A mixture of **4** (13 mg, 0.022 mmol) and α , α' dibromoxylene (3 mg, 0.011 mmol) in 3 mL of MeOH was stirred for 48 h under N₂. After cooling the reaction mixture to room temperature, a solution of NaBPh₄ (30 mg, 0.088 mmol) in **3** mL of MeOH was added to give a red precipitate which was collected by filtration. Yield: 12 mg, 61%. Single crystals suitable for X-ray structure analysis were obtained by diffusion of MeOH into the solution of **9** in CH₂Cl₂. ¹H NMR (600 MHz, CD₂Cl₂): δ 8.67 (2H, s, μ -CH₂), 7.91 (2H, s, μ -CH₂), 7.78 (2H, s, μ -CH₂), 7.63 (2H, s, μ -CH₂), 7.33 (16H, m, *o*-H–Ph₄B), 7.09 (4H, s, SCH₂-(C₆H₄)CH₂S), 7.03 (16H, t, $J_{H-H} = 7.4$ Hz, *m*-H–Ph₄B), 6.88 (8H, t, $J_{H-H} = 7.2$ Hz, *p*-H–Ph₄B), 3.13 (4H, s, SCH₂(C₆H₄)CH₂S), 1.76 (60H, s, Cp*). ¹³C NMR (125 MHz, CD₂Cl₂): δ 166.5 (t, $J_{C-Rh} = 25$ Hz, μ -CH₂), 164.5 (t, $J_{C-Rh} = 23$ Hz, μ -CH₂), 164.5 (t, $J_{C-Rh} = 24$ Hz, BPh₄), 138.2 (SCH₂(C₆H₄)CH₂S), 136.3 (BPh₄), 129.6 (SCH₂(C₆H₄)CH₂S), 126.0 (q, ³J_{C-B} = 2.8 Hz, BPh₄), 122.1 (BPh₄), 102.6 (C₅Me₅), 29.9 (SCH₂(C₆H₄)CH₂S), 10.4 (C₅Me₅). MS (ESI+): *m*/*z* = 588 ([M]²⁺). Anal. Calcd for **9**·CH₂Cl₂: C, 63.84; H, 6.26. Found: C, 64.04; H, 6.20.

Reaction of $[(RhCp^*)_2(\mu-CH_2)_2(\mu-SSO_2-S:S')]$ (4) with 1,2-**Diiodoethane.** To a solution of 3 (10 mg, 0.017 mmol) in 2.5 mL of MeOH was added 1,2-diiodoethane, and the reaction mixture was refluxed for 2 h under Ar to give a purple solid of *trans*- $[(RhCp^*)_2(\mu-CH_2)_2I_2]$ which was filtered off. Upon addition of NaBPh₄ (20 mg, 0.058 mmol) to the filtrate, a red precipitate formed and was determined to be the tetrasulfido complex [{(RhCp*)_2- $(\mu-CH_2)_2\}_2(\mu-S_4-S:S':S'':S''')]$ by the ¹H NMR and FAB mass spectra.

Formation of [(IrCp*)₂(µ-CH₂)₂(µ-S₂CH-S:S')]Cl (10a) and [{(IrCp*)₂(µ-CH₂)₂}₂(µ₄-S₄-S:S':S'')]Cl₂ (11a). Complex 2 was dissolved in 10 mL of CHCl₃ or CH₂Cl₂ to give an orange solution. After stirring for several hours, the solution changed to green. After 18 h, the solvent was removed under reduced pressure to give a mixture of 10a and 11a. Toluene (30 mL) was added to the mixture and the insoluble solid, most of which was complex 11a, was filtered off. The solvent was removed from the filtrate to give crude **10a**. Complexes **10a** and **11a** were purified as the BPh₄ salts (**10b** and **11b**, respectively) by adding a solution of NaBPh₄ in MeOH to solutions of the crude complexes in MeOH. Single crystals of both 10a and 11a suitable for X-ray diffraction study were obtained concomitantly by diffusion of hexane into the reaction mixture. Complex **10b**. ¹H NMR (600 MHz, CDCl₃): δ 8.81 (1H, s, μ-S₂CH), 8.44 (2H, s, μ-CH₂), 7.54 (2H, s, μ-CH₂), 7.42 (8H, m, o-H-Ph₄B), 7.02 (8H, t, µ-H-Ph₄B), 6.87 (4H, t, p-H-Ph₄B), 1.76 (30H, s, Cp*). ¹³C NMR (150 MHz, CDCl₃): δ 197.75 (μ -S₂CH), 102.3 (μ -CH₂), 99.9 (C_5 Me₅), 9.3 (C_5Me_5). MS (ESI⁺): m/z(% relative intensity) = 757 (15), 758 (4), 759 (63), 760 (19), 761(62), 762 (17), 763(9), 764 (2) ([M]⁺). Anal. Calcd for [(IrCp*)₂-(µ-CH₂)₂(µ-S₂CH)](BPh₄)•1/3toluene: C, 53.38; H, 5.24. Found: C, 53.40; H, 5.20. Complex **11b**. ¹H NMR (600 MHz, CDCl₃): δ 7.86 (2H, µ-CH₂), 7.68 (2H, d, µ-CH₂), 7.36 (2H, s, µ-CH₂), 6.49 (2H, s, μ-CH₂), 1.77 (60H, s, Cp*). ¹³C NMR (150 MHz, CDCl₃): δ 112.0 (μ-CH₂), 110.9 (μ-CH₂), 100.0 (C₅Me₅), 10.1 (C₅Me₅). MS (ESI+): m/z (% relative intensity) = 744 (24), 745 (8), 746 (100), 747 (28), 748 (85), 749 (23), 750 (8), 751 (2) ([M]⁺). Anal. Calcd for C₉₂H₁₀₈B₂Ir₄S₄: C, 51.81; H, 5.10. Found: C, 51.71; H, 5.04.

Reaction of [(IrCp*)₂(μ -CH₂)₂(μ -S₂-S:S')] (2) with 1,1-Dichloroethane. Complex 2 (5 mg, 6.7 mmol) was dissolved in 1,1-dichloroethane (1 mL) and the mixture was stirred for 1 h. ESI mass spectrometry was performed on a portion of the reaction mixture, diluted with MeOH, to show the formation of [(IrCp*)₂-(μ -CH₂)₂(μ -S₂CCH₃-S:S')]Cl (12) and the tetrasulfido complex 11a. Complex 12. MS (ESI+): *m*/*z* (% relative intensity) = 771 (23), 772 (8), 773 (91), 774 (28), 775 (100), 776 (25), 777 (24), 778 (7), 779(12) ([M]⁺).

X-ray Crystallography. Diffraction data were collected on Rigaku AFC-5S (3, 4), AFC-7S (6), and AFC7/CCD Mercury (2, 5–9, 10a, 11a) diffractometers. The Data for 3, 4, and 6 were collected using the ω -2 θ scan technique and the data for the others were collected by using a rotation method with a 0.3 (5, 7–9, 11a) or 0.5 (2, 10a) frame width and with a 5-s (7), 10-s (2, 5, 9, 10a,

Table 1. Crystallographic Data fo	Complexes $2-5$,
--	-----------------	---

	2	3	4	5
formula	$C_{22}H_{34}Ir_2S_2$	$C_{22}H_{34}OS_2Rh_2$	$C_{22}H_{34}O_2S_2Rh_2$	$C_{22}H_{34}O_2S_2Ir_2$
fw	747.07	584.44	600.44	779.07
cryst syst	monoclinic	monoclinic	monoclinic	tetragonal
space group	<i>C</i> 2/ <i>c</i> (No. 15)	<i>C</i> 2/ <i>c</i> (No. 15)	$P2_1/n$ (No. 14)	$P\overline{4}2_{1}c$ (No. 114)
a (Å)	12.093(7)	11.696(3)	8.517(6)	23.013(1)
b (Å)	12.303(6)	12.930(4)	14.367(6)	=a
<i>c</i> (Å)	15.621(9)	15.816(5)	19.674(5)	8.8481(5)
α (deg)	90	90	90	90
β (deg)	105.36(1)	105.40(2)	96.30(1)	90
γ (deg)	90	90	90	90
$V(Å^3)$	2241(2)	2305(1)	2392(2)	4686.0(4)
Ζ	4	4	4	8
D_{calcd} (g/cm ³)	2.214	1.683	1.667	2.208
diffractometer	AFC-7/Mercury CCD	AFC-5S	AFC-5S	AFC-7/Mercury CCD
temp (K)	193	293	293	193
reflns collected	10651	3669	7679	37065
independent reflns	2523	3370	6974	5353
	$(R_{\rm int} = 0.065)$	$(R_{\rm int} = 0.067)$	$(R_{\rm int} = 0.075)$	$(R_{\rm int} = 0.054)$
$\mu (\text{mm}^{-1})$	12.087	1.619	1.565	11.573
$T_{\min} - T_{\max}$	0.339-0.684	0.697 - 1.000	0.630-0.811	0.355-0.561
data/params	2519/114	3370/195	6974/253	5353/267
$R_1[I > 2\sigma(I)]$	0.0777	0.0415	0.0757	0.0380
wR_2 (all data)	0.1704	0.1132	0.1572	0.0781
GOF	1.840	1.126	1.182	0.964

Table 2. Crystallographic Data for Complexes 6-9

	6	7	8	9-2CH ₂ Cl ₂
formula	C47H57BSRh2	C ₄₉ H ₅₉ BSRh ₂	$C_{95}H_{114}B_2S_2Rh_4$	$C_{102}H_{120}B_2Cl_4S_2Rh_4$
fw	870.65	896.69	1753.31	1985.24
cryst syst	triclinic	orthorhombic	monoclinic	triclinic
space group	<i>P</i> 1 (No. 2)	<i>Pna</i> 2 ₁ (No. 33)	$P2_1/n$ (No. 14)	<i>P</i> 1 (No. 2)
a (Å)	12.519(1)	29.931(2)	16.868(2)	11.5491(8)
b(Å)	14.582(1)	8.7984(7)	17.464(2)	12.315(1)
<i>c</i> (Å)	11.842(1)	16.809(1)	29.355(3)	17.291(1)
α (deg)	98.007(9)	90	90	79.146(9)
β (deg)	95.297(7)	90	92.869(5)	83.98(1)
γ (deg)	85.428(8)	90	90	87.84(1)
$V(Å^3)$	2126.6(3)	4426(1)	8637(1)	2401.6(3)
Ζ	2	4	4	1
$D_{\rm calcd}$ (g/cm ³)	1.360	1.345	1.348	1.373
diffractometer	AFC-7S	AFC-7/Mercury CCD	AFC-7/Mercury CCD	AFC-7/Mercury CCD
temp (K)	296	293	293	293
reflns collected	12918	33920	66101	19067
independent reflns	12389	8303	19186	10536
	$(R_{\rm int} = 0.024)$	$(R_{\rm int} = 0.072)$	$(R_{\rm int} = 0.082)$	$(R_{\rm int} = 0.040)$
$\mu ({\rm mm}^{-1})$	0.854	0.822	0.841	0.873
$T_{\min} - T_{\max}$	0.805 - 0.920	0.839-0.907	0.778-0.998	0.863-0.962
data/params	12389/460	8303/478	19186/952	10536/531
$R_1 \left[I > 2\sigma(I) \right]$	0.0348	0.0417	0.0708	0.0810
wR_2 (all data)	0.0589	0.0566	0.1310	0.1941
GOF	1.133	0.929	0.969	1.074

11a), or 15 s (8) exposure time per frame. The data collected on the CCD diffractometer were integrated, scaled, sorted, and averaged using the CrystalClear¹¹ software. Absorption corrections were applied using an empirical ψ scan (3), Tompa analytical (4, 6), multiscan (5, 8), or Coppens numerical (2, 7, 9, 10a, 11a) method. The structures were solved using DIRDIF94–PATTY¹² for 3 and 10a or SIR92¹³ for the others and refined with teXsan¹⁴ for 2 or SHELX-97¹⁵ for the others. Crystallographic data are

- (12) Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; de Gelder, R.; Israel, R.; Smits, J. M. M. *The DIRDIF-94 Program System*; Technical Report; Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
- (13) Altomare, A.; Burla, M. C.; Camalli, G.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Cryst. **1994**, 27, 435.
- (14) TeXsan, Crystal Structure Analysis Package; Molecular Structure Corp.: Houston, TX, 1985 and 1992.
- (15) Sheldrick, G. M. SHELX-97, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997.

summarized in Tables 1-3. All non-hydrogen atoms were refined anisotropically except for one of the C atoms in **2** which was refined isotropically because thermal parameters became negative when it refined anisotropically.

Results and Discussion

Disulfido Complexes. [(RhCp*)₂(μ -CH₂)₂(μ -S₂-*S*:*S'*)] (1) was first obtained by reducing the tetrasulfido tetrarhodium complex [{(RhCp*)₂(μ -CH₂)₂}₂(μ ₄-S₄-*S*:*S'*:*S''*:*S'''*)]²⁺ with Na₂S₂O₄ and NaOH in water or with NaBH₄ in MeOH. Complex **1** can also be synthesized by reacting *trans*-[(RhCp*)₂(μ -CH₂)₂Cl₂] with Li₂S₂ in MeOH, and the Ir analogue [(IrCp*)₂(μ -CH₂)₂(μ -CH₂)₂(μ -S₂-*S*:*S'*)] (2) was first prepared from the corresponding Ir dichloro complex using the same method. The synthesis and reactivity of complexes **1** and **2** are summarized in Scheme 2. In an inert atmosphere, both

⁽¹¹⁾ CrystalClear. Rigaku Corp.: Woodlands, TX, 1999.

Nishioka et al.

Table 3. Crystallographic Data for Complexes 10a and 11a

	$10a \cdot CH_2Cl_2$	11a
formula	$C_{24}H_{37}Cl_3Ir_2S_2$	C46H72Cl6Ir4S4
fw	880.48	1734.91
cryst syst	monoclinic	monoclinic
space group	<i>P2/m</i> (No. 11)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)
a (Å)	10.989(2)	8.681(3)
b(A)	9.809(2)	12.564(4)
<i>c</i> (Å)	13.058(2)	24.512(8)
α (deg)	90	90
β (deg)	91.252(4)	98.255(4)
γ0_	90	90
$V(Å^3)$	1407.2(4)	2645(1)
Ζ	2	2
D_{calcd} (g/cm ³)	2.078	2.177
diffractometer	AFC-7/Mercury CCD	AFC-7/Mercury CCD
temp (K)	153	193
reflns collected	13790	21094
independent reflns	3366	5982
	$(R_{\rm int} = 0.039)$	$(R_{\rm int} = 0.036)$
$\mu ({\rm mm^{-1}})$	9.918	10.547
$T_{\min} - T_{\max}$	0.372-0.699	0.369-0.568
data/params	3366/163	5982/271
$R_1 \left[I > 2\sigma(I) \right]$	0.0305	0.0379
wR_2 (all data)	0.0629	0.0657
GOF	0.942	1.078

Scheme 2

1 and 2 are stable in MeOH and toluene but react with halogenated solvents such as CHCl₃ and CH₂Cl₂. Even though complex 1 reacts with $CHCl_3$ or CH_2Cl_2 to give an intractable mixture, complex 2 reacts with $CHCl_3$ resulting in the incorporation of a C atom into the S-S bond (vide infra). Complexes 1 and 2 readily react in MeOH with atmospheric O_2 , in which case the disulfido ligands became oxygenated. In the case of complex 1, a mixture of the monooxygenated $[(RhCp^*)_2(\mu-CH_2)_2(\mu-SSO-S:S')]$ (3) and dioxygenated [(RhCp*)₂(μ -CH₂)₂(μ -SSO₂-S:S')] (4) complexes was obtained. However, only the dioxygenated complex [(IrCp*)2- $(\mu$ -CH₂)₂ $(\mu$ -SSO₂-S:S')] (5) formed when complex 2 was exposed to O_2 . The disulfido ligand in most monomeric complexes is relatively stable toward O_2 and typically needs stronger oxidizing agents to become oxygenated. For example, $[Ir(dppe)_2(S_2)]^+$ and $[Mo(S_2)(S_2CNEt_2)_3]$ are oxygen-

	2	3	4	5
M-M	2.642(1)	2.6053(7)	2.6137(9)	2.6373(6)
M-S	2.353(5)	$2.324(1)^{a}$	2.346(3)	$2.290(4)^{a}$
M-S(O)			2.311(3)	$2.304(3)^{a}$
$M-C(\mu-CH_2)$	2.06(2)	2.020(5)	2.020(9)	2.049(9)
•	2.08(2	2.056(4)	2.031(9)	2.056(10)
S-S	2.126(10)	2.107(3)	2.102(4)	2.173(7)
S-O		1.436(10)	1.441(9)	1.22(3), 1.55(2)
			1.455(10)	1.30(2), 1.63(4)
M-S-S	96.2(1)			$95.3(2)^a$
M-S-S(O)		96.05(4) ^a	94.2(1)	$96.3(2)^a$
M-S(O)-S			98.5(1)	
$M-C(\mu-CH_2)-M$	79.1(7)	79.5(1)	80.3(3)	79.8(3)
•			80.6(3)	80.0(3)
M-M-S	83.7(1)	83.76(4) ^a	84.63(8)	$84.1(1)^a$
M-M-S(O)			82.73(8)	84.3(1) ^a
S-S-O		110.3(5) ^a	107.0(4)	106(1), 112(1)
			109.8(4)	107(1), 115.6(10)
O-S-O			112.0(5)	105(1)
				114(1)

 $^{\it a}$ These values were calculated using the S atoms that are bound to disordered oxygen atoms.

Figure 1. ORTEP drawing of $[(IrCp^*)_2(\mu-CH_2)_2(\mu-S_2-S:S')]$ (2) with 65% probability ellipsoids. Hydrogen atoms are omitted for clarity.

ated using IO_4^- or *m*-chloroperbenzoic acid to give the corresponding SSO complexes $[Ir(dppe)_2(SSO)]^{+16}$ and $[Mo(SSO)(S_2CNEt_2)_3]$,¹⁷ respectively. To the best of our knowledge, there have been no reports involving the oxygenation of a disulfide ligand which is coordinated parallel to an M–M bond.

Structures of Disulfido and Oxygenated Complexes. The structures of 2-5 were determined by X-ray diffraction and the crystal data for these complexes are summarized in Table 1. Selected bond lengths and angles are listed in Table 4. The disulfido ligand in 2 is coordinated parallel to the Ir–Ir single bond (2.642(1) Å), Figure 1. The S–S bond length (2.126(10) Å) is the longest among those observed for similar disulfido complexes with M–M bonds (2.023(7)–2.117(2) Å)³ and lies in the range of those without M···M bonds (1.963(7)–2.159(2) Å).¹⁸

Complex **3** has a crystallographic C_2 axis bisecting the M–M and S–S bonds, Figure 2. Existence of the C_2 axis indicates either that the oxygen atom of the SSO ligand in **3** is disordered into two positions with $1/_2$ occupancies or that the single crystal contains both the disulfido complex **1** and

⁽¹⁶⁾ Schmid, G.; Ritter, G. Angew. Chem., Int. Ed. Engl. 1975, 14, 645.

⁽¹⁷⁾ Halcrow, M. A.; Huffman, J. C.; Christou, G. Inorg. Chem. 1994, 33, 3639.

Figure 2. ORTEP drawing of $[(RhCp^*)_2(\mu$ -CH₂)_2(μ -SSO-*S*:*S*')] (3) with 50% probability ellipsoids. Hydrogen atoms and half of the disordered oxygen atoms are omitted for clarity.

the O–S–S–O complex. The ¹H NMR spectrum of **3** has two Cp* methyl signals, meaning that the complex is not symmetric, and no signals corresponding to **1** were observed. The disordered structure has an averaged Rh–S bond with no difference between the Rh–S(oxygenated) and Rh–S(unoxygenated) bonds.

Most thiosulfito ligands bridge via the non-oxygenated S atom.¹⁹ S:S' coordination of the thiosulfito ligand is quite rare and only one structure of $[{Co(CN)_5}_2(\mu-SSO_2-S:S')]^{6-1}$ has been reported.²⁰ However, the metal atoms are arranged in a trans fashion about the S-S bond. Complexes 4 (Figure 3) and 5 (Figure 4) are the first examples of a thiosulfito ligand that is coordinated parallel to a M-M bond. The Rh-S(oxygenated) (2.311(3) Å) and Rh-S(unoxygenated) (2.346(3) Å) bonds in **4** are different in lengths. The oxygen atoms in the Ir analogue 5 are disordered into four positions, and the Ir-S bond lengths in 5 appear to be average values of the Ir-S(oxygenated) and Ir-S(unoxygenated) bond lengths, Table 4. The oxygenated S atoms form shorter bonds to the metal ions than the unoxygenated S atoms and these Ir-S bonds are clearly shorter than those in 2. The S–S bond distance in 5 (2.173(7) Å) becomes slightly longer than that in 2 (2.126(10) Å) upon oxy-

- (18) (a) Brunner, H.; Janietz, N. J.; Meier, W.; Sergeson, G.; Wachter, J.; Zhan, T.; Ziegler, M. L. Angew. Chem., Int. Ed. Engl. 1985, 24, 1060. (b) Nishio, M.; Matsuzaka, H.; Mizobe, Y.; Hidai, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 1872. (c) Yamada, M.; Tobita, H.; Inomata, S.; Ogino, H. Bull. Chem. Soc. Jpn. 1996, 69, 861. (d) Mizobe, Y.; Hosomizu, M.; Kawabata, J.; Hidai, M. Chem. Commun. 1991, 1226. (e) Matsumoto, T.; Matsumoto, K. Chem. Lett. 1992, 559. (f) Roberts, S. A.; Young, C. G.; Cleland, W. E., Jr.; Yamanouchi, K.; Oitega, R. B.; Enemark, J. H. Inorg. Chem. 1988, 27, 2647. (g) Kawano, M.; Hoshino, S.; Matsmoto, K. Inorg. Chem. 1992, 31, 5158. (h) Goodman, J. T.; Rauchfuss, T. B. Inorg. Chem. 1998, 37, 5040. (i) Yoshioka, K.; Kikuchi, H.; Mizutani, J.; Matsumoto, K. Inorg. Chem. 2001, 40, 2234. (j) Rauchfuss, T. B.; Rodgers, D. P. S.; Wilson, S. R. J. Am. Chem. Soc. 1986, 108, 3114. (k) Matsumoto, K.; Matsumoto, T.; Kawano, M.; Ohnuki, H.; Shichi, Y.; Nishide, T.; Sato, T. J. Am. Chem. Soc. 1996, 118, 3597. (1) Mizobe, Y.; Hosomizu, M.; Kubota, Y.; Hidai, M. J. Organomet. Chem. 1996, 507, 179. (m) Mizobe, Y.; Hosomizu, M.; Kuwata, S.; Kawabata, J.; Hidai, M. J. Organomet. *Chem.* 1996, 513, 231. (n) Weberg, R. T.; Haltiwanger, R. C.; Dubois, M. R. Organometallics 1985, 4, 1315.
- (19) (a) Kubas, J. K.; Wasserman, H. J.; Ryan, R. R. Organometallics 1985,
 4, 419. (b) Kubas, J. K.; Ryan, R. R.; Kubat-Martin, K. A. J. Am. Chem. Soc. 1989, 111, 7823. (c) Hoser, E. J.; Krautscheid, H.; T. B. Rauchfuss, Wilson, S. R. Chem. Commun. 1994, 1283.
- (20) Fronczek, F. R.; Marsh, R. E.; Schaefer, W. P. J. Am. Chem. Soc. 1982, 104, 3382.

Figure 3. ORTEP drawing of $[(RhCp^*)_2(\mu-CH_2)_2(\mu-SSO_2-S:S')]$ (4) with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure 4. ORTEP drawing of $[(IrCp^*)_2(\mu-CH_2)_2(\mu-SSO_2-S:S')]$ (5) with 50% probability ellipsoids. Hydrogen atoms and half of the disordered oxygen atoms are omitted for clarity.

genation. A similar trend was observed for $[{Co(CN)_5}_2-(\mu-SSO_2-S:S')]^{6-}$ (Co-S(oxygenated) = 2.255(2) Å; Co-S-(unoxygenated) = 2.297(2) Å).

Reaction of Thiosulfito Complexes with Hydrocarbyl Halides. The two S atoms in the thiosulfito ligand of both 4 and 5 have different formal oxidation states, -1 for *SSO*₂ and +3 for *SSO*₂, and their reactivity toward electrophiles reflects this difference. For instance, complex 4 reacts with MeI to give the bridging methyl thiolato complex [(RhCp*)₂-(μ -CH₂)₂(μ -SMe-*S*:*S'*)](BPh₄) (6) accompanied by the release of SO₂ gas, which was verified using a gas detector tube (Gastec Corporation). Unlike complex 4, when complex 1 reacts with MeI, [(RhCp*)₂(μ -CH₂)₂(μ -SSMe-*S*:*S'*)] is formed and S–S bond cleavage does not occur. C–S bond formation in complex 4 leads to the redistribution of charge in the SSO₂ ligand resulting in S–S bond cleavage (Scheme 3). The S atoms in the μ -SMe ligand and SO₂ have formal oxidation states of -2 and +4, respectively.

Hydrocarbyl dihalides, such as 1,3-diiodopropane, react with the thiosulfito complexes similar to the reaction with MeI to give a dimer of the dinuclear complexes bridged by dithiolato ligands. The reaction of **4** with 1,3-diiodopropane gives a 1-iodopropane-3-thiolato bridged dirhodium complex,

Figure 5. ORTEP drawing of the cationic moiety of $[(RhCp^*)_2(\mu-CH_2)_2-(\mu-SMe)](BPh_4)$ (6) with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Scheme 4

confirmed by ESI-MS. This complex then reacts further with another molecule of **4** to give the dimer of the dirhodium complexes [{(RhCp*)₂(μ -CH₂)₂}₂(μ , μ -SCH₂CH₂CH₂CH₂S)](BPh₄)₂ (**8**). Alkyl dibromides such as α , α' -dibromo-*p*-xylene also react with **4** to give the corresponding dimer of the dirhodium complexes, [{(RhCp*)₂(μ -CH₂)₂}₂{*p*-(μ -SCH₂)₂(C₆H₄)}]-(BPh₄)₂ (**9**). In the case of the iridium thiosulfito complex **5**, reaction with α , α' -dibromo-*p*-xylene only affords [(IrCp*)₂-(μ -CH₂)₂{ μ -(*p*-SCH₂C₆H₄CH₂Br)}]⁺ reflecting the lower reactivity of the iridium analogue.

The reaction of **4** with 1,2-diiodoethane does not give the corresponding dimer of the dirhodium complexes but gives *trans*-[(RhCp*)₂(μ -CH₂)₂I₂] and [{(RhCp*)₂(μ -CH₂)₂}₂-(μ -S₄-S:S':S''')]²⁺ through reaction with I₂, formed from the decomposition of 1,2-diiodoethane. In fact, **4** reacts with I₂ to give *trans*-[(RhCp*)₂(μ -CH₂)₂I₂] and [{(RhCp*)₂-(μ -CH₂)₂}₂(μ -S₄-S:S':S''')]²⁺ accompanied by the release of SO₂ gas. I₂ oxidizes both of the S atoms of the SSO₂ ligand to generate the S₄²⁻ ligand and SO₂ gas, and the formal oxidation numbers change from -1 for SSO₂and +3 for SSO₂ to +0.5 for the S₄²⁻ and +4 for SO₂ gas, Scheme 4.

Structures of Bridging Thiolato Complexes. X-ray structure analyses were performed for complexes 6-9 and ORTEP drawings of each complex are shown in Figures 5–8. Crystal data are summarized in Table 2 and selected bond lengths and angles are listed in Table 5. Because the sulfur atoms in 8 and 9, the carbon atoms of the 1,3-propanedithiolato ligand in 8, and the μ -CH₂ carbon atoms in 9 are disordered, bond lengths and angles calculated using atoms with larger occupancies are used for discussion. All four complexes have almost the same geometry as the thiolato bridged dirhodium unit, {(Cp*Rh)₂(μ -CH₂)₂(μ -SR)}. The acute Rh-S-Rh angles (64.27(7)-64.70(4)°) observed

Figure 6. ORTEP drawing of the cationic moiety of $[(RhCp^*)_2(\mu-CH_2)_2-(\mu-SCH_2CHCH_2)](BPh_4)$ (7) with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure 7. ORTEP drawing of the cationic moiety $[{(RhCp^*)_2(\mu-CH_2)_2}_{2-}(\mu,\mu-SCH_2CH_2CH_2S)](BPh_4)_2$ (**8**) with 50% probability ellipsoids. Hydrogen atoms and half of the disordered carbon and sulfur atoms are omitted for clarity.

Figure 8. ORTEP drawing of the cationic moiety of $[\{(RhCp^*)_{2}-(\mu-SCH_2)_2(C_6H_4)\}](BPh_4)_2$ (9) with 50% probability ellipsoids. Hydrogen atoms and half of the disordered sulfur atoms are omitted for clarity.

in **6**–**9** are similar to those of other μ -CH₂ dirhodium thiolato complexes with a Rh–Rh single bond, such as $[(Cp*Rh)_2-(\mu$ -CH₂)₂{ μ -SC(COOMe)=CH(COOMe)}]⁺ (63.53(3)°)^{4c} and $[(Cp*Rh)_2(\mu$ -CH₂)₂(μ -SH)]⁺ (64.3(1)°).⁵ The μ -CH₂ complexes with a shorter Rh–Rh bond lengths tend to have smaller Rh–S–Rh angles.

Reaction of Disulfido Complex 2 with Di- or Trichloroalkanes. When complex 2 reacts with either CH_2Cl_2 or $CHCl_3$ at room temperature, CH incorporation into the S-S bond occurs giving a dithioformato complex [(IrCp*)₂-

Table 5. Selected Bond Lengths (Å) and Angles (°) for Complexes 6-9^a

	6	7	8	9
M-M	2.5447(3)	2.5479(5)	2.5623(8)	2.5549(8)
			2.5637(8)	
M-S	2.3712(9)	2.374(2)	2.416(3), 2.402(3)	2.387(2)
	2.3897(8)	2.388(2)	2.396(4), 2.411(4)	2.413(2)
			[2.22(2), 2.38(2)]	[2.564(9)
			2.35(2), 2.30(3)]	2.55(1)]
$M-C(\mu-CH_2)$	2.027(2)	2.021(4)	2.034(8), 2.036(7)	1.997(9), 2.097(10)
4 - 2	2.028(3)	2.023(6)	2.011(7), 2.042(7)	1.97(1), 2.116(8)
	2.035(3)	2.037(4)	2.049(7), 2.038(7)	[2.38(3), 1.71(4),
	2.046(3)	2.039(6)	2.055(7), 2.043(8)	2.30(3), 1.71(4)]
S-C	1.824(4)	1.801(8)	1.80(2), 1.76(2)	1.842(9)
			[1.42(3), 1.49(2),	[1.77(1)]
			1.51(3)]	
M-S-M	64.62(2)	64.70(4)	64.27(7), 64.5(1)	64.31(6)
			[67.5(5), 66.8(7)]	[60.0(2)]
$M-C(\mu-CH_2)-M$	77.15(10)	77.7(2)	77.9(2), 78.6(3)	80.3(4), 74.7(3)
•	77.75(9)	77.8(2)	77.3(3), 77.8(3)	[66.1(9), 96(2)]
M-M-S	57.34(2)	57.38(4)	57.60(6), 58.13(7),	58.33(6)
	58.04(2)	57.92(4)	58.0(1), 57.49(8)	[59.7(2)]
			[59.3(5), 53.2(5),	
			55.6(6), 57.6(6)]	
M-S-C	111.3(1)	110.4(3)	115.4(5), 115.4(5)	109.6(3)
	111.9(1)	114.2(3)	117.4(6), 124.8(6)	114.7(3)
			[129.2(9), 131(1),	[104.8(5),
			148(1), 132(1),	111.4(6)]

^a Values in [] were calculated using other sets of disordered atoms.

Scheme 5

 $(\mu$ -CH₂)₂ $(\mu$ -S₂CH-*S*:*S'*)]Cl (**10a**) accompanied by the formation of a cyclotetrasulfido complex, [{(IrCp*)₂ $(\mu$ -CH₂)₂}₂- $(\mu$ -S₄-*S*:*S'*:*S''*:*S'''*)]Cl₂ (**11a**), Scheme 5. The formal oxidation state of the S atoms goes from -1 in complex **2** to -2 in **10a** and -0.5 in **11a**.

Formation of **10a** occurs via either dechlorination for CHCl₃ or C–H activation and dechlorination for CH₂Cl₂ and in both cases incorporation of a CH moiety into the S–S bond then occurs. For CHCl₃, which only undergoes C–Cl bond activation, the reaction proceeds with a product molar ratio (**10a:11a**) of 1:1, as confirmed by ¹H NMR spectroscopy. The proton of the dithioformato ligand at δ 8.81 (see Experimental Section) was observed in the ¹H NMR spectrum when CDCl₃ was used. However, H–D exchange occurs in CD₃OD, confirmed by ESI-MS.

When 1,1-Cl₂CHCH₃ is used, $[(IrCp^*)_2(\mu$ -CH₂)_2(μ -S₂-CCH₃-*S*:*S'*)]Cl (**12**) and **11a** are generated via a pathway similar to the reaction with CH₂Cl₂. Three sets of peaks were observed in the ESI mass spectrum of this reaction, Figure 9. The peaks at m/z = 773 and 746 correspond to $[(IrCp^*)_2(\mu$ -CH₂)_2(μ -S₂CCH₃-*S*:*S'*)]⁺ and $[(IrCp^*)_2(\mu$ -CH₂)_2S₂]⁺, which is from the cleavage of **11a** (Scheme 6), respectively. The third set of peaks at m/z = 761 corresponds to $[{(IrCp^*)_2}(\mu$ -CH₂)_2S₂]₂(CHCH₃)]²⁺, and this complex may be an intermediate in this reaction.

Figure 9. (a) ESI mass spectrum recorded 18 h after mixing of $[(IrCp^*)_2-(\mu-CH_2)_2(\mu-S_2-S:S')]$ (2) and 1,1-Cl₂CHCH₃. (b) Simulated spectrum. Peaks marked with * are from an unknown monocation.

Scheme 6

A possible structure of the intermediate is shown in Scheme 7. The proposed structure is based on $[(RhCp^*)_2 - (\mu-CH_2)_2(\mu-S_2Me-S:S')]$ from the reaction of MeI with complex 1.²

Structures of Dithiocarboxylato and Tetrasulfido Complexes. Crystals of 10a and 11a were obtained directly from

Figure 10. ORTEP drawing of the cationic moiety of $[(IrCp^*)_2(\mu-CH_2)_2-(\mu-S_2CH-S:S')]Cl (10a)$ with 50% probability ellipsoids. Hydrogen atoms except for that of the dithioformate are omitted for clarity.

Figure 11. ORTEP drawing of the cationic moiety of $[{(IrCp^*)_2-(\mu-CH_2)_2}_2(\mu_4-S_4-S:S':S''')]Cl_2$ (**11a**) with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Scheme 7

the reaction mixture, and their structures are shown in Figures 10 and 11, respectively. Crystal data are summarized in Table 3 and selected bond lengths and angles are listed in Table 6. The hydrogen atom of the dithioformato ligand was found in the difference Fourier map (the C–H bond distance is 0.92 Å). The C–S bond distances in the dithioformato ligand (1.648(9) and 1.664(10) Å) in **10a** are consistent with a bond order of 1.5. The bond lengths and the S–C–S angle (129.4(5)°) are similar to those of analogous dithioformato Os complexes (1.62(3)–1.71(3) Å and 129.9(4)–132(2)°).²¹

Like the Rh analogue $[{(RhCp^*)_2(\mu-CH_2)_2}_2(\mu-S_4-S:S':S'')]^{2+,6}$ complex **11a** has a chairlike structure with the cyclotetrasulfido ligand bound between two iridium dinuclear moieties. The cyclotetrasulfido ligand has two short S-S bonds (2.049(3) Å) which have nearly double bond character and two long S-S bonds (2.895(3) Å) which have

(21) Adams, R. D.; Selegue, J. P. J. Organomet. Chem. 1980, 195, 223.

Table 6.	Selected	Bond	Lengths	(Å)	and	Angles	(°)	for	Comple	exes
10a and 1	1a								-	

	10a	11a
M-M	2.6555(7)	2.6561(4)
M-S	2.309(2), 2.320(2)	2.306(2), 2.305(2)
$M-C(\mu-CH_2)$	2.062(5)	2.079(7), 2.064(6)
•		2.075(7), 2.066(6)
S-C	1.648(9), 1.664(10)	
S-S (parallel to M-M)		2.049(3)
S-S (perpendicular to $M-M$)		2.894(3)
M-S-S (parallel to $M-M$)		97.25(9), 97.88(9)
M-S-S		109.70(7), 109.44(7)
(perpendicular to M-M)		
$M - C(\mu - CH_2) - M$	80.2(2)	79.5(2), 80.1(2)
M-M-S	94.49(5), 93.90(6)	82.66(5), 82.21(5)
M-S-C	111.2(3), 111.0(3)	
S-C-S	129.4(5)	
S-S-S		90.08(9), 89.92(9)

Scheme 8

Scheme 9

less than single bond character. The longer S–S bonds are significantly shorter than the sum of the van der Waals radii of S atoms (3.60 Å) and similar S–S distances are reported for the trans annular S–S bonds in S_8^+ (2.86(3) Å).²² The shorter S–S bonds lie parallel to the Ir–Ir bonds and the longer ones lie perpendicular to the Ir dinuclear backbone. In the corresponding Rh complex, the longer bonds are parallel to the Rh–Rh bonds and the shorter ones are

⁽²²⁾ Davies, C. G.; Gillespie, R. J.; Park, J. J.; Passmore, J. Inorg. Chem. 1971, 10, 2781.

Disulfido Ligands on M-M Bonds (M = Rh, Ir)

perpendicular to the Rh dinuclear backbone, Scheme 8. This implies that the S_4 ligand in **11a** has a different electronic structure from that in the Rh complex, in which the S_4 moiety was determined to have a net -1 charge based on theoretical calculations.²³ Further, the structure of **11a** is maintained in solution, verified by ¹H NMR spectroscopy, even though it has weak S–S bonds.

Conclusions

Disulfido ligands coordinated parallel to M–M bonds have high reactivity toward O_2 and alkyl halides. When exposed to O_2 , these complexes are readily converted to a disulfur monoxide for the dirhodium complex and a thiosulfito complex for both the dirhodium and diiridium complexes. The disulfido ligand in the Ir complex is also susceptible to electrophilic attack by di- or trichloroalkanes. This attack causes the incorporation of C–R (R = H or Me) into the S–S bond to produce dithiocarboxylato complexes. The

(23) Mebel, A. M.; Morokuma, K.; Isobe, K. Inorg. Chem. 1995, 34, 1208.

cyclotetrasulfido complex **11a** also forms during this reaction. The thiosulfito ligand reacts with hydrocarbyl halides to release SO_2 gas and affords an alkylthiolato ligand bridging the two metal ions in the dimetallic unit. All of the reactions summarized in Scheme 9 occur through redox processes involving the sulfur atoms and reflect a variety of oxidation states of sulfur atoms.

Acknowledgment. We gratefully acknowledge Dr. Hidetaka Nakai, Kanazawa University, for his efforts toward the preparation of this manuscript. This work was financially supported in part by a Grant-in-Aid for Scientific Research (B) (13440200) from the Ministry of Education, Science, Sports and Culture, Japan. B.K.B. thanks the Japan Society for the Promotion of Science (JSPS) for a Postdoctoral Fellowship for Foreigner Researchers.

Supporting Information Available: Crystallographic data in CIF format for complexes **2–11a**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC049855T