Inorg. Chem. 2004, 43, 7752–7763



# Synthesis, Characterization, and Electrochemical Relationships of Dinuclear Complexes of Platinum(II) and Platinum(III) Containing Ortho-Metalated Tertiary Arsine Ligands

Martin A. Bennett,<sup>†,‡</sup> Suresh K. Bhargava,<sup>\*,†</sup> Alan M. Bond,<sup>§</sup> Alison J. Edwards,<sup>‡</sup> Si-Xuan Guo,<sup>§</sup> Steven H. Privér,<sup>†</sup> A. David Rae,<sup>‡</sup> and Anthony C. Willis<sup>‡</sup>

School of Applied Sciences (Applied Chemistry), RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia, Research School of Chemistry, Australian National University, Canberra, A.C.T. 0200, Australia, and School of Chemistry, Monash University, PO Box 23, Clayton, Victoria 3800, Australia

Received January 30, 2004

Reaction of 2-Li-4-MeC<sub>6</sub>H<sub>3</sub>AsPh<sub>2</sub> with [PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub>] gives two isomeric dinuclear platinum(II) complexes, one containing a half-lantern structure with two chelating and two bridging C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> ligands, [Pt<sub>2</sub>( $\kappa^2As, C$ -C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>2</sub>], and the other, a full-lantern with four bridging C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> ligands, [Pt<sub>2</sub>( $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>2</sub>], and the other, a full-lantern with four bridging C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> ligands, [Pt<sub>2</sub>( $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>2</sub>]. The lantern structure of the latter is retained in the dihalodiplatinum(III) complexes that are formed by oxidative addition of chlorine, bromine, or iodine to the isomeric mixture. The dichloro derivative undergoes metathesis reactions with silver or sodium salts, yielding the corresponding cyano, thiocyanato, cyanato, and fluoro species. The structures of all complexes have been determined by single-crystal X-ray analysis. The oxidative addition products have Pt–Pt distances in the range 2.65–2.79 Å (cf. 2.89 Å in the lantern diplatinum(II) structure), consistent with the presence of a Pt–Pt bond. Electrochemical data lead to the conclusion that an initial rapid one-electron process and subsequent chemical reactions produce the dihalodiplatinum(III) lantern structure when mixtures of the lantern and half-lantern complexes are oxidized by halogens. The electrochemical data also explain why chemical reduction of the dihalodiplatinum(III) complex produces only the lantern diplatinum(II) complex.

# Introduction

Treatment of 2-LiC<sub>6</sub>H<sub>4</sub>PPh<sub>2</sub> or 2-Li-4-MeC<sub>6</sub>H<sub>3</sub>PPh<sub>2</sub> with [PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub>] gives monomeric bis(chelate) complexes [Pt- $(\kappa^2 P, C-C_6H_3-5-R-2-PPh_2)_2$ ] (R = H, Me)<sup>1,2</sup> which isomerize slowly in refluxing toluene to the dinuclear species [Pt<sub>2</sub>( $\kappa^2 P, C-C_6H_3-5-R-2-PPh_2$ )<sub>2</sub>( $\mu$ - $\kappa P, \kappa C-C_6H_3-5-R-2-PPh_2$ )<sub>2</sub>] (Scheme 1).<sup>3</sup> Since there appears to be only one well-authenticated

 (1) (a) Bennett, M. A.; Berry, D. E.; Bhargava, S. K.; Ditzel, E. J.; Robertson, G. B.; Willis, A. C. J. Chem. Soc., Chem. Commun. 1987, 1613. (b) Bennett, M. A.; Bhargava, S. K.; Ke, M.; Willis, A. C. J. Chem. Soc., Dalton Trans. 2000, 3537.

(3) Messelhäuser, J.; Bennett, M. A.; Bhargava, S. K.; Ditzel, E. J.; Robertson, G. B.; Willis, A. C.; Berry, D. E. Presented at the XIIIth International Conference on Organometallic Chemistry, Turin, September 4–9, 1988.

7752 Inorganic Chemistry, Vol. 43, No. 24, 2004





example of a complex containing a four-membered arsenic carbon chelate ring, [IrHCl( $\kappa^2As$ , C-C<sub>6</sub>H<sub>4</sub>AsPh<sub>2</sub>)(AsPh<sub>3</sub>)<sub>2</sub>], which is formed by isomerization of [IrCl(AsPh<sub>3</sub>)<sub>3</sub>],<sup>4</sup> we were interested to see whether arsenic analogues of the phosphorus monomeric and dimeric species could be made. Unexpectedly, the work has revealed the existence of a novel, lantern-

<sup>\*</sup> To whom correspondence should be addressed. E-mail: suresh. bhargava@rmit.edu.au.

<sup>&</sup>lt;sup>†</sup> RMIT University.

<sup>&</sup>lt;sup>‡</sup> Australian National University.

<sup>§</sup> Monash University.

<sup>(2)</sup> Bennett, M. A.; Bhargava, S. K.; Privér, S. H. Unpublished work.

<sup>(4)</sup> Bennett, M. A.; Milner, D. L. J. Am. Chem. Soc. 1969, 91, 6983.

Scheme 2



shaped diplatinum(II) complex that contains only bridging As,C ligands, whose P,C-analogue has never been detected. Oxidative addition of halogens affords dihalodiplatinum(III) complexes that retain the lantern structure, and electrochemical studies have enabled some of the mechanistic details of the reactions to be elucidated.

#### Results

Ligand Synthesis. Since there is no convenient probe analogous to <sup>31</sup>P NMR spectroscopy available for tertiary arsine complexes, we chose to study compounds derived from the reagent 2-Li-4-MeC<sub>6</sub>H<sub>3</sub>AsPh<sub>2</sub> containing a useful <sup>1</sup>H NMR indicator group. The required precursor, 2-Br-4-MeC<sub>6</sub>H<sub>3</sub>AsPh<sub>2</sub>, can be obtained by the reaction of 2-Br-4-MeC<sub>6</sub>H<sub>3</sub>AsCl<sub>2</sub> with PhMgBr, following the literature procedure for the preparation of 2-BrC<sub>6</sub>H<sub>4</sub>AsPh<sub>2</sub> from 2-BrC<sub>6</sub>H<sub>4</sub>-AsCl<sub>2</sub>.<sup>5</sup> A convenient alternative, which avoids the synthesis of the dichloroarsine from 2-bromo-4-methylaniline, employs the [PdCl<sub>2</sub>(MeCN)<sub>2</sub>]-catalyzed reaction of 3-bromo-4-iodotoluene with (trimethylsilyl)diphenylarsine (Scheme 2); the latter reagent is easily prepared in high yield from the reaction of Me<sub>3</sub>SiCl with LiAsPh<sub>2</sub>.<sup>6</sup> It is worth noting that the reaction of Scheme 2 is complete after ca. 2 h at 90 °C, whereas the corresponding reaction of 2-BrC<sub>6</sub>H<sub>4</sub>I with Me<sub>3</sub>-SiPPh<sub>2</sub> is reported to require 100 h at 70 °C.<sup>7</sup>

**Platinum(II) Complexes.** The reaction of 2-Li-4-MeC<sub>6</sub>H<sub>3</sub>-AsPh<sub>2</sub> with [PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub>] in ether at -30 °C gave a yellow solid with the empirical formula [Pt(MeC<sub>6</sub>H<sub>3</sub>AsPh<sub>2</sub>)<sub>2</sub>] in ca. 40% yield (Scheme 3). The <sup>1</sup>H NMR spectrum in the aromatic methyl region showed a pair of equally intense singlets at  $\delta$  1.93 and 1.98 accompanied by a singlet at  $\delta$  2.18 of approximately the same intensity, thus suggesting the presence of at least two species. Slow crystallization from CH<sub>2</sub>Cl<sub>2</sub>/MeOH afforded crystals of two distinct compounds, which were shown by X-ray crystallography to be isomeric dinuclear platinum(II) complexes. As shown in Figure 1, the major isomer **1** is structurally similar to its phosphorus analogue; two of the C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> groups behave as chelate ligands, while the other two bridge the metal atoms.



**Figure 1.** Molecular structure of  $[Pt_2(\kappa^2 As, C-C_6H_3-5-Me-2-A_SPh_2)_2(\mu \kappa As, \kappa C-C_6H_3-5-Me-2-A_SPh_2)_2]$  (1). Ellipsoids show 30% probability levels. Hydrogen atoms have been deleted for clarity.

We refer to this as a half-lantern structure. In contrast, in the minor isomer **2**, all four C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> groups span the platinum atoms to give a lantern-type structure (Figure 2) that is similar in basic geometry to  $[Pt_2(pop)_4]^{4-}$  (pop =  $\mu$ -*P*,*P*-pyrophosphite, P<sub>2</sub>O<sub>5</sub>H<sub>2</sub><sup>2-</sup>)<sup>8</sup> and to many platinum(II) dimers containing the donor atom sets S–S and N–S.<sup>9</sup> Both isomers exhibit strong green–yellow luminescence in the solid state under UV irradiation. In contrast to the phosphorusbased system,<sup>1,2</sup> no evidence was found for a monomeric species  $[Pt(\kappa^2 As, C-C_6H_3-5-Me-2-AsPh_2)_2]$ .

In the <sup>1</sup>H NMR spectrum of the mixture, the singlet at  $\delta$  2.18 is assigned to the methyl protons of the equivalent bridging C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> groups of **2**, while the singlets at  $\delta$  1.93 and 1.98 belong to the inequivalent C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> groups of **1**. It is not known which corresponds to the chelate and which to the bridging ligands. The ratio of **1** to **2** in typical preparations was ca. 2:1, as estimated by integration, although heating the mixture in refluxing toluene caused complete conversion into **2**. The <sup>1</sup>H NMR spectrum of the mixture also shows a 4H singlet at  $\delta$  7.90 with <sup>195</sup>Pt satellites ( $J_{Pt-H} = 58.4$  Hz), which is well separated from the other aromatic multiplets and can be assigned to the aromatic protons ortho to the Pt-C bond. Coupling constants

Scheme 3



Inorganic Chemistry, Vol. 43, No. 24, 2004 7753



**Figure 2.** Molecular structure of  $[Pt_2(\mu - \kappa As, \kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  (2). Ellipsoids show 30% probability levels. Hydrogen atoms have been deleted for clarity. Asterisks denote atoms related by inversion symmetry.

of a similar magnitude have been reported for the orthoproton of a  $\eta^{1-}C_{6}H_{4}$  group in cycloplatinated complexes containing deprotonated 6-(1-methylbenzyl)-2,2'-bipyridine, e.g., [PtCl{2-C<sub>6</sub>H<sub>4</sub>(CHMe)C<sub>5</sub>H<sub>3</sub>NC<sub>5</sub>H<sub>4</sub>N}].<sup>10</sup> The fast atom bombardment (FAB) mass spectrum of the mixture shows a parent-ion peak corresponding to the dimer. The structures of **1** and **2** are discussed in more detail below.

Platinum(III) Complexes. Addition of iodobenzene dichloride to a mixture of isomers 1 and 2 in CH<sub>2</sub>Cl<sub>2</sub> gave quantitatively an orange solid which showed only one methyl <sup>1</sup>H NMR signal at  $\delta$  2.19 and a 4H singlet at  $\delta$  8.32 with <sup>195</sup>Pt satellites ( $J_{Pt-H} = 35.0$  Hz) assignable to the orthoaromatic protons. Structural analysis of a crystal obtained from CH<sub>2</sub>Cl<sub>2</sub>/MeOH showed the compound to be the platinum(III)-platinum(III) lantern complex [Pt<sub>2</sub>Cl<sub>2</sub>(µ- $\kappa As, \kappa C-C_6H_3-5-Me-2-AsPh_2)_4$  (3) derived by oxidative addition of chlorine across the dinuclear unit of 2 (Scheme 4); the same compound also formed over a period of days from a solution of 1 and 2 in CH<sub>2</sub>Cl<sub>2</sub> and, more rapidly, in CHCl<sub>3</sub> or CCl<sub>4</sub>. Complex 1 evidently isomerizes under the reaction conditions (probably via  $1^+$ , according to the electrochemical studies), leading to 3 as the sole product. Zinc dust reduction of 3 regenerates 2 free from 1.

The corresponding complexes  $[Pt_2X_2(\mu - \kappa As, \kappa C - C_6H_3 - 5 - Me - 2 - A_sPh_2)_4]$  (X = Br (4), I (5)) were obtained similarly

- (7) Tunney, S. E.; Stille, J. K. J. Org. Chem. 1987, 52, 748.
- (8) (a) Zipp, A. P. Coord. Chem. Rev. 1988, 84, 47. (b) Roundhill, D. M.; Gray, H. B.; Che, C. M. Acc. Chem. Res. 1989, 22, 55. (c) Sweeney, R. J.; Harvey, E. L.; Gray, H. B. Coord. Chem. Rev. 1990, 105, 23.
- (9) (a) Woollins, J. D.; Kelly, P. F. Coord. Chem. Rev. 1985, 65, 115. (b) Umakoshi, K.; Sasaki, Y. Adv. Inorg. Chem. 1994, 40, 187.
- (10) Romeo, R.; Plutino, M. R.; Scolaro, L. M. Inorg. Chim. Acta 1997, 265, 225.

 $1/2 \xrightarrow{a} Cl \xrightarrow{Pt} Cl \xrightarrow{r} Cl \xrightarrow{Pt} Cl \xrightarrow{r} Cl \xrightarrow{r} Asph_2$ 

a PhICl<sub>2</sub> or CH<sub>2</sub>Cl<sub>2</sub>

Scheme 4

**Table 1.** Aromatic Methyl and Ortho-Proton <sup>1</sup>H NMR Data for Diplatinum(II) and Diplatinum(III) Complexes of the Type  $[Pt_2X_2(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]^a$ 

| Х•••Х                                 | $\delta$ (Me) | $\delta$ (H <sub>ortho</sub> ) ( <sup>3</sup> J <sub>Pt-H</sub> ) |
|---------------------------------------|---------------|-------------------------------------------------------------------|
| X absent in (2)                       | 2.18          | 7.90 (58.4)                                                       |
| Cl····Cl (3)                          | 2.19          | 8.32 (35.0)                                                       |
| Br•••Br (4)                           | 2.16          | 8.49 (37.9)                                                       |
| I••••I (5)                            | 2.12          | 8.90 (42.8)                                                       |
| NC•••CN (6)                           | 2.23          | 8.60 (46.9)                                                       |
| SCN····NCS (7)                        | 2.22          | 7.79 (37.7)                                                       |
| OCN ··· NCO (8)                       | 2.17          | 7.90 (37.4)                                                       |
| $\mathbf{F} \cdots \mathbf{F}  (9)^b$ | 2.18          | 8.04 (29.4)                                                       |

<sup>a</sup> In CDCl<sub>3</sub>. <sup>b</sup> In CD<sub>2</sub>Cl<sub>2</sub>.

to **3** as brick red and purple solids, respectively, by addition of bromine or iodine to complex **2**. Similar oxidative additions are known for other diplatinum(II) lantern complexes.<sup>8,9</sup> Both compounds can also be obtained by anion exchange from **3**. Methyl iodide reacted over a period of days with a solution of **2** in the dark to give **5**; in laboratory light the reaction was complete in 2-3 h. The highest mass peak in the FAB mass spectra of **3**–**5** corresponds to the loss of one halide ion. A strong band at 203 cm<sup>-1</sup> in the IR spectrum of **3** may be due to  $\nu$ (PtCl), but the assignment is tentative because there is strong ligand absorption in the region of 500-150 cm<sup>-1</sup>.

Treatment of 3 with AgCN, NaSCN, NaNCO, or AgF gave the corresponding dicyano-, bis(thiocyanato)-, bis(cyanato)-, and difluorodiplatinum(III) complexes  $[Pt_2X_2(\mu-\kappa As,\kappa C C_6H_3-5-Me-2-AsPh_2)_4$  (X = CN (6), NCS (7), NCO (8), and F(9) as yellow solids, which were identified on the basis of single-crystal X-ray studies (see below) and spectroscopic data. The highest peak in the electron ionization (EI) mass spectra of 6-8 corresponds to the loss of one anion while the parent ion was observed for 9. The solid-state IR spectra of 6-8 each show a  $\nu$ (CN) band in the 2100-2200 cm<sup>-1</sup> region. In the case of 7, the broad  $\nu$ (CN) band at 2086 cm<sup>-1</sup> is suggestive of N-bonded thiocyanate, a feature that is confirmed by the X-ray diffraction study (see below). Criteria based on  $\nu$ (CS),  $\delta$ (NCS), or  $\nu$ (M-NCS)<sup>11</sup> could not be applied because of numerous overlapping bands in the appropriate regions.

The <sup>1</sup>H NMR spectra of complexes **4–9** show the characteristic <sup>195</sup>Pt-coupled resonance for the ortho proton in the region of  $\delta$  8 (see Table 1), the magnitude of <sup>3</sup>*J*<sub>Pt-H</sub> (29.4–46.9 Hz) being ca. <sup>2</sup>/<sub>3</sub> of that observed in the diplatinum(II) precursor **2**. A similar relationship holds for

<sup>(5) (</sup>a) Jones, E. R. H.; Mann, F. G. J. Chem. Soc. 1955, 4472. (b) Cochran,
W.; Hart, F. A.; Mann, F. G. J. Chem. Soc. 1957, 2818. (c) Levason,
W.; McAuliffe, C. A. Inorg. Synth. 1976, 16, 184. (d) Talay, R.;
Rehder, W. Z. Naturforsch., B: Chem. Sci. 1981, 36, 451.

<sup>(6)</sup> Fenske, D.; Teichert, H.; Pokscha, H.; Renz, W.; Becher, H. Monatsh. Chem. 1980, 111, 177.

<sup>(11)</sup> Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; John Wiley: New York, 1997; Part B, pp 116–121.

### Dinuclear Complexes of Platinum Arsine Ligands

 ${}^{1}J_{\text{Pt-P}}$  in the diplatinum(II) complexes,  $[\text{Pt}_{2}(\text{pop})_{4}]^{4-}$ and  $[\text{Pt}_{2}(\text{pcp})_{4}]^{4-}$  and their oxidative addition products,  $[\text{Pt}_{2}X_{2}(\text{pop})_{4}]^{4-}$  and  $[\text{Pt}_{2}X_{2}(\text{pcp})_{4}]^{4-}$  (pcp =  $[\text{CH}_{2}\{\text{P(O)} \text{OH}\}_{2}]^{2-}$ ).<sup>12</sup> In the case of planar platinum(II) and octahedral platinum(IV) complexes, PtX<sub>2</sub>L<sub>2</sub> and PtX<sub>4</sub>L<sub>2</sub>, the corresponding trend in coupling constants such as  ${}^{1}J_{\text{Pt-P}}$  and  ${}^{2}J_{\text{Pt-CH}_{3}}$  is generally attributed to the change in s-character of the Pt-L bonding orbital in the two oxidation states.<sup>13,14</sup> The magnitude of  ${}^{3}J_{\text{Pt-H}}$  in complexes **3**–**9** is also sensitive to the nature of the axial ligand X, ranging from 29.4 Hz (X = F) and 35.0 Hz (X = Cl) to 42.8 Hz (X = I) and 46.9 Hz (X = CN).

The presence of a covalent Pt–F bond in complex **9** was confirmed by the <sup>19</sup>F NMR spectrum in CD<sub>2</sub>Cl<sub>2</sub>, which shows a singlet at  $\delta$  –228.6 with two sets of <sup>195</sup>Pt satellites (<sup>1</sup>*J*<sub>Pt-F</sub> = 492 Hz, <sup>2</sup>*J*<sub>Pt-F</sub> = 192 Hz). The NMR parameters are comparable with those of the few well-characterized fluoroplatinum complexes, the <sup>1</sup>*J*<sub>Pt-F</sub> values being intermediate between those reported for Pt(II) and Pt(IV); cf. [Pt<sup>II</sup>F(PEt<sub>3</sub>)<sub>3</sub>]-BF<sub>4</sub> (250 Hz),<sup>15</sup> *trans*-[Pt<sup>II</sup>F(PEt<sub>3</sub>)<sub>2</sub>(PPh<sub>3</sub>)]ClO<sub>4</sub> (215 Hz),<sup>16</sup> *trans*-[Pt<sup>II</sup>PhF(PPh<sub>3</sub>)<sub>2</sub>] (399 Hz),<sup>17</sup> and [Me<sub>3</sub>Pt<sup>IV</sup>F]<sub>4</sub> (708 Hz).<sup>18</sup>

There was no evidence for the formation of a mixed oxidation state complex  $[Pt_2^{II,III}Cl(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  from solutions of equimolar amounts of **2** and **3**. Attempts to prepare a thiocyanato  $Pt_2(II,III)$  species from solutions of **2** and **7** also failed. In contrast, linear chain  $Pt_2(II,III)$  complexes of pop and dithioacetate,  $K_4[Pt_2X(pop)_4]$ (X = Cl, Br, I) and  $[Pt_2I(S_2CMe)_4]$  are readily formed.<sup>8b,9</sup> The aromatic rings of the bulky AsPh\_2 groups possibly hinder bridging of halide or thiocyanate between pairs of dimeric units.

In an effort to prepare sterically less hindered complexes containing  $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>4</sub>-2-AsMe<sub>2</sub>, we treated 2-LiC<sub>6</sub>H<sub>4</sub>-AsMe2 with [PtCl2(SEt2)2]. Analysis of the resulting orangevellow solid showed the expected formulation,  $[Pt(C_6H_4 AsMe_{2}_{2}$  (10), but its <sup>1</sup>H NMR spectrum at 23 °C showed broad multiplets for the aromatic and AsMe<sub>2</sub> resonances that did not sharpen when the solution was cooled to -80 °C. Treatment of 10 with PhICl<sub>2</sub> gave the expected oxidative addition product,  $[Pt_2Cl_2(C_6H_4AsMe_2)_4]$  (11) as an orange solid whose <sup>1</sup>H NMR spectrum also showed broad aromatic and AsMe<sub>2</sub> resonances. Both 10 and 11 appeared to be dimeric in ca. 0.2 M CH<sub>2</sub>Cl<sub>2</sub> solution by vapor pressure osmometry, but we could not obtain satisfactory mass spectra or crystals adequate for an X-ray diffraction study. We suspect that 10 and 11 may consist of a mixture of rapidly interconverting oligomers in solution.

X-ray Crystallographic Determinations. The structures of the isomeric diplatinum(II) complexes 1 and 2 are shown

- (12) King, C.; Roundhill, D. M.; Dickson, M. K.; Fronczek, F. R. J. Chem. Soc., Dalton Trans. 1987, 2769.
- (13) Pregosin, P. S.; Kunz, R. W. <sup>31</sup>P and <sup>13</sup>C NMR of Transition Metal Phosphine Complexes; Springer: Berlin, 1979; p 23
- (14) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335 and references therein.
- (15) Dixon, K. R.; McFarland, J. J. J. Chem. Soc., Chem. Commun. 1972, 1274.
- (16) Cairns, M. A.; Dixon, K. R.; McFarland, J. J. J. Chem. Soc., Dalton Trans. 1975, 1159.
- (17) Nilsson, P.; Plamper, F.; Wendt, O. F. Organometallics 2003, 22, 5235.
- (18) Cross, R. J.; Haupt, M.; Rycroft, D. S.; Winfield, J. M. J. Organomet. Chem. 1999, 587, 195.



**Figure 3.** Molecular structure of  $[Pt_2Cl_2(\mu - \kappa As, \kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$ (**3**).<sup>20</sup> Ellipsoids show 30% probability levels. Hydrogen atoms have been deleted for clarity. Asterisks denote atoms related by inversion symmetry.

in Figures 1 and 2; selected bond lengths and angles are listed in Tables S1 and S2, respectively. In both complexes the coordinated arsenic atoms are mutually cis. The coordination geometry about each metal atom is close to planar in 2 but that in 1 is more distorted. The small bite angle of the fourmembered rings in  $1 (69.7(3)^{\circ} (av))$  is similar to that of many  $\kappa^2 P, C-C_6H_4-2-PPh_2$  complexes<sup>19</sup> and is associated with a widening of the As-Pt-As angles to ca. 106°. Corresponding metal-ligand bond lengths in the bridging groups of 1 and 2 and the chelate groups of 1 do not differ significantly. As expected, the Pt-As bond lengths in 1 and 2 are ca. 0.15 Å greater than the Pt-P bond lengths in  $[Pt_2(\kappa^2 P, C-C_6H_4 2-PPh_2_2(\mu-\kappa P,\kappa C-C_6H_4-2-PPh_2)_2$ ], although the Pt···Pt separation in 1 (3.4208(3) Å) is only slightly greater than that in  $[Pt_2(\kappa^2 P, C-C_6H_4-2-PPh_2)_2(\mu-\kappa P,\kappa C-C_6H_4-2-PPh_2)_2]$  (3.3875(4) Å).<sup>3</sup> The shorter Pt···Pt separation in **2** (2.8955(4) Å) is presumably a consequence of the four bridging groups; it falls between those observed in similar lantern structures containing N-S or S-S bridging groups such as 4-methylpyridine-2-thiolate and dithiocarboxylates (2.68 Å and 2.76–2.86 Å, respectively) on one hand and P–P bridging groups such as pop (2.92-2.98 Å) on the other.<sup>8,9</sup>

The diplatinum(III) complexes 3-9 all have similar lantern structures<sup>20</sup> derived from addition of a pair of halide or

<sup>(19)</sup> For platinum(II), see: (a) Clark, H. C.; Hine, K. E. J. Organomet. Chem. 1976, 105, C32. (b) Rice, N. C.; Oliver, J. D. J. Organomet. Chem. 1978, 145, 121. (c) Scheffknecht, C.; Rhomberg, A.; Müller, E. P.; Peringer, P. J. Organomet. Chem. 1993, 463, 245. (d) Clark, H. C. S.; Fawcett, J.; Holloway, J. H.; Hope, E. G.; Peck, L. A.; Russell, D. R. J. Chem. Soc., Dalton Trans. 1998, 1249. (e) Bennett, M. A.; Dirnberger, T.; Hockless, D. C. R.; Wenger, E.; Willis, A. C. J. Chem. Soc., Dalton Trans. 1998, 271. (f) Bennett, M. A.; Berry, D. E.; Dirnberger, T.; Hockless, D. C. R.; Wenger, E. J. Chem. Soc., Dalton Trans. 1998, 2367. (g) Bender, R.; Bouaoud, S.-E.; Braunstein, P.; Dusausoy, F.; Merabet, N.; Raya, J.; Rouag, D. J. Chem. Soc., Dalton Trans. 1999, 735.

| Table 2. | Crystal | and | Refinement | Data | for | Complexes | 1- | -9 |
|----------|---------|-----|------------|------|-----|-----------|----|----|
|----------|---------|-----|------------|------|-----|-----------|----|----|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> Pt <sub>2</sub> •                                                                                                                                                                                                                                                                                                                                 | C76H64As4Pt2.                                                                                                                                                                | C76H64As4Cl2P                                                                                                                                                                                                                                                                          | $t_2 \cdot C_{76}H_{64}As_4Br_2Pt_2 \cdot$                                                                                                                                                                                                                                                                                                         | C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> I <sub>2</sub> Pt <sub>2</sub> •                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.5CH_2Cl_2$                                                                                                                                                                                                                                                                                                                                                                                     | 2CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                             | $4CH_2Cl_2$                                                                                                                                                                                                                                                                            | 4CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                   | $2CH_2Cl_2$                                                                                                                                                                                                                                                                                                            |
| fw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1794.61                                                                                                                                                                                                                                                                                                                                                                                           | 1837.05                                                                                                                                                                      | 2077.85                                                                                                                                                                                                                                                                                | 2166.62                                                                                                                                                                                                                                                                                                                                            | 2090.88                                                                                                                                                                                                                                                                                                                |
| crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | triclinic                                                                                                                                                                                                                                                                                                                                                                                         | monoclinic                                                                                                                                                                   | triclinic                                                                                                                                                                                                                                                                              | triclinic                                                                                                                                                                                                                                                                                                                                          | monoclinic                                                                                                                                                                                                                                                                                                             |
| space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $P\overline{1}$                                                                                                                                                                                                                                                                                                                                                                                   | $P2_1/n$                                                                                                                                                                     | $P\overline{1}$                                                                                                                                                                                                                                                                        | $P\overline{1}$                                                                                                                                                                                                                                                                                                                                    | $P2_1/c$                                                                                                                                                                                                                                                                                                               |
| a, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.0083(1)                                                                                                                                                                                                                                                                                                                                                                                        | 11.8523(1)                                                                                                                                                                   | 12.5394(2)                                                                                                                                                                                                                                                                             | 12.5730(1)                                                                                                                                                                                                                                                                                                                                         | 13.9842(1)                                                                                                                                                                                                                                                                                                             |
| b, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.9967(1)                                                                                                                                                                                                                                                                                                                                                                                        | 19.3514(2)                                                                                                                                                                   | 12.7062(2)                                                                                                                                                                                                                                                                             | 12.7721(1)                                                                                                                                                                                                                                                                                                                                         | 13.0891(1)                                                                                                                                                                                                                                                                                                             |
| <i>c</i> , Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.1465(2)                                                                                                                                                                                                                                                                                                                                                                                        | 14.8829(2)                                                                                                                                                                   | 13.5404(3)                                                                                                                                                                                                                                                                             | 13.5519(1)                                                                                                                                                                                                                                                                                                                                         | 39.8723(3)                                                                                                                                                                                                                                                                                                             |
| α, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 91.6097(3)                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              | 97.7853(9)                                                                                                                                                                                                                                                                             | 97.4468(5)                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                        |
| $\beta$ , deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 96.7525(3)                                                                                                                                                                                                                                                                                                                                                                                        | 105.9379(5)                                                                                                                                                                  | 98.1840(10)                                                                                                                                                                                                                                                                            | 98.2516(6)                                                                                                                                                                                                                                                                                                                                         | 91.6151(3)                                                                                                                                                                                                                                                                                                             |
| γ, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.253(4)                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                              | 115.2438(9)                                                                                                                                                                                                                                                                            | 115.0814(4)                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                        |
| $V, Å^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3356.45(5)                                                                                                                                                                                                                                                                                                                                                                                        | 3282.3                                                                                                                                                                       | 1884.53(6)                                                                                                                                                                                                                                                                             | 1906.5(3)                                                                                                                                                                                                                                                                                                                                          | 7295.35(9)                                                                                                                                                                                                                                                                                                             |
| Ζ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                      |
| color, habit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | yellow block                                                                                                                                                                                                                                                                                                                                                                                      | green rod                                                                                                                                                                    | orange needle                                                                                                                                                                                                                                                                          | red block                                                                                                                                                                                                                                                                                                                                          | black needle                                                                                                                                                                                                                                                                                                           |
| cryst dimens (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.40 \times 0.26 \times 0.14$                                                                                                                                                                                                                                                                                                                                                                    | $0.37 \times 0.11 \times 0.1$                                                                                                                                                | $0.07 	0.16 \times 0.09 \times$                                                                                                                                                                                                                                                        | $0.05 \qquad 0.25 \times 0.20 \times 0.18$                                                                                                                                                                                                                                                                                                         | $0.33 \times 0.04 \times 0.04$                                                                                                                                                                                                                                                                                         |
| $D_{\rm calc} (\rm g \ cm^{-3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.776                                                                                                                                                                                                                                                                                                                                                                                             | 1.859                                                                                                                                                                        | 1.831                                                                                                                                                                                                                                                                                  | 1.888                                                                                                                                                                                                                                                                                                                                              | 1.904                                                                                                                                                                                                                                                                                                                  |
| $\mu \text{ (mm}^{-1}\text{)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.283                                                                                                                                                                                                                                                                                                                                                                                             | 6.6467                                                                                                                                                                       | 5.85                                                                                                                                                                                                                                                                                   | 6.761                                                                                                                                                                                                                                                                                                                                              | 6.67                                                                                                                                                                                                                                                                                                                   |
| no. indep reflns $(R_{int})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15358 (0.047)                                                                                                                                                                                                                                                                                                                                                                                     | 9585 (0.063)                                                                                                                                                                 | 8655 (0.057)                                                                                                                                                                                                                                                                           | 11150 (0.039)                                                                                                                                                                                                                                                                                                                                      | 12843 (0.09)                                                                                                                                                                                                                                                                                                           |
| no. of obsd refln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9237                                                                                                                                                                                                                                                                                                                                                                                              | 5141                                                                                                                                                                         | 4906                                                                                                                                                                                                                                                                                   | 9053                                                                                                                                                                                                                                                                                                                                               | 10083                                                                                                                                                                                                                                                                                                                  |
| $[I > 3\sigma(I)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |
| no. of params refined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 784                                                                                                                                                                                                                                                                                                                                                                                               | 393                                                                                                                                                                          | 433                                                                                                                                                                                                                                                                                    | 434                                                                                                                                                                                                                                                                                                                                                | 277                                                                                                                                                                                                                                                                                                                    |
| R(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.026                                                                                                                                                                                                                                                                                                                                                                                             | 0.027                                                                                                                                                                        | 0.032                                                                                                                                                                                                                                                                                  | 0.035                                                                                                                                                                                                                                                                                                                                              | 0.039                                                                                                                                                                                                                                                                                                                  |
| $R_{\rm w}({\rm F})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.028                                                                                                                                                                                                                                                                                                                                                                                             | 0.029                                                                                                                                                                        | 0.036                                                                                                                                                                                                                                                                                  | 0.040                                                                                                                                                                                                                                                                                                                                              | 0.054                                                                                                                                                                                                                                                                                                                  |
| $ ho_{\rm max}/ ho_{\rm min}$ (e A <sup>-3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.59/-0.83                                                                                                                                                                                                                                                                                                                                                                                        | 1.06/-1.30                                                                                                                                                                   | 0.88/-1.07                                                                                                                                                                                                                                                                             | 2.05/-3.28                                                                                                                                                                                                                                                                                                                                         | 1.65/-1.59                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                  | 9                                                                                                                                                                                                                                                                                                                      |
| formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> .                                                                                                                                                                                                                                                                                                             | · C <sub>78</sub>                                                                                                                                                            | $\frac{7}{_{3}H_{64}As_{4}N_{2}Pt_{2}S_{2}}$                                                                                                                                                                                                                                           | <b>8</b><br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> O <sub>2</sub> Pt <sub>2</sub> •                                                                                                                                                                                                                                        | <b>9</b><br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•                                                                                                                                                                                                                        |
| formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6<br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub><br>4CH <sub>2</sub> Cl <sub>2</sub><br>2058 98                                                                                                                                                                                                                                                                | · C <sub>78</sub>                                                                                                                                                            | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub>                                                                                                                                                                                                     | <b>8</b><br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> O <sub>2</sub> Pt <sub>2</sub> •<br>2CH <sub>2</sub> Cl <sub>2</sub><br>1921 11                                                                                                                                                                                         | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36                                                                                                                                                                                                                                                 |
| formula<br>fw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6<br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> '<br>4CH <sub>2</sub> Cl <sub>2</sub><br>2058.98<br>triclinic                                                                                                                                                                                                                                                 | • C <sub>78</sub>                                                                                                                                                            | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38                                                                                                                                                                                            | <b>8</b><br>C <sub>78</sub> H <sub>64</sub> AS <sub>4</sub> N <sub>2</sub> O <sub>2</sub> Pt <sub>2</sub> •<br>2CH <sub>2</sub> Cl <sub>2</sub><br>1921.11<br>monocelinic                                                                                                                                                                          | <b>9</b><br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic                                                                                                                                          |
| formula<br>fw<br>crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub><br>4CH <sub>2</sub> Cl <sub>2</sub><br>2058.98<br>triclinic<br>Pī                                                                                                                                                                                                                                             | • C <sub>78</sub><br>178<br>mon                                                                                                                                              | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38 noclinic                                                                                                                                                                                                                                        | <b>8</b><br>C <sub>78</sub> H <sub>64</sub> AS <sub>4</sub> N <sub>2</sub> O <sub>2</sub> Pt <sub>2</sub> •<br>2CH <sub>2</sub> Cl <sub>2</sub><br>1921.11<br>monoclinic<br>P2./c                                                                                                                                                                  | <b>9</b><br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br>P2./n                                                                                                                                 |
| formula<br>fw<br>crystal system<br>space group<br>a Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6<br>C <sub>78</sub> H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub><br>4CH <sub>2</sub> Cl <sub>2</sub><br>2058.98<br>triclinic<br><i>P</i> 1<br>12 5155(1)                                                                                                                                                                                                                       | • C <sub>78</sub><br>178<br>moi<br>C2/<br>27                                                                                                                                 | 7 H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub> 33.38 noclinic /c 1169(3)                                                                                                                                                                              | <b>8</b><br>C <sub>78</sub> H <sub>64</sub> AS <sub>4</sub> N <sub>2</sub> O <sub>2</sub> Pt <sub>2</sub> •<br>2CH <sub>2</sub> Cl <sub>2</sub><br>1921.11<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>c</i><br>13 8368(1)                                                                                                                       | <b>9</b><br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)                                                                                      |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> , Å<br><i>b</i> , Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{6}{C_{78}H_{64}As_4N_2Pt_{2'}}$ $\frac{4CH_2Cl_2}{2058.98}$ triclinic<br>$P\overline{1}$ $12.5155(1)$ $12.7912(1)$                                                                                                                                                                                                                                                                         | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.                                                                                                                                  | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)                                                                                                                                                                                                         | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2Cl_2}$ 1921.11 monoclinic <i>P</i> 2 <sub>1</sub> / <i>c</i> 13.8368(1) 13.0378(1)                                                                                                                                                                                                                 | 9<br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> ·H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)                                                                               |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> , Å<br><i>b</i> , Å<br><i>c</i> , Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{6}{C_{78}H_{64}As_4N_2Pt_{2'}}\\ \frac{4CH_2Cl_2}{2058.98}\\ triclinic\\ P\bar{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ \end{array}$                                                                                                                                                                                                                                                    | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.<br>17.5                                                                                                                          | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)                                                                                                                                         | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2Cl_2}$ 1921.11 monoclinic <i>P</i> 21/c 13.8368(1) 13.0378(1) 40.5832(2)                                                                                                                                                                                                                           | 9<br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> ·H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)<br>38.4786(3)                                                                 |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> , Å<br><i>b</i> , Å<br><i>c</i> , Å<br><i>q</i> , deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{6}{C_{78}H_{64}As_4N_2Pt_{2'}}\\ \frac{4CH_2Cl_2}{2058.98}\\ triclinic\\ P\overline{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ \end{array}$                                                                                                                                                                                                                                  | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.<br>17.9<br>17.0                                                                                                                  | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)                                                                                                                                         | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ 2CH <sub>2</sub> Cl <sub>2</sub> 1921.11 monoclinic $P_{2_1/c}$ 13.8368(1) 13.0378(1) 40.5832(2)                                                                                                                                                                                                            | <b>9</b><br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)<br>38.4786(3)                                                          |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> , Å<br><i>b</i> , Å<br><i>c</i> , Å<br>α, deg<br>β, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c}   6 \\  C_{78}H_{64}As_4N_2Pt_{2'} \\  4CH_2Cl_2 \\  2058.98 \\  triclinic \\ P\overline{1} \\  12.5155(1) \\  12.7912(1) \\  13.5105(2) \\  97.6692(5) \\  98.6654(5) \end{array}$                                                                                                                                                                                             | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.<br>17.9<br>17.0<br>97.                                                                                                           | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)                                                                                                                              | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ 2CH <sub>2</sub> Cl <sub>2</sub> 1921.11 monoclinic P2 <sub>1</sub> /c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2)                                                                                                                                                                                          | 9<br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)                                                   |
| formula<br>fw<br>crystal system<br>space group<br><i>a</i> , Å<br><i>b</i> , Å<br><i>c</i> , Å<br><i>c</i> , Å<br><i>a</i> , deg<br>β, deg<br>γ, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c}   6 \\  C_{78}H_{64}As_4N_2Pt_2' \\  4CH_2Cl_2 \\  2058.98 \\  triclinic \\ P\overline{1} \\  12.5155(1) \\  12.5155(1) \\  12.5912(1) \\  13.5105(2) \\  97.6692(5) \\  98.6654(5) \\  114.1778(5) \end{array}$                                                                                                                                                                | • C <sub>78</sub><br>178<br>moi<br>C2/<br>27.<br>17.9<br>17.0<br>97.                                                                                                         | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)                                                                                                                              | $\frac{8}{2C_{78}H_{64}As_4N_2O_2Pt_2}$ $\frac{2CH_2CI_2}{1921.11}$ monoclinic $\frac{P2_1/c}{13.8368(1)}$ $13.0378(1)$ $40.5832(2)$ $91.1694(2)$                                                                                                                                                                                                  | <b>9</b><br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)                                            |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>a, deg<br>$\beta, deg$<br>$\gamma, deg$<br>$V, Å^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c}   6 \\  C_{78}H_{64}As_4N_2Pt_2 \\  4CH_2Cl_2 \\  2058.98 \\  triclinic \\ P\bar{1} \\  12.5155(1) \\  12.5155(1) \\  12.5912(1) \\  13.5105(2) \\  97.6692(5) \\  98.6654(5) \\  114.1778(5) \\  1904.15(4) \end{array}$                                                                                                                                                       | · C <sub>78</sub><br>178<br>moi<br>C2/<br>27.:<br>17.9<br>17.0<br>97.3<br>642                                                                                                | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)                                                                                                                 | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ 2CH <sub>2</sub> Cl <sub>2</sub> 1921.11 monoclinic P2 <sub>1</sub> /c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2) 7319.74                                                                                                                                                                                  | 9<br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)                                   |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>$\alpha, deg$<br>$\beta, deg$<br>$\gamma, deg$<br>$V, Å^3$<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c}   6 \\  C_{78}H_{64}As_4N_2Pt_2 \\  4CH_2Cl_2 \\  2058.98 \\  triclinic \\ P\bar{1} \\  12.5155(1) \\  12.7912(1) \\  13.5105(2) \\  97.6692(5) \\  98.6654(5) \\  114.1778(5) \\  1904.15(4) \\  1 \end{array}$                                                                                                                                                                | C78<br>178<br>moi<br>C2/<br>27.:<br>17.9<br>17.0<br>97.1<br>642<br>4                                                                                                         | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)                                                                                                                 | $\frac{8}{2C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2Cl_2}$ 1921.11 monoclinic P21/c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2) 7319.74 4                                                                                                                                                                                                             | 9<br>2[C <sub>76</sub> H <sub>64</sub> As <sub>4</sub> F <sub>2</sub> Pt <sub>2</sub> ]•<br>CH <sub>2</sub> Cl <sub>2</sub> •H <sub>2</sub> O<br>3513.36<br>monoclinic<br><i>P</i> 2 <sub>1</sub> / <i>n</i><br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4                              |
| formula<br>fw<br>crystal system<br>space group<br>$a, \mathring{A}$<br>$b, \mathring{A}$<br>$c, \mathring{A}$<br>$\alpha, \deg$<br>$\beta, \deg$<br>$\gamma, \deg$<br>$\gamma, \deg$<br>$V, \mathring{A}^{3}$<br>Z<br>color, habit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 6\\ C_{78}H_{64}As_4N_2Pt_2\\ 4CH_2Cl_2\\ 2058.98\\ triclinic\\ P\bar{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ 98.6654(5)\\ 114.1778(5)\\ 1904.15(4)\\ 1\\ yellow plate \end{array}$                                                                                                                                                                            | C78<br>178<br>moi<br>C2/<br>27.1<br>17.9<br>17.0<br>97.1<br>642<br>4<br>yell                                                                                                 | 7<br>H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub><br>33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle                                                                                                   | $\frac{8}{2C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2CI_2}$ 1921.11 monoclinic P21/c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2) 7319.74 4 yellow plate                                                                                                                                                                                                | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36<br>monoclinic<br>$P2_1/n$<br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4<br>yellow plate                                                                                                                          |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>$\alpha, deg$<br>$\beta, deg$<br>$\gamma, deg$<br>$\gamma, deg$<br>$V, Å^3$<br>Z<br>color, habit<br>cryst dimens (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} & 6 \\ & C_{78}H_{64}As_4N_2Pt_2 \\ & 4CH_2Cl_2 \\ 2058.98 \\ triclinic \\ P\bar{1} \\ 12.5155(1) \\ 12.7912(1) \\ 13.5105(2) \\ 97.6692(5) \\ 98.6654(5) \\ 114.1778(5) \\ 1904.15(4) \\ 1 \\ yellow plate \\ 0.30 \times 0.20 \times 0 \end{array}$                                                                                                                           | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.:<br>17.6<br>97.:<br>642<br>4<br>yell<br>.19<br>0.36                                                                              | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>$6 \times 0.05 \times 0.05$                                                                                                                         | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ $\frac{2CH_2CI_2}{1921.11}$ monoclinic<br>$\frac{P2_{1/c}}{13.8368(1)}$ 13.0378(1)<br>40.5832(2)<br>91.1694(2)<br>7319.74<br>4<br>yellow plate<br>0.44 × 0.07 × 0.03                                                                                                                                        | $\begin{array}{c} 9\\ \hline 2[C_{76}H_{64}As_4F_2Pt_2] \cdot \\ CH_2Cl_2 \cdot H_2O\\ 3513.36\\ monoclinic\\ P2_1/n\\ 26.1349(1)\\ 12.9746(1)\\ 38.4786(3)\\ 94.3806(2)\\ 13009.59(15)\\ 4\\ yellow plate\\ 0.26 \times 0.11 \times 0.03\\ \end{array}$                                                               |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>$\alpha, \deg$<br>$\beta, \deg$<br>$\gamma, \deg$<br>$\gamma, \deg$<br>$\gamma, \deg$<br>$\gamma, deg$<br>$\gamma, deg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & 6 \\ & C_{78}H_{64}As_4N_2Pt_2 \\ & 4CH_2Cl_2 \\ 2058.98 \\ triclinic \\ P\bar{1} \\ 12.5155(1) \\ 12.7912(1) \\ 13.5105(2) \\ 97.6692(5) \\ 98.6654(5) \\ 114.1778(5) \\ 1904.15(4) \\ 1 \\ yellow plate \\ 0.30 \times 0.20 \times 0 \\ 1.795 \end{array}$                                                                                                                  | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.:<br>17.5<br>17.6<br>97.:<br>642<br>4<br>yell<br>.19<br>0.33<br>1.8 <sup>4</sup>                                                  | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>$6 \times 0.05 \times 0.05$<br>43                                                                                                                   | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ $\frac{2CH_2Cl_2}{1921.11}$ monoclinic<br>$\frac{P_{21}/c}{13.8368(1)}$ $13.0378(1)$ $40.5832(2)$ $91.1694(2)$ $7319.74$ $4$ $yellow plate$ $0.44 \times 0.07 \times 0.03$ $1.743$                                                                                                                          | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36<br>monoclinic<br>$P2_1/n$<br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4<br>yellow plate<br>$0.26 \times 0.11 \times 0.03$<br>1.793                                                                               |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>a, deg<br>$\beta, deg$<br>$\gamma, deg$<br>$\gamma, deg$<br>$\gamma, deg$<br>$V, Å^3$<br>Z<br>color, habit<br>cryst dimens (mm)<br>$D_{calc} (g cm^{-3})$<br>$\mu (mm^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} & 6 \\ & C_{78}H_{64}As_4N_2Pt_{2'} \\ & 4CH_2Cl_2 \\ 2058.98 \\ triclinic \\ P\overline{1} \\ & 12.5155(1) \\ & 12.7912(1) \\ & 13.5105(2) \\ & 97.6692(5) \\ & 98.6654(5) \\ & 114.1778(5) \\ & 1904.15(4) \\ & 1 \\ & yellow plate \\ & 0.30 \times 0.20 \times 0 \\ & 1.795 \\ & 5.721 \end{array}$                                                                         | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.<br>17.9<br>17.0<br>97.<br>642<br>4<br>yell<br>.19<br>1.88<br>6.50                                                                | 7 $H_{64}As_4N_2Pt_2S_2$ 33.38           noclinic           /c           1169(3)           9852(3)           0499(3)           1223(6)           25.44(18)           low needle $6 \times 0.05 \times 0.05$ 43           07                                                            | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2Cl_2}$ 1921.11 monoclinic P21/c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2) 7319.74 4 yellow plate 0.44 × 0.07 × 0.03 1.743 5.807                                                                                                                                                                  | $\begin{array}{c} 9\\ \hline 2[C_{76}H_{64}As_4F_2Pt_2]\cdot\\ CH_2Cl_2\cdot H_2O\\ 3513.36\\ monoclinic\\ P2_1/n\\ 26.1349(1)\\ 12.9746(1)\\ 38.4786(3)\\ 94.3806(2)\\ 13009.59(15)\\ 4\\ yellow plate\\ 0.26\times 0.11\times 0.03\\ 1.793\\ 6.407\\ \end{array}$                                                    |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>a, deg<br>$\beta, deg$<br>$\gamma, deg$<br>$\gamma, deg$<br>$V, Å^3$<br>Z<br>color, habit<br>cryst dimens (mm)<br>$D_{calc} (g cm^{-3})$<br>$\mu (mm^{-1})$<br>no. indep reflns ( $R_{int}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 6\\ \hline C_{78}H_{64}As_4N_2Pt_{2'}\\ 4CH_2Cl_2\\ 2058.98\\ triclinic\\ P\bar{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ 98.6654(5)\\ 114.1778(5)\\ 1904.15(4)\\ 1\\ yellow plate\\ 0.30\times 0.20\times 0\\ 1.795\\ 5.721\\ 8746(0.05)\\ \end{array}$                                                                                                         | C <sub>78</sub><br>178<br>mor<br>C2/<br>27<br>17.9<br>17.0<br>97<br>642<br>4<br>yell<br>.19<br>0.36<br>1.8<br>6.50<br>735                                                    | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>$6 \times 0.05 \times 0.05$<br>43<br>07<br>58 (0.06)                                                                                                | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2Cl_2}$ 1921.11 monoclinic P21/c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2) 7319.74 4 yellow plate 0.44 × 0.07 × 0.03 1.743 5.807 12849 (0.037)                                                                                                                                                    | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36<br>monoclinic<br>$P_{21}/n$<br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4<br>yellow plate<br>$0.26 \times 0.11 \times 0.03$<br>1.793<br>6.407<br>23024 (0.07)                                                    |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c}   6 \\  C_{78}H_{64}As_4N_2Pt_{2'} \\  4CH_2Cl_2 \\  2058.98 \\  triclinic \\ P\bar{1} \\  12.5155(1) \\  12.5155(1) \\  12.575(1) \\  12.575(1) \\  12.575(1) \\  13.5105(2) \\  97.6692(5) \\  98.6654(5) \\  11.5(2) \\  98.6654(5) \\  114.1778(5) \\  199.6654(5) \\  114.1778(5) \\  199.6654(5) \\ 00000000000000000000000000000000000$                                  | C <sub>78</sub><br>178<br>moi<br>C2/<br>27<br>17.9<br>17.0<br>97<br>642<br>4<br>yell<br>.19<br>0.36<br>1.84<br>6.55<br>735<br>414                                            | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>$6 \times 0.05 \times 0.05$<br>43<br>07<br>58 (0.06)<br>43                                                                                          | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ $\frac{2CH_2Cl_2}{1921.11}$ monoclinic<br>$\frac{P2_1/c}{13.8368(1)}$ $13.0378(1)$ $40.5832(2)$ $91.1694(2)$ $7319.74$ $4$ yellow plate<br>$0.44 \times 0.07 \times 0.03$ $1.743$ $5.807$ $12849 (0.037)$ $9512$                                                                                            | $\begin{array}{c} 9\\ \hline 2[C_{76}H_{64}As_4F_2Pt_2]\cdot\\ CH_2Cl_2\cdot H_2O\\ 3513.36\\ monoclinic\\ P2_1/n\\ 26.1349(1)\\ 12.9746(1)\\ 38.4786(3)\\ 94.3806(2)\\ 13009.59(15)\\ 4\\ yellow plate\\ 0.26\times 0.11\times 0.03\\ 1.793\\ 6.407\\ 23024\ (0.07)\\ 12068^a\\ \end{array}$                          |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>a, deg<br>$\beta, deg$<br>$\gamma, deg$<br>$V, Å^3$<br>Z<br>color, habit<br>cryst dimens (mm)<br>$D_{calc} (g cm^{-3})$<br>$\mu (mm^{-1})$<br>no. indep reflns ( $R_{int}$ )<br>no. of obsd refln<br>$[I > 3\sigma(I)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 6\\ C_{78}H_{64}As_4N_2Pt_{2'}\\ 4CH_2Cl_2\\ 2058.98\\ triclinic\\ P\overline{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ 98.6654(5)\\ 114.1778(5)\\ 1904.15(4)\\ 1\\ yellow plate\\ 0.30 \times 0.20 \times 0\\ 1.795\\ 5.721\\ 8746 (0.05)\\ 7137\\ \end{array}$                                                                                                 | C <sub>78</sub><br>178<br>moi<br>C2/<br>27<br>17.9<br>17.0<br>97<br>642<br>4<br>yell<br>1.9<br>0.36<br>1.84<br>6.50<br>735<br>414                                            | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>$6 \times 0.05 \times 0.05$<br>43<br>07<br>58 (0.06)<br>13                                                                                          | $\frac{\$}{C_{78}H_{64}As_4N_2O_2Pt_2}$ $\frac{2CH_2Cl_2}{1921.11}$ monoclinic<br>$\frac{P2_1/c}{13.8368(1)}$ $13.0378(1)$ $40.5832(2)$ $91.1694(2)$ $7319.74$ $4$ yellow plate<br>$0.44 \times 0.07 \times 0.03$ $1.743$ $5.807$ $12849 (0.037)$ $9512$                                                                                           | $\begin{array}{c} 9\\ \hline 2[C_{76}H_{64}As_4F_2Pt_2]\cdot\\ CH_2Cl_2\cdot H_2O\\ 3513.36\\ monoclinic\\ P2_1/n\\ 26.1349(1)\\ 12.9746(1)\\ 38.4786(3)\\ 94.3806(2)\\ 13009.59(15)\\ 4\\ yellow plate\\ 0.26\times 0.11\times 0.03\\ 1.793\\ 6.407\\ 23024\ (0.07)\\ 12068^a\\ \end{array}$                          |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>a, deg<br>$\beta, deg$<br>$\gamma, deg$<br>$V, Å^3$<br>Z<br>color, habit<br>cryst dimens (mm)<br>$D_{calc} (g cm^{-3})$<br>$\mu (mm^{-1})$<br>no. indep reflns ( $R_{int}$ )<br>no. of obsd refln<br>$[I \ge 3\sigma(I)]$<br>no. of params refined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 6\\ C_{78}H_{64}As_4N_2Pt_{2'}\\ 4CH_2Cl_2\\ 2058.98\\ triclinic\\ P\overline{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ 98.6654(5)\\ 114.1778(5)\\ 1904.15(4)\\ 1\\ yellow plate\\ 0.30 \times 0.20 \times 0\\ 1.795\\ 5.721\\ 8746 (0.05)\\ 7137\\ 453\end{array}$                                                                                              | C <sub>78</sub><br>178<br>moi<br>C2/<br>27<br>17.9<br>17.0<br>97<br>642<br>4<br>yell<br>.19<br>0.36<br>1.84<br>6.50<br>735<br>414<br>397                                     | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>6 × 0.05 × 0.05<br>43<br>07<br>58 (0.06)<br>43                                                                                                      | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2 \cdot 2CH_2Cl_2}$ 1921.11 monoclinic P2_1/c 13.8368(1) 13.0378(1) 40.5832(2) 91.1694(2) 7319.74 4 yellow plate 0.44 × 0.07 × 0.03 1.743 5.807 12849 (0.037) 9512 839                                                                                                                                          | $\begin{array}{c} 9\\ \hline 2[C_{76}H_{64}As_4F_2Pt_2]\cdot\\ CH_2Cl_2\cdot H_2O\\ 3513.36\\ monoclinic\\ P2_1/n\\ 26.1349(1)\\ 12.9746(1)\\ 38.4786(3)\\ 94.3806(2)\\ 13009.59(15)\\ 4\\ yellow plate\\ 0.26\times 0.11\times 0.03\\ 1.793\\ 6.407\\ 23024\ (0.07)\\ 12068^a\\ 1559\\ \end{array}$                   |
| formula<br>fw<br>crystal system<br>space group<br>$a, \mathring{A}$<br>$b, \mathring{A}$<br>$c, \mathring{A}$<br>$\alpha, \deg$<br>$\beta, \deg$<br>$\gamma, \varphi$<br>$\gamma, \varphi$<br>$\gamma$                         | $\begin{array}{c} 6\\ \hline C_{78}H_{64}As_{4}N_{2}Pt_{2'}\\ 4CH_{2}Cl_{2}\\ 2058.98\\ triclinic\\ P\bar{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ 98.6654(5)\\ 114.1778(5)\\ 1904.15(4)\\ 1\\ yellow plate\\ 0.30\times 0.20\times 0\\ 1.795\\ 5.721\\ 8746\ (0.05)\\ 7137\\ 453\\ 0.023\\ \end{array}$                                                                          | C <sub>78</sub><br>178<br>moi<br>C2/<br>27<br>17.9<br>17.0<br>97<br>642<br>4<br>yell<br>.19<br>0.33<br>1.84<br>6.50<br>735<br>414<br>397<br>0.02                             | $\frac{7}{H_{64}As_4N_2Pt_2S_2}$ 33.38<br>noclinic<br>/c<br>1169(3)<br>9852(3)<br>0499(3)<br>1223(6)<br>25.44(18)<br>low needle<br>6 × 0.05 × 0.05<br>43<br>07<br>58 (0.06)<br>43<br>7<br>22                                                                                           | $\begin{array}{c} 8 \\ \hline C_{78}H_{64}As_4N_2O_2Pt_2 \\ 2CH_2Cl_2 \\ 1921.11 \\ monoclinic \\ P2_1/c \\ 13.8368(1) \\ 13.0378(1) \\ 40.5832(2) \\ 91.1694(2) \\ \hline 7319.74 \\ 4 \\ yellow plate \\ 0.44 \times 0.07 \times 0.03 \\ 1.743 \\ 5.807 \\ 12849 (0.037) \\ 9512 \\ \hline 839 \\ 0.024 \\ \end{array}$                          | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36<br>monoclinic<br>$P2_1/n$<br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4<br>yellow plate<br>$0.26 \times 0.11 \times 0.03$<br>1.793<br>6.407<br>23024 (0.07)<br>$12068^a$<br>1559<br>0.027                        |
| formula<br>fw<br>crystal system<br>space group<br>$a, \mathring{A}$<br>$b, \mathring{A}$<br>$c, \mathring{A}$<br>$\alpha, \deg$<br>$\beta, \deg$<br>$\gamma, \varphi$<br>$\gamma, \varphi$<br>$\gamma$ | $\begin{array}{c} 6\\ \hline C_{78}H_{64}As_{4}N_{2}Pt_{2'}\\ 4CH_{2}Cl_{2}\\ 2058.98\\ triclinic\\ P\overline{1}\\ 12.5155(1)\\ 12.7912(1)\\ 13.5105(2)\\ 97.6692(5)\\ 98.6654(5)\\ 114.1778(5)\\ 1904.15(4)\\ 1\\ yellow plate\\ 0.30\times 0.20\times 0\\ 1.795\\ 5.721\\ 8746 (0.05)\\ 7137\\ 453\\ 0.023\\ 0.025\\ \end{array}$                                                              | C78<br>178<br>moi<br>C2/<br>27.:<br>17.6<br>97.:<br>97.:<br>642<br>4<br>yell<br>.19<br>0.36<br>1.84<br>6.50<br>735<br>414<br>397<br>0.02<br>0.02                             | 7 H <sub>64</sub> As <sub>4</sub> N <sub>2</sub> Pt <sub>2</sub> S <sub>2</sub> 33.38 noclinic /c 1169(3) 9852(3) 0499(3) 1223(6) 25.44(18) low needle 6 × 0.05 × 0.05 43 07 88 (0.06) 43 7 22 25                                                                                      | $\frac{8}{C_{78}H_{64}As_4N_2O_2Pt_2}$ $\frac{2CH_2CI_2}{1921.11}$ monoclinic<br>$P_{21/c}$ 13.8368(1)<br>13.0378(1)<br>40.5832(2)<br>91.1694(2)<br>7319.74<br>4<br>yellow plate<br>0.44 × 0.07 × 0.03<br>1.743<br>5.807<br>12849 (0.037)<br>9512<br>839<br>0.024<br>0.026                                                                         | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36<br>monoclinic<br>$P2_1/n$<br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4<br>yellow plate<br>$0.26 \times 0.11 \times 0.03$<br>1.793<br>6.407<br>23024 (0.07)<br>$12068^a$<br>1559<br>0.027<br>0.027               |
| formula<br>fw<br>crystal system<br>space group<br>a, Å<br>b, Å<br>c, Å<br>a, deg<br>$\beta$ , deg<br>$\gamma$ , deg<br>$\mu$ , Å <sup>3</sup><br>Z<br>color, habit<br>cryst dimens (mm)<br>$D_{calc}$ (g cm <sup>-3</sup> )<br>$\mu$ (mm <sup>-1</sup> )<br>no. indep reflns ( $R_{int}$ )<br>no. of obsd refln<br>$[I \geq 3\sigma(I)]$<br>no. of params refined<br>R(F)<br>$R_w(F)$<br>$\rho_{max}/\rho_{min}$ (e Å <sup>-3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 6 \\ \hline \mathbf{C}_{78}\mathbf{H}_{64}\mathbf{As_4N_2Pt_2} \\ 4\mathbf{CH_2Cl_2} \\ 2058.98 \\ triclinic \\ P\overline{1} \\ 12.5155(1) \\ 12.7912(1) \\ 13.5105(2) \\ 97.6692(5) \\ 98.6654(5) \\ 114.1778(5) \\ 1904.15(4) \\ 1 \\ yellow plate \\ 0.30 \times 0.20 \times 0 \\ 1.795 \\ 5.721 \\ 8746 (0.05) \\ 7137 \\ 453 \\ 0.023 \\ 0.025 \\ 0.84/-0.87 \end{array}$ | C <sub>78</sub><br>178<br>moi<br>C2/<br>27.:<br>17.9<br>17.0<br>97.:<br>642<br>4<br>.19<br>0.33<br>1.84<br>6.50<br>735<br>414<br>397<br>0.02<br>0.02<br>0.02<br>0.02<br>0.90 | 7 $H_{64}As_4N_2Pt_2S_2$ 33.38         noclinic         /c         1169(3)         9852(3)         0499(3)         1223(6)         25.44(18)         low needle $6 \times 0.05 \times 0.05$ 43         07         58 (0.06)         13         7         22         25         0/-0.81 | $\begin{array}{c} 8 \\ \hline C_{78}H_{64}As_4N_2O_2Pt_2 \\ 2CH_2Cl_2 \\ 1921.11 \\ monoclinic \\ P2_{1/c} \\ 13.8368(1) \\ 13.0378(1) \\ 40.5832(2) \\ 91.1694(2) \\ \hline 7319.74 \\ 4 \\ yellow plate \\ 0.44 \times 0.07 \times 0.03 \\ 1.743 \\ 5.807 \\ 12849 (0.037) \\ 9512 \\ \hline 839 \\ 0.024 \\ 0.026 \\ 1.07/-0.89 \\ \end{array}$ | 9<br>$2[C_{76}H_{64}As_4F_2Pt_2] \cdot CH_2Cl_2 \cdot H_2O$<br>3513.36<br>monoclinic<br>$P2_1/n$<br>26.1349(1)<br>12.9746(1)<br>38.4786(3)<br>94.3806(2)<br>13009.59(15)<br>4<br>yellow plate<br>$0.26 \times 0.11 \times 0.03$<br>1.793<br>6.407<br>23024 (0.07)<br>$12068^a$<br>1559<br>0.027<br>0.027<br>0.79/-0.89 |

<sup>*a*</sup>  $[I \geq 2\sigma(I)].$ 

pseudohalide groups along the axis of **2**. The structure of the dichloro complex **3** is shown in Figure 3. Selected bond lengths and angles in complexes **3**, **4**, **6**, and **7** are listed in Table S2; those for complexes **5**, **8**, and **9** are given in Table S3. As is evident from the crystal and refinement data in Table 2, the CH<sub>2</sub>Cl<sub>2</sub> solvates of the dichloro, dibromo, and dicyano complexes, **3**, **4**, and **6**, are isomorphous (space group  $P\bar{1}$ , Z = 1), as are the CH<sub>2</sub>Cl<sub>2</sub>-solvated diiodo- and bis(cyanato)-complexes **5** and **8** (space group  $P2_1/c$ , Z = 4). In contrast, the bis(thiocyanato) complex **7** is not solvated by CH<sub>2</sub>Cl<sub>2</sub> and belongs to a different space group (C2/c, Z = 4), while two molecules of the difluoro complex (**9a** and **9b**) ( $P2_1/n$ , Z = 4) are associated with one CH<sub>2</sub>Cl<sub>2</sub> molecule and one water molecule (the basis of the identification is further discussed in Appendix S1). The Pt–Pt distances in 3-9 depend on the nature of the axial ligand X and are significantly shorter than that in the parent complex 2, consistent with the presence of a discrete single bond between the 5d<sup>7</sup> metal centers.

The Pt–Pt distances are shortest for the difluoride **9** (**9a**, 2.6530(4) Å; **9b**, 2.6524(4) Å) and for complexes **7** and **8** containing N-bonded NCS and NCO (2.6870(3), 2.6772(2) Å, respectively) and longest for the C-bonded dicyano complex **6** (2.7910(2) Å). A similar trend can be seen in the diplatinum(III) complexes containing pop; the shortest Pt–Pt distance occurs in the N-donor acetonitrile complex [ $^{n}Bu_{4}N$ ]<sub>2</sub>[Pt<sub>2</sub>(pop)<sub>4</sub>(NCMe)<sub>2</sub>] (2.676(1) Å),<sup>21</sup> while the longest

<sup>(20)</sup> The metal-metal vectors are generally not exactly perpendicular to the plane of the Pt and the four attached atoms, as can be seen from the range of metal-metal attached atom angles in Tables S2 and S3.

<sup>(21)</sup> Che, C. M.; Mak, T. C. W.; Miskowski, V. M.; Gray, H. B. J. Am. Chem. Soc. 1986, 108, 7840.

### Dinuclear Complexes of Platinum Arsine Ligands

occurs in the methyl iodide oxidative addition product K<sub>4</sub>-[Pt<sub>2</sub>(I)(Me)(pop)<sub>4</sub>]·2H<sub>2</sub>O (2.782(1) Å).<sup>22</sup> The distances in the dihalo complexes are essentially equal for the dichloride (**3**) and dibromide (**4**) (2.7444(5) and 2.7457(1) Å, respectively) and are slightly greater in the diiodide (**5**) (2.752(1) Å); they are also similar to the Pt–Pt distances in corresponding lantern complexes derived from pop and pcp, e.g., 2.7500-(3) Å in K<sub>4</sub>[Pt<sub>2</sub>Cl<sub>2</sub>(pcp)<sub>4</sub>]·8H<sub>2</sub>O (**12**),<sup>12</sup> 2.695(1) Å in K<sub>4</sub>[Pt<sub>2</sub>Cl<sub>2</sub>(pop)<sub>4</sub>]·2H<sub>2</sub>O (**13**),<sup>23</sup> 2.723(4) Å in K<sub>4</sub>[Pt<sub>2</sub>Br<sub>2</sub>-(pop)<sub>4</sub>]·2H<sub>2</sub>O (**14**),<sup>24</sup> 2.716(1) Å in [<sup>n</sup>Bu<sub>4</sub>N]<sub>4</sub>[Pt<sub>2</sub>Br<sub>2</sub>(pop)<sub>4</sub>] (**15**),<sup>25</sup> 2.754(1) Å in K<sub>4</sub>[Pt<sub>2</sub>I<sub>2</sub>(pop)<sub>4</sub>]·2H<sub>2</sub>O (**16**),<sup>25</sup> and 2.742(1) Å in K<sub>2</sub>[<sup>n</sup>Bu<sub>4</sub>N]<sub>2</sub>[Pt<sub>2</sub>I<sub>2</sub>(pop)<sub>4</sub>] (**17**).<sup>25</sup>

The Pt-halide distances in 3-5 and 9 are ca. 0.15-0.20 Å longer than the distances found in  $[PtX_6]^{2-}$ , reflecting the high trans-influence of the Pt-Pt bond. The Pt-Cl distance in 3 (2.4884(16) Å) is also significantly greater than those in **12** (2.442(1) Å)<sup>16</sup> or **13** (2.407(2) Å),<sup>23</sup> perhaps reflecting the greater bulk and stronger electron-donating ability of the bridging As-C ligand relative to those of pop. There is a similar trend in the Pt–I distances (5, 2.779(1) Å; 16, 2.742-(1) Å;<sup>25</sup> **17**, 2.721(1) Å<sup>25</sup>). Complex **9** is unique in that there are no analogous lantern-type dimers containing terminal fluoride ligands; an unsupported dimer containing  $\alpha$ -dioximato ligands has been reported,26 although no characterization details are given. The Pt-F distances (see Table S3) in 9 (9a, 2.139(4), 2.100(4) Å; 9b, 2.172(5), 2.128(4) Å for the two independent molecules in the asymmetric unit) lie in the range found for the platinum(II) salt [PtF(PEt<sub>3</sub>)<sub>3</sub>]BF<sub>4</sub>  $(2.043(7) \text{ Å})^{27}$  and the platinum(IV) complex [PtMe<sub>3</sub>F]<sub>4</sub>  $(2.251(6) \text{ Å})^{18}$  in which fluoride is trans to a ligand of high trans-influence; the Pt-F distances in platinum(IV) complexes containing mutually trans-fluorides are much shorter, e.g. 1.930(2) Å in *trans*-[ ${}^{n}Bu_{4}N$ ]<sub>2</sub>[PtF<sub>2</sub>(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>]<sup>28</sup> and 1.938(10), 1.943(10) Å in *trans*-[PtF<sub>2</sub>(py)<sub>4</sub>][BF<sub>4</sub>]<sub>2</sub>·H<sub>2</sub>O.<sup>29</sup>

Crystalline 7 and 8 contain N-bonded thiocyanate and cyanate, respectively; in both cases, as commonly observed in mononuclear complexes of these ligands, the Pt-N-C bond angles deviate markedly from linearity (7, 164.8(4)°; 8, 146.2(3)°, 166.1(5)°). In contrast to 7, the pop analogue contains S-bonded thiocyanate in the solid state.<sup>30</sup> The Pt-N distances in 7 and 8, and the Pt-C distances in 6, are all longer than those found in typical cyanato-, thiocyanato-, and cyano-platinum(II) complexes, respectively, again reflecting the high trans-influence of the Pt-Pt bond. The Pt-

(22) Che, C. M.; Mak, T. C. W.; Gray, H. B. Inorg. Chem. 1984, 23, 4386.

- (23) Che, C. M.; Herbstein, F. M.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4604.
- (24) Clark, R. J. H.; Kurmoo, M.; Dawes, H. M.; Hursthouse, M. B. Inorg. Chem. 1986, 25, 409.
- (25) Alexander, K. A.; Bryan, S. A.; Fronczek, F. R.; Fultz, W. C.; Rheingold, A. L.; Roundhill, D. M.; Stein, P.; Watkins, S. F. *Inorg. Chem.* **1985**, *24*, 2803.
- (26) Baxter, L. A. M.; Heath, G. A.; Raptis, R. G.; Willis, A. C. J. Am. Chem. Soc. 1992, 114, 6944.
- (27) Donath, H.; Avtomonov, E. V.; Sarraje, I.; von Dahlen, K. H.; El-Essawi, M.; Lorberth, J.; Seo, B. S. J. Organomet. Chem. 1998, 559, 191.
- (28) Uttecht, J. G.; Näther, C.; Preetz, W. Z. Anorg. Allg. Chem. 2002, 628, 2847.
- (29) Drews, H. H.; Preetz, W. Z. Anorg. Allg. Chem. 1997, 623, 509.
- (30) Che, C. M.; Lee, W. M.; Mak, T. C. W.; Gray, H. B. J. Am. Chem. Soc. 1986, 108, 4446.



**Figure 4.** Cyclic voltammogram obtained for oxidation of a 1.0 mM solution of complex **2** at a 1 mm diameter GC working electrode in dichloromethane (0.1 M  $Bu_4NPF_6$ ) at a scan rate of 1000 mV s<sup>-1</sup>.

As and Pt-C distances in the diplatinum(II) complexes **1** and **2** are, separately, not significantly different (ca. 2.43–2.47 Å, 2.02–2.05 Å, respectively). Oxidative addition to form the diplatinum(III) complexes **3–9** produces little effect on the Pt-As distances but does lead to a significant lengthening in the Pt-C distances to ca. 2.10–2.13 Å.

Electrochemical Oxidation of  $[Pt_2(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  (2). Three processes are detected for the voltammetric oxidation of 2 in dichloromethane (0.1 M Bu<sub>4</sub>-NPF<sub>6</sub>). The first process, labeled 1 in Figure 4, is chemically and electrochemically reversible with a reversible formal potential  $(E_J^0)$  of  $-165 \pm 5$  mV vs Fc/Fc<sup>+</sup> at both glassy carbon and platinum disk electrodes. This process is assigned<sup>31</sup> to the structurally conserved  $2^{0/+}$  couple (eq 1).

$$[\operatorname{Pt}_{2}(\mu \cdot \kappa As, \kappa C \cdot C_{6}H_{3}\text{-}5\text{-}Me\text{-}2\text{-}AsPh_{2})_{4}] \rightleftharpoons [\operatorname{Pt}_{2}(\mu \cdot \kappa As, \kappa C \cdot C_{6}H_{3}\text{-}5\text{-}Me\text{-}2\text{-}AsPh_{2})_{4}]^{+} + e^{-} (1)$$

The second and third oxidation processes (labeled 2 and 3 in Figure 4) are irreversible and have peak potentials  $(E_p^{ox})$  near 1.0 and 1.5 V vs Fc/Fc<sup>+</sup>. The irreversibility suggests that a gross structural change accompanies more extensive oxidation to a diplatinum(III) complex. The overall reaction scheme is consistent with eq 2.

$$[Pt_{2}(II,II)] \xrightarrow[+e^{-}]{-e^{-}} [Pt_{2}(II,III)]^{+} \xrightarrow[+e^{-}]{-e^{-}}$$
$$[Pt_{2}(III,III)]^{2+} \rightarrow electroactive product (2)$$

Cyclic voltammograms obtained after a one-electron bulk oxidative electrolysis of **2** at a platinum electrode using a controlled potential of +170 mV vs Fc/Fc<sup>+</sup> (between processes 1 and 2) exhibit exactly the same three processes shown in Figure 4. However, while processes 2 and 3 remain oxidative, reversible process 1 is now reductive and corresponds to the reaction **2**<sup>+/0</sup> instead of **2**<sup>0/+</sup> as was the case prior to bulk electrolysis. Thus, a stable lantern **2**<sup>+</sup> species exists on the voltammetric and bulk electrolysis time scales

<sup>(31)</sup> Bennett, M. A.; Bhargava, S. K.; Boas, J. F.; Boeré, R. T.; Bond, A. M.; Edwards, A. J.; Guo, S. X.; Hammerl, A.; Pilbrow, J. R.; Privér, S. H.; Schwerdtfeger, P. To be submitted for publication.



**Figure 5.** Cyclic voltammogram for oxidation of 1.0 mM solution of complex 1 at a 1 mm diameter GC working electrode in dichloromethane (0.1 M  $Bu_4NPF_6$ ) at a scan rate of 500 mV s<sup>-1</sup>.

and is also accessible by the action of very mild chemical oxidants such as Fc<sup>+</sup>.<sup>31</sup> In contrast, very powerful chemical oxidants would be required to reach oxidation states beyond the mixed-valent Pt<sub>2</sub>(II,III) species. Iodine would certainly not be a sufficiently powerful oxidizing agent to doubly oxidize **2** to **2**<sup>2+</sup> but is predicted to enable **2**<sup>+</sup> to be formed along with I<sup>-</sup> and hence enable the lantern structured [Pt<sub>2</sub>I<sub>2</sub>- $(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4$ ] complex **5** to be formed by a reaction sequence of the kind presented in eqs 3a–c.

$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me-2-AsPh}_{2})_{4}] + \frac{1}{2}I_{2} \rightleftharpoons$$
$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me-2-AsPh}_{2})_{4}]^{+} + I^{-} (3a)$$

$$[\operatorname{Pt}_{2}(\mu \cdot \kappa As, \kappa C \cdot C_{6}H_{3}\text{-}5\text{-}Me\text{-}2\text{-}As\operatorname{Ph}_{2})_{4}]^{+} + I^{-} \rightarrow [\operatorname{Pt}_{2}I(\mu \cdot \kappa As, \kappa C \cdot C_{6}H_{3}\text{-}5\text{-}Me\text{-}2\text{-}As\operatorname{Ph}_{2})_{4}] (3b)$$

$$2[\operatorname{Pt}_{2}I(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] \rightarrow [\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] + [\operatorname{Pt}_{2}I_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] (3c)$$

The failure to detect the proposed intermediate  $[Pt_2I(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  is consistent with rapid disproportionation (eq 3c). Overall, this series of reactions corresponds to a net oxidative addition (eq 4).

$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me-2-AsPh}_{2})_{4}] + I_{2} \rightleftharpoons [\operatorname{Pt}_{2}I_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me-2-AsPh}_{2})_{4}]$$
(4)

Electrochemical Oxidation of  $[Pt_2(\kappa^2 As, C-C_6H_3-5-Me-2-AsPh_2)_2(\mu-\kappa As, \kappa C-C_6H_3-5-Me-2-AsPh_2)_2]$  (1). Crystals of 1 were manually separated from the mixture of 1 and 2 to provide low concentrations of pure 1. A cyclic voltammogram of 1 (Figure 5) at a scan rate of 500 mV s<sup>-1</sup> contains an oxidation peak at about 200 mV, which is approximately 300 mV more positive than that for the  $2 \rightarrow 2^+$  process. Three reduction processes at about 100, -60, and -200 mV (vs Fc/Fc<sup>+</sup>), labeled 4, 5, and 1, respectively, also are observed in the reverse scan. Thus, it is proposed that complex 1 is initially oxidized to 1<sup>+</sup>, which, in a two-step process, forms complex 2<sup>+</sup>. In support of this hypothesis, it is noted that the potential of reduction peak 1 is very similar to the reduction peak potential of complex  $2^+$  and that in multicycling experiments with 1, the process now assigned to the reaction  $2^{0/+}$  has the same characteristics as those detected with bulk solutions of pure 2. Additionally, after a one-electron bulk oxidative electrolysis at a controlled potential of +400 mV vs Fc/Fc<sup>+</sup>, cyclic voltammograms have the same number of peaks and same peak potentials to those formed after bulk electrolysis of 2. That is, processes 4 and 5 disappear with only reversible process  $2^{+/0}$  being detected (now reductive) along with oxidative processes 2 and 3 at very positive potentials (see Figure 4).

When the scan rate is increased to  $10 \text{ V s}^{-1}$ , the oxidation process is chemically reversible (coupled homogeneous chemical isomerization reactions are now insignificant). The  $E_f^0$  value of  $150 \pm 5 \text{ mV}$  obtained at fast scan rates from the average of the oxidation and reduction peak potentials confirms that complex **1** is thermodynamically more difficult to oxidize than **2** by about 300 mV. A theoretical rationalization of the differences in potential will be presented in future work.<sup>31</sup>

The ladder square scheme<sup>32–34</sup> mechanism, summarized in eq 5, is consistent with the cyclic voltammetry and bulk electrolysis experiments



where **X** and **X**<sup>+</sup> are intermediates of unknown structure. Simulations, rotating disk electrode, and electron paramagnetic resonance data in support of eq 5 will be presented in a forthcoming paper.<sup>31</sup> This scheme implies that chemical oxidation of half-lantern **1** will generate  $2^+$ , thus explaining why the overall oxidative additive reactions commencing with either **1** or **2** or mixtures produce dihalodiplatinum(III) complexes containing the lantern structure present in  $2^+$ .

Complex 1 also exhibits a second chemically irreversible oxidation process at  $1500 \pm 5$  mV at a scan rate of 500 mV s<sup>-1</sup>. In view of the close proximity to the solvent limit, the details of the second process could not be elucidated, but it probably represents the oxidation of  $1^+/X^+/2^+$  to a transient Pt<sub>2</sub>(III,III) dinuclear or other electroactive complexes as has been assumed to occur when 2 is oxidized at very positive potentials (see eq 2). Like 2, 1 is not detected to undergo reduction under voltammetric conditions, even at potentials as negative as -3000 mV.

Electrochemical Reduction of  $[Pt_2Cl_2(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  (3). A cyclic voltammogram of complex

<sup>(32)</sup> Bond, A. M.; Keene, F. R.; Rumble, N. W.; Searle, G. H.; Snow, M. R. Inorg. Chem. 1978, 17, 2847.

<sup>(33)</sup> Bond, A. M.; Hambley, T. W.; Snow, M. R. *Inorg. Chem.* 1985, 24, 1920.
(34) Evans, D. H. *Chem. Rev.* 1990, 90, 739.



**Figure 6.** Cyclic voltammograms obtained at a scan rate of 1000 mV s<sup>-1</sup> with a 3 mm diameter GC working electrode for (a) reduction of 0.25 mM 3 in dichloromethane (0.1 M Bu<sub>4</sub>NPF<sub>6</sub>) over a wide potential range and (b) cyclic voltammogram obtained in the oxidation potential range before (····) and after (–) reductive bulk electrolysis at -1500 mV (vs Fc/Fc<sup>+</sup>) with a platinum basket electrode.

**3** (Figure 6a) at a scan rate of 1000 mV s<sup>-1</sup> exhibits a reduction peak at -1390 mV vs Fc/Fc<sup>+</sup> along with a shoulder at less negative potential. When the scan direction is reversed, an oxidation peak is observed at -115 mV, which is attributed to the oxidation of one or more reduction products since no oxidation process is detected when the potential is initially scanned in the positive direction (Figure 6a). However, the nature of the reductive component of the cyclic voltammetry depends very much on the number of cycles of the potential (Figure S1), the scan rate (compare Figure 6a and S1), and the electrode surface (Figure S2), implying that the reduction mechanism is complex. In contrast, the oxidative process coupled to the reduction step is essentially independent of electrode surface (Figure S2). No evidence for further reduction was detected in the negative potential range (-1500 mV to solvent limit) at glasy carbon (-3000 mV), platinum, or gold electrodes.

The overall results obtained by bulk electrolysis are readily interpreted. Cyclic voltammetric measurements made after bulk electrolysis revealed that the chemically irreversible oxidation process detected on reverse scans prior to bulk



**Figure 7.** Electronic spectra of 0.25 mM complex **3** in dichloromethane (0.1 M  $Bu_4NPF_6$ ) before electrolysis (--), after reductive electrolysis at -1500 mV (--), and after oxidative electrolysis at +70 mV (···).

electrolysis (Figure 6a) was now present as a primary oxidation process (Figure 6b).

Oxidative bulk electrolysis of the reduced species at a potential of 70 mV vs  $Fc/Fc^+$  re-formed complex **3**; voltammograms obtained before and after the bulk electrolysis reductive—oxidative sequence were very similar (8% loss of complex **3** estimated). However, despite the inherent complexity of the reaction scheme implied by the voltammetric measurements, on the synthetic (bulk electrolysis) time scale the reduction—oxidation cycle is close to chemically reversible (loss of less than 10% of complex **3** detected per cycle on the basis of voltammetric evidence) and corresponds to eq 6. The electrochemical data are consistent with the observation that chemical reduction of **3** with zinc dust gives pure **2** (complete absence of **1**).

$$[\operatorname{Pt}_{2}\operatorname{Cl}_{2}(\mu - \kappa As, \kappa C - \operatorname{C}_{6}\operatorname{H}_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] + 2e^{-} \rightleftharpoons$$
$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - \operatorname{C}_{6}\operatorname{H}_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] + 2\operatorname{Cl}^{-} (6)$$

In situ spectroelectrochemical studies undertaken at a platinum gauze electrode are completely consistent with eq 6. The electronic spectrum of the reduction product (Figure 7) has absorption bands at 405 and 360 nm and closely resembles that of complex **2**. Moreover, oxidation at 70 mV vs Fc/Fc<sup>+</sup> leads to close to 100% recovery of the initial spectrum for complex **3**.

Neither reduction nor oxidation are believed to occur by a single-step, two-electron transfer. Rather, the data imply that one-electron intermediates are involved and that these do not need to be the same for the reduction and oxidation directions of eq 6. It is known that the oxidation of complex 2 in the absence of chloride produces  $2^+$  as a stable entity. In the presence of 2 equiv of halide (Cl<sup>-</sup> and Br<sup>-</sup>), the reversible cyclic voltammogram for the  $2^{0/+}$  process (Figure 3) becomes an irreversible two-electron oxidative process with all the characteristics noted after bulk reduction of 3 to 2 (eq 6, Figure 6b). Consequently, oxidation in the presence of Cl<sup>-</sup> is assumed to be modified so as to occur via an ECE type reaction scheme for which a plausible representative example is given in eqs 7a-c.

$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] \rightleftharpoons$$
$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}]^{+} + e^{-}(E) \quad (7a)$$

$$[\operatorname{Pt}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}]^{+} + 2\operatorname{Cl}^{-} \rightleftharpoons$$
$$[\operatorname{Pt}_{2}\operatorname{Cl}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}]^{-}(C) (7b)$$

$$[\operatorname{Pt_2Cl_2}(\mu - \kappa As, \kappa C - C_6H_3 - 5 - \operatorname{Me-2-AsPh_2})_4]^{-} \rightleftharpoons$$
$$[\operatorname{Pt_2Cl_2}(\mu - \kappa As, \kappa C - C_6H_3 - 5 - \operatorname{Me-2-AsPh_2})_4] + e^{-}(E) \quad (7c)$$

Numerous disproportionation and related second-order processes and other intermediates also could give rise to the final product (complex **3**). The reduction process also may be postulated to proceed via ECE type schemes. Irrespective of the details of the mechanism, in the presence of a ligand such as  $Cl^-$ , an overall two-electron oxidative addition—reductive elimination sequence is available, whereas in the absence of a coordinating ligand, one-electron oxidized **2**<sup>+</sup> is detected as a stable compound.<sup>31</sup>

## Discussion

Although there are many examples of quadruply bridged diplatinum(II) and diplatinum(III) complexes with a lantern geometry,<sup>8,9</sup> complexes **2–8** represent the first examples containing a tertiary arsine. Moreover, there is only one previous example of a diplatinum(III) complex of this type containing a carbon-donor ligand, [Pt<sub>2</sub>Cl<sub>2</sub>( $\mu$ - $\kappa$ O, $\kappa$ O-O<sub>2</sub>CMe)<sub>2</sub>-( $\mu$ - $\kappa$ O, $\kappa$ C-CH<sub>2</sub>CO<sub>2</sub>)<sub>2</sub>]<sup>2–.35</sup>

The isolation of the dinuclear complexes **1** and **2** rather than a mononuclear species  $[Pt(\kappa^2 As, C-C_6H_3-5-Me-2-As-Ph_2)_2]$  and the conversion of **1** into the lantern dimer **2** demonstrate that the bridging  $\mu$ - $\kappa As, \kappa C$ -mode is favored over  $\kappa^2$ -binding for ortho-metalated arylarsines. Isomerization from  $\kappa^2 As, C$ - to  $\mu$ - $\kappa As, \kappa C$ -binding requires dissociation of the Pt-As bond; this process evidently occurs more readily than that of the corresponding Pt-P bond, reflecting the weaker Pt-As interaction and the greater size of arsenic compared with phosphorus.

There is considerable similarity in the chemistry and structures between the platinum complexes of  $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub> and those containing diarylformamidinato (DArF) ligands. For example, the initially formed half-lantern dinuclear complex Pt<sub>2</sub>( $\kappa$ <sup>2</sup>N,N-DArF)<sub>2</sub>( $\mu$ - $\kappa$ N, $\kappa$ N-DArF)<sub>2</sub> isomerizes on heating to the lantern structure, analogous to complexes **1** and **2**, respectively.<sup>36</sup> The corresponding dichlorodiplatinum(III) and Pt<sub>2</sub>(II,III) mixed-valent complexes have also been prepared.<sup>36,37</sup>

The bond lengths to the axial ligands in complexes **3–9** clearly show that the Pt–Pt bond exerts a strong transinfluence. Moreover, the effects of different axial ligands are reflected both in the Pt–Pt distances and in the values of  ${}^{3}J_{\text{Pt-H}}$  (<sup>195</sup>Pt coupling to the ortho proton). The longest Pt–Pt separation (**6**, X = CN) corresponds to the largest value of  ${}^{3}J_{Pt-H}$ , and the shorter Pt–Pt distances (**9**, X = F; **3**, X= Cl) correspond with smaller values of  ${}^{3}J_{Pt-H}$ . In this limited series, the correspondence is not exact, e.g., the value of  ${}^{3}J_{Pt-H}$  for X = NCO (**8**) is higher and that of X = Cl (**3**) is lower than the values that would be expected on the basis of the Pt–Pt separations. The magnitudes of  ${}^{3}J_{Pt-H}$  fall in the order X = CN > I > Br > NCS > NCO > Cl > F, which is similar to, though does not correspond exactly with, orders of trans-influence based on, for example,  $\nu$ (PtH) and  ${}^{1}J_{Pt-H}$  in *trans*-[PtHX(PR<sub>3</sub>)<sub>2</sub>],  ${}^{1}J_{Pt-P}$  in [PtXMe(dppe)], and  ${}^{2}J_{Pt-H}$  in methylplatinum(II) complexes.<sup>14,38</sup> Since the coupling constants in these cases are known to be positive<sup>39,40</sup> and decrease with increasing trans-influence, it seems likely that  ${}^{3}J_{Pt-H}$  in complexes **2**–**9** is negative, as is also the case for  ${}^{3}J_{P-H}$  (cis) in methylplatinum(II) complexes.<sup>40</sup>

We have so far been unable to isolate mixed-valent  $Pt_2(II,III)$  species of the type  $[Pt_2X(\mu - \kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  (X = anionic ligand). Although complexes of this type are well-known with pop and other bridging ligands, such as dithioacetate, the pop compounds are reported to disproportionate readily in aqueous solution.<sup>9b,24</sup> Such  $Pt_2(II,III)$  halide bridged intermediates are very likely to be associated with the electrochemistry of **3**. Interestingly, the electrochemical studies demonstrate that the mixed-valence cation  $[Pt_2(\mu - \kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]^+$  is stable and long-lived in solution in the absence of halide ion; this may provide access to a wider range of diplatinum(III) complexes containing the As-C bridging system.

The electrochemical data enable the synthetic results in this work to be fully rationalized, in particular, the exclusive formation of the complexes 3-5 from oxidation of complex 1 or 2 with halogen (X<sub>2</sub>). In the case of the oxidation of 2, no structural change need occur with respect to the Pt bonding after an initial one-electron oxidation by X<sub>2</sub> to generate  $2^+$  and X<sup>-</sup>. These products of the initial redox process can then react with each other to produce a halide adduct of the one-electron-oxidized product, as shown in eqs 3a and 3b, with X replacing I.

The intermediate  $[Pt_2X(\mu \kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$ may disproportionate, as shown in eq 3c for X = I or, in the case of the stronger oxidant chlorine, could undergo further oxidation to give directly the final oxidative addition product **3** (eq 8).

$$[\operatorname{Pt}_{2}\operatorname{Cl}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] + \frac{1}{2}\operatorname{Cl}_{2} \rightarrow [\operatorname{Pt}_{2}\operatorname{Cl}_{2}(\mu - \kappa As, \kappa C - C_{6}H_{3} - 5 - \operatorname{Me} - 2 - \operatorname{AsPh}_{2})_{4}] (8)$$

In the case of oxidation of 1, according to the electrochemical studies, isomerization of initially formed  $1^+$  to  $2^+$  provides the opportunity to achieve the structural change needed to ultimately give 3 (eqs 9a-c, then as in eq 3 or 7).

<sup>(35)</sup> Yamaguchi, J.; Sasaki, Y.; Ito, T. J. Am. Chem. Soc. 1990, 112, 4038.
(36) Cotton, F. A.; Matonic, J. H.; Murillo, C. A. Inorg. Chem. 1996, 35, 498

<sup>(37)</sup> Cotton, F. A.; Matonic, J. H.; Murillo, C. A. Inorg. Chim. Acta 1997, 264, 61.

<sup>(38)</sup> Appleton, T. G.; Bennett, M. A. Inorg. Chem. 1978, 17, 738.

<sup>(39) (</sup>a) McFarlane, W. Chem. Commun. 1967, 772. (b) Dean, R. R.; Green, J. C. J. Chem. Soc. A 1968, 3047.

<sup>(40)</sup> Bennett, M. A.; Bramley, R.; Tomkins, J. B. J. Chem. Soc., Dalton Trans. 1973, 166.

$$[Pt_{2}(\kappa^{2}As, C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{2}$$

$$(\mu-\kappa As, \kappa C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{2}] + \frac{1}{2}X_{2} \Longrightarrow$$

$$[Pt_{2}(\kappa^{2}As, C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{2}$$

$$(\mu-\kappa As, \kappa C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{2}]^{+} + X^{-} (9a)$$

 $[Pt_{2}(\kappa^{2}As, C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{2}$   $(\mu-\kappa As, \kappa C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{2}]^{+} \rightarrow$   $[Pt_{2}(\mu-\kappa As, \kappa C-C_{6}H_{3}-5-Me-2-AsPh_{2})_{4}]^{+} (via intermediate)$ (9b)

 $[\operatorname{Pt}_{2}(\mu \cdot \kappa As, \kappa C \cdot C_{6}H_{3}\text{-}5\text{-}Me\text{-}2\text{-}As\operatorname{Ph}_{2})_{4}]^{+} + X^{-} \rightleftharpoons [\operatorname{Pt}_{2}X(\mu \cdot \kappa As, \kappa C \cdot C_{6}H_{3}\text{-}5\text{-}Me\text{-}2\text{-}As\operatorname{Ph}_{2})_{4}] (9c)$ 

According to the electrochemical data, reduction of **3** can occur without the need for a structural change around the Pt core in any of the intermediates to give finally **2** and  $X^-$ . The fact that chemical reduction of **3** with zinc dust produces isomerically pure **2** also is therefore explained on the basis of the electrochemical results.

Although oxidative additions to dinuclear metal complexes have attracted much attention, little is known about their mechanism.<sup>41,42</sup> The present work indicates that the apparent two-electron oxidation by halogens involves one-electron changes, at least in the system studied. The fact that complex **2** is oxidized more readily than **1** can be correlated with the shorter metal-metal separation in the former, which allows formation of the stabilizing  $5d^7-5d^7$  interaction.

## Conclusions

In this study, we have prepared novel dinuclear Pt(II) and Pt(III) complexes containing cyclometalated tertiary arsine ligands, including the first fully characterized example of a difluoro complex of diplatinum(III). Two isomers,  $[Pt_2(\kappa^2 As, C C_6H_3$ -5-Me-2-AsPh<sub>2</sub>)<sub>2</sub>( $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>2</sub>] and  $[Pt_2(\mu - \kappa As, \kappa C - C_6H_3 - 5 - Me - 2 - AsPh_2)_4]$ , have been structurally characterized in the case of the Pt(II) oxidation state, and the spontaneous isomerization from  $\kappa^2 As, C$ - to  $\mu$ - $\kappa As, \kappa C$ binding mode was observed. Conversion to this binding mode is promoted by heat, chemical, or electrochemical oxidation, demonstrating that the lantern configuration is thermodynamically favored. Electrochemical studies of the oxidation of  $[Pt_2(\mu - \kappa As, \kappa C - C_6H_3 - 5 - Me - 2 - AsPh_2)_4]$  and the reduction of  $[Pt_2Cl_2(\mu - \kappa As, \kappa C - C_6H_3 - 5 - Me - 2 - AsPh_2)_4]$  provide insights into the mechanisms associated with oxidative addition and reductive elimination of dinuclear complexes. In particular, the electrochemical data implicate the presence of mixedvalent one-electron-oxidized or -reduced species as being important intermediates in the overall two-electron chemical oxidation/reduction pathways.

#### **Experimental Section**

General Comments. All experiments involving organolithium reagents were performed under an atmosphere of dry argon with use of standard Schlenk techniques. Diethyl ether, tetrahydrofuran,

(42) Fackler, J. P., Jr. Polyhedron 1997, 16, 1.

*n*-hexane, and toluene were dried over sodium/benzophenone, dichloromethane over calcium hydride, and methanol over 4 Å molecular sieves. <sup>1</sup>H NMR (200 MHz) and <sup>13</sup>C NMR (50 MHz) spectra were measured on a Varian Gemini 2000 spectrometer at room temperature in acid-free CDCl<sub>3</sub> or CD<sub>2</sub>Cl<sub>2</sub>. Chemical shifts  $(\delta)$  are given in ppm, internally referenced to residual solvent signals (<sup>1</sup>H,  $\delta$  5.32 for CD<sub>2</sub>Cl<sub>2</sub> and  $\delta$  7.26 for CDCl<sub>3</sub>; <sup>13</sup>C,  $\delta$  77.0 for CDCl<sub>3</sub>); multiplicities are quoted without <sup>195</sup>Pt satellites. <sup>19</sup>F NMR (282 MHz) spectra were acquired on a Varian Unity Inova 300 spectrometer, internally referenced to CFCl<sub>3</sub>. Elemental analyses were performed by the Microanalytical Unit at the Research School of Chemistry, ANU, Canberra, on samples that had been dried at 50 °C in vacuo to remove residual solvent. The carbon analyses for complexes containing nitrogen (6-8) were consistently low, perhaps due to incomplete combustion. Mass spectral data were obtained on a VG ZAB-2SEQ (FAB with NOPE as matrix) or HP 5970 MSD (EI) spectrometer. IR spectra in the ranges 4000-400 cm<sup>-1</sup> and 400-30 cm<sup>-1</sup> were obtained as KBr and polythene disks, respectively, on a Perkin-Elmer Spectrum 2000 FT-spectrometer. Molecular weights were determined on a Knauer vapor pressure osmometer with ~0.2 M CH<sub>2</sub>Cl<sub>2</sub> solutions at 37 °C. Melting points were measured on a Gallenkamp melting point apparatus in open glass capillaries and are uncorrected. Me<sub>3</sub>SiAsPh<sub>2</sub>,<sup>6</sup> 3-Br-4-IC<sub>6</sub>H<sub>3</sub>-Me,<sup>43</sup> 2-BrC<sub>6</sub>H<sub>4</sub>AsMe<sub>2</sub>,<sup>5c</sup> PhICl<sub>2</sub>,<sup>44</sup> [PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub>],<sup>45</sup> and [PdCl<sub>2</sub>-(NCMe)<sub>2</sub>]<sup>46</sup> were prepared by literature methods, and the ligand 2-Br-4-MeC<sub>6</sub>H<sub>3</sub>AsPh<sub>2</sub><sup>7</sup> was prepared by a modified literature method, the details of which are given below.

Tetrabutylammonium hexafluorophosphate (Bu<sub>4</sub>NPF<sub>6</sub>) (GFS) used as the supporting electrolyte was purified according to a literature method.<sup>47</sup> Electrochemical data were obtained with a BAS model 100B electrochemical workstation. The auxiliary electrode was always platinum gauze. The potential of the Ag/AgCl (CH<sub>2</sub>Cl<sub>2</sub>, saturated LiCl) reference electrode was always calibrated against that of the ferrocene/ferrocenium (Fc/Fc<sup>+</sup>) redox couple. The 1 mm diameter glassy carbon (GC) or platinum voltammetric working electrodes were polished and cleaned prior to use. For bulk electrolysis, the working electrode was cylindrical platinum gauze. Spectroelectrochemical studies were undertaken with a Cary 5 UVvisible-NIR spectrophotometer interfaced to a BAS model 100A electrochemistry system. A rectangular quartz cuvette (1 mm path length) was used as the electrochemical cell with a platinum gauze working electrode. All electrochemical studies were carried out at  $20 \pm 1$  °C. Dichloromethane solutions were always purged with solvent-saturated nitrogen gas.

Crystals adequate for X-ray diffraction studies were grown by layering a dichloromethane solution of the complex with methanol (complexes 1–8) or *n*-pentane (complex 9). Selected crystal data and details of data collection and structure refinement are in Table 2. Crystals were coated in viscous oil and mounted on fine drawn glass capillaries, and data were collected at 200 K on a Nonius-Kappa CCD diffractometer using graphite-monochromated Mo K $\alpha$ radiation ( $\lambda = 0.71073$  Å). The data were measured by use of COLLECT;<sup>48</sup> the intensities of the reflections were extracted, and the data reduced by use of the computer programs Denzo and

- (45) Kauffman, G. B.; Cowan, D. O. Inorg. Synth. 1960, 6, 211.
- (46) Hartley, F. R.; Murray, S. G.; McAuliffe, C. A. Inorg. Chem. 1979, 18, 1394.
  (47) Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in Elec-
- *troanalytical Chemistry*; Marcel Dekker: New York, 1984; p 481.
- (48) COLLECT Software, Nonius BV, 1997–2001.

<sup>(41)</sup> Collman, J. P.; Hegedus, L.; Norton, R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; Chapter 5, pp 306–322.

<sup>(43)</sup> Bhargava, S. K.; Mohr, F.; Bennett, M. A.; Welling, L. L.; Willis, A. C. Organometallics 2000, 19, 5628.

<sup>(44)</sup> Lucas, H. J.; Kennedy, E. R. Organic Synthesis; Wiley and Sons: New York, 1955; Collect. Vol. 3, p 482.

Scalepak.<sup>49</sup> The structures were solved by direct methods (SIR92<sup>50</sup> for **1**, **2**, and **4–9**; SIR97<sup>51</sup> for **3**) and refined on *F* with use of CRYSTALS<sup>52</sup> or, in the case of the twinned crystal of **5**, RAELS 2000.<sup>53</sup> Calculations were performed with use of crystallographic software packages teXsan,<sup>54</sup> maXus,<sup>55</sup> and CRYSTALS.<sup>52</sup> The neutral atom scattering factors were taken from ref 56. The mass attenuation coefficients were those implemented in maXus.<sup>55</sup> Nonroutine aspects of X-ray crystallographic determinations of **1–9** are detailed in Appendix S1.

Preparations. 2-Br-4-MeC<sub>6</sub>H<sub>3</sub>AsPh<sub>2</sub>. To a solution of 3-bromo-4-iodotoluene (13.08 g, 44.0 mmol) and [PdCl<sub>2</sub>(NCMe)<sub>2</sub>] (0.28 g, 1.07 mmol) in toluene (30 mL) under argon, (trimethylsilyl)diphenylarsine (14.01 g, 46.3 mmol) was added, and the dark solution was heated to ca. 90 °C for 2 h. To the cooled mixture, chloroform (30 mL) was added, and the orange solution was washed with saturated sodium bicarbonate solution, water, and brine. The organic layer was separated and dried (MgSO<sub>4</sub>), and the solvent was removed. The dark oil was chromatographed on a silica gel column and eluted with 1:1 toluene/hexanes. Removal of the solvent and recrystallization from ethanol gave white needles (14.25 g, 81%). <sup>1</sup>H NMR:  $\delta$  2.32 (s, 3H, Me), 6.72 (d,  $J_{H-H} = 7.7$  Hz, 1H, aromatic H), 7.00 (dd,  $J_{H-H} = 0.9$ , 7.7 Hz, 1H, aromatic H), 7.43 (d,  $J_{H-H} = 0.9$  Hz, 1H, aromatic H), 7.2–7.4 (m, 10H, aromatics). <sup>13</sup>C NMR: δ 20.8, 128.5, 128.6, 128.7, 130.0, 133.2, 133.8, 134.6, 137.9, 139.0, 140.5. EI-MS (m/z): 398 [M]<sup>+</sup>. Anal. Calcd for C19H16AsBr: C, 57.17; H, 4.04; Br, 20.02. Found: C, 57.36; H, 4.12; Br, 20.26.

Mixture of  $[Pt_2(\kappa^2 As, C-C_6H_3-5-Me-2-AsPh_2)_2(\mu-\kappa As, \kappa C-C_6H_3-$ 5-Me-2-AsPh<sub>2</sub>)<sub>2</sub>] (1) and  $[Pt_2(\mu - \kappa As, \kappa C - C_6H_3 - 5 - Me - 2 - AsPh_2)_4]$ (2). To a suspension of (2-bromo-4-methylphenyl)diphenylarsine (1.11 g, 2.55 mmol) in diethyl ether (10 mL), Bu<sup>n</sup>Li (1.6 M, 1.6 mL, 2.56 mmol) was added to give a clear solution, which was stirred for 1 h during which time a white precipitate formed. The solvent was decanted from the precipitated solid, and diethyl ether (20 mL) was added. The suspension was cooled to -30 °C and treated with [PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub>] (0.51 g, 1.14 mmol). The mixture was stirred for 30 min at -30 °C, then at room temperature overnight. The solvent was decanted from the yellow solid, which was washed with hexanes  $(2 \times 10 \text{ mL})$  and MeOH  $(2 \times 10 \text{ mL})$  and recrystallized from CH<sub>2</sub>Cl<sub>2</sub>/MeOH to give a mixture of 1 and 2 as a bright yellow-green solid (0.38 g, 40%). When the isomeric mixture was refluxed in toluene for 24 h, 1 was completely converted into **2**. <sup>1</sup>H NMR:  $\delta$  1.93 (s, 3H, Me of **1**), 1.98 (s, 3H, Me of 2), 2.18 (s, 6H, Me of 2), 6.2–7.5 (m, 48H, aromatics of 1 and 2), 7.90 (s,  $J_{Pt-H} = 58.4$  Hz, 4H, aromatic H ortho to Pt-C).

- (49) Otwinowski, Z.; Minor, W. In *Methods in Enzymology*; Carter, C. W., Jr., Sweet, R. M., Eds.; Academic Press: New York, 1997; Vol. 276, pp 307–326.
- (50) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.
- (51) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.
- (52) Watkin, D. J.; Prout, C. K.; Carruthers, J. R.; Betteridge, P. W.; Cooper, R. I. CRYSTALS, Issue 11; Chemical Crystallography Laboratory: Oxford, England, 2001.
- (53) Rae, A. D. RAELS 2000: A Comprehensive Constrained Least-Square Refinement Program; Australian National University: Canberra, ACT, Australia, 0200.
- (54) teXsan: Single-Crystal Structure Analysis Software, Version 1.8; Molecular Structure Corp.: The Woodlands, 1997.
- (55) Mackay, S.; Gilmore, C. J.; Edwards, C.; Stewart, N.; Shankland, K. maXus Computer Program for the Solution and Refinement of Crystal Structures; Nonius, The Netherlands, MacScience, Japan, and the University of Glasgow, 2000.
- (56) International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV.

Ratio 1:2 typically ca. 2:1. FAB-MS (m/z): 1666 [M]<sup>+</sup>. Anal. Calcd for C<sub>76</sub>H<sub>64</sub>As<sub>4</sub>Pt<sub>2</sub>: C, 54.75; H, 3.87. Found: C, 54.64; H, 3.97.

[Pt<sub>2</sub>Cl<sub>2</sub>( $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>4</sub>] (3). To a solution containing a mixture of **1** and **2** (186 mg, 0.11 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL), iodobenzene dichloride (31 mg, 0.11 mmol) dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added, causing an immediate color change from yellow to orange. After the mixture was stirred for 10 min, the solution was evaporated to dryness, and the residue was recrystallized from CH<sub>2</sub>Cl<sub>2</sub>/hexanes to give **3** as an orange solid (187 mg, 96%). <sup>1</sup>H NMR:  $\delta$  2.19 (s, 12H, Me), 6.3–7.2 (m, 48H, aromatics), 8.32 (s,  $J_{Pt-H} = 35.0$  Hz, 4H, aromatic H ortho to Pt–C). FAB-MS (m/z): 1702 [M – Cl]<sup>+</sup>. IR: 203 cm<sup>-1</sup> (Pt–Cl). Anal. Calcd for C<sub>76</sub>H<sub>64</sub>As<sub>4</sub>Cl<sub>2</sub>Pt<sub>2</sub>: C, 52.52; H, 3.71; Cl, 4.08. Found: C, 52.04; H, 3.66; Cl, 4.15.

 $[Pt_2X_2(\mu-\kappa As,\kappa C-C_6H_3-5-Me-2-AsPh_2)_4]$  (X = Br, 4; I, 5). To a solution of 2 (100 mg, 0.060 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL), 1 equiv of halogen in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was added. The yellow solution immediately changed color and was stirred for 10 min. After removal of the solvent, the residue was recrystallized from CH<sub>2</sub>Cl<sub>2</sub>/ hexanes to give the products in ca. 90% yield. Alternatively, 4 and 5 may be obtained by metathesis of a CH<sub>2</sub>Cl<sub>2</sub> solution of 3 with an excess of LiX in MeOH.

X = Br, 4. <sup>1</sup>H NMR:  $\delta$  2.16 (s, 12H, Me), 6.4–7.2 (m, 48H, aromatics), 8.49 (s,  $J_{Pt-H}$  = 37.9 Hz, 4H, aromatic H ortho to Pt–C). FAB-MS (*m*/*z*): 1747 [M – Br]<sup>+</sup>. Anal. Calcd for C<sub>76</sub>H<sub>64</sub>As<sub>4</sub>-Br<sub>2</sub>Pt<sub>2</sub>: C, 49.96; H, 3.53; Br, 8.75. Found: C, 49.78; H, 3.43; Br, 8.95.

X = I, 5. <sup>1</sup>H NMR:  $\delta$  2.12 (s, 12H, Me), 6.3–7.2 (m, 48H, aromatics), 8.90 (s,  $J_{Pt-H} = 42.8$  Hz, 4H, aromatic H ortho to Pt– C). FAB-MS (*m*/*z*): 1792 [M – I]<sup>+</sup>. Anal. Calcd for C<sub>76</sub>H<sub>64</sub>As<sub>4</sub>I<sub>2</sub>-Pt<sub>2</sub>: C, 47.52; H, 3.36; I, 13.21. Found: C, 47.90; H, 3.69; I, 13.21.

[Pt<sub>2</sub>X<sub>2</sub>( $\mu$ - $\kappa$ As, $\kappa$ C-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>4</sub>] (X = CN, 6; F, 9). To a solution of 3 (100 mg, 0.058 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL), an excess of AgX (ca. 0.2–0.3 mmol) was added. The mixture was stirred in the dark for 3 days. The pale yellow, turbid solution was filtered through Celite, hexanes added, and the solution evaporated. Complexes 6 and 9 precipitated as a pale yellow solids in yields of 90 and 72%, respectively.

X = CN, **6**. <sup>1</sup>H NMR: δ 2.23 (s, 12H, Me), 6.2–7.2 (m, 48H, aromatics), 8.60 (s,  $J_{Pt-H} = 46.9$  Hz, 4H, aromatic H ortho to Pt– C). EI-MS (*m*/*z*): 1692 [M – CN]<sup>+</sup>. IR: 2123 cm<sup>-1</sup> (CN). Anal Calcd. for C<sub>78</sub>H<sub>64</sub>As<sub>4</sub>N<sub>2</sub>Pt<sub>2</sub>: C, 54.49; H, 3.75; N, 1.63. Found: C, 52.79; H, 3.73; N, 1.99.

X = F, **9**. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  2.18 (s, 12H, Me), 6.5–7.2 (m, 48H, aromatics), 8.04 (s with <sup>195</sup>Pt satellites,  $J_{Pt-H} = 29.4$  Hz, 4H, aromatic H ortho to Pt–C bond). <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  –228.6 (s with <sup>195</sup>Pt satellites, <sup>1</sup>*J*<sub>Pt-F</sub> = 492 Hz, <sup>2</sup>*J*<sub>Pt-F</sub> = 192 Hz). EI-MS (*m*/*z*): 1703 [M]<sup>+</sup>. Anal. Found: C, 53.51; H, 3.82; F, 2.24. C<sub>76</sub>H<sub>64</sub>-As<sub>4</sub>F<sub>2</sub>Pt<sub>2</sub> requires: C, 53.53; H, 3.78; F, 2.23.

[Pt<sub>2</sub>X<sub>2</sub>( $\mu$ -κ*As*,κ*C*-C<sub>6</sub>H<sub>3</sub>-5-Me-2-AsPh<sub>2</sub>)<sub>4</sub>] (X = NCS, 7; NCO, 8). To a solution of 3 (100 mg, 0.058 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL), an excess of NaX (ca. 0.3–0.4 mmol) in MeOH (20 mL) was added. The orange solution turned yellow and was stirred for 10 min. The solvent was removed in vacuo, CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added, and the turbid solution was filtered through Celite. Addition of hexanes and evaporation of the solution caused **7** and **8** to precipitate as yellow solids in yields of ca. 90%.

X = NCS, **7**. <sup>1</sup>H NMR:  $\delta$  2.22 (s, 12H, Me), 6.3–7.1 (m, 48H, aromatics), 7.79 (s,  $J_{Pt-H}$  = 37.7 Hz, 4H, aromatic H ortho to Pt– C). EI-MS (*m*/*z*): 1723 [M – NCS]<sup>+</sup>. IR: 2086 cm<sup>-1</sup> (br, NCS). Anal. Calcd for C<sub>78</sub>H<sub>64</sub>As<sub>4</sub>N<sub>2</sub>S<sub>2</sub>Pt<sub>2</sub>: C, 52.53; H, 3.62; N, 1.57. Found: C, 51.21; H, 3.73; N, 1.60.

#### Dinuclear Complexes of Platinum Arsine Ligands

X = NCO, **8**. <sup>1</sup>H NMR: δ 2.17 (s, 12H, Me), 6.3–7.2 (m, 48H, aromatics), 7.90 (s,  $J_{Pt-H} = 37.4$  Hz, 4H, aromatic H ortho to Pt– C). EI-MS (*m*/*z*): 1707 [M – NCO]<sup>+</sup>. IR: 2186 cm<sup>-1</sup> (br, NCO). Anal. Calcd for C<sub>78</sub>H<sub>64</sub>As<sub>4</sub>N<sub>2</sub>O<sub>2</sub>Pt<sub>2</sub>: C, 53.50; H, 3.68; N, 1.60. Found: C, 52.67; H, 3.58; N, 1.77.

[**Pt**<sub>2</sub>(*μ*-*κAs*,*κC*-**C**<sub>6</sub>**H**<sub>4</sub>-2-AsMe<sub>2</sub>)<sub>4</sub>] (**10**). To a solution of (2bromophenyl)dimethylarsine (0.816 g, 3.12 mmol) in diethyl ether (20 mL), Bu<sup>*n*</sup>Li (1.6 M, 1.95 mL, 3.12 mmol) was slowly added. The clear solution became turbid and then clear again. It was stirred for 30 min and cooled to -30 °C. It was treated with [PtCl<sub>2</sub>(SEt<sub>2</sub>)<sub>2</sub>] (0.620 g, 1.38 mmol), and the mixture was stirred for 30 min at this temperature, and then at room temperature overnight. The solvent was removed in vacuo, and CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added. Filtration of the solution through Celite, addition of hexanes, and evaporation caused precipitation of **10** as a yellow–orange solid (0.743 g, 96%). <sup>1</sup>H NMR:  $\delta$  0.5–2.2 together with multiplets at  $\delta$ 0.88 and 1.25 due to hexanes (m, 9H, Me and hexanes), 6.2–8.2 (m, 4H, aromatics. Anal. Found: C, 35.72; H, 3.94; mol wt 1120. C<sub>32</sub>H<sub>40</sub>As<sub>4</sub>Pt<sub>2</sub>.0.33C<sub>6</sub>H<sub>14</sub> requires: C, 35.87; H, 4.17; mol wt 1115 (CH<sub>2</sub>Cl<sub>2</sub>). [**Pt<sub>2</sub>Cl<sub>2</sub>**( $\mu$ - $\kappa$ *As*, $\kappa$ *C*-**C**<sub>6</sub>**H<sub>4</sub>-2-AsMe**<sub>2</sub>)<sub>4</sub>] (11). To a solution of 10 (0.103 g, 0.092 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL), a solution of iodobenzene dichloride (26 mg, 0.095 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) was added. The orange solution immediately reddened and was stirred for 15 min. The mixture was evaporated to dryness, the orange residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, and hexanes were added. On evaporation of the solution, **11** precipitated as an orange solid (0.803 g, 73%). <sup>1</sup>H NMR:  $\delta$  0.5–2.2 together with multiplets at  $\delta$  0.88 and 1.25 due to hexanes (m, 9H, Me and hexanes), 6.2–8.0 (m, 4H, aromatics). Anal. Found: C, 32.69; H, 3.89; Cl, 6.08; mol. wt. 1218. C<sub>32</sub>H<sub>40</sub>As<sub>4</sub>-Cl<sub>2</sub>Pt<sub>2</sub> requires: C, 32.42; H, 3.40; Cl, 5.98; mol wt 1185 (CH<sub>2</sub>Cl<sub>2</sub>).

**Supporting Information Available:** X-ray crystallographic data in CIF format for complexes **1**–**9**, appendix S1 containing details of nonroutine aspects of the X-ray crystallographic determinations of **1**–**9**, Figures S1 and S2 providing voltammograms for reduction of **3** at different electrode surfaces and scan rates, and Tables S1– S3 containing selected bond lengths. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0498790