

Aluminum Hydride Cations Stabilized by Weakly Coordinating Carbaalanates

Andreas Stasch, Herbert W. Roesky,* Mathias Noltemeyer, and Hans-Georg Schmidt

Institut für Anorganische Chemie der Georg-August-Universität Göttingen, Tammannstr. 4, *37077 Go¨ttingen, Germany*

Received October 8, 2004

The reactions of t-BuC=CLi with a mixture of AH_3 -NMe₃ and CIAIH₂-NMe₃ in boiling toluene with the addition of [t-BuCH₂(Bzl)NMe₂]Cl, or a bulky β -diketimine instead, and [n-Bu₄N]Cl led to the carbaalanates [H₂Al(NMe₃)₂]₂- $[(AH)_8(CCH_2t-Bu)_6]$, **3**, and $[n-Bu_4N]_2[(AH)_8(CCH_2t-Bu)_6]$, **4**, respectively. The reaction of Me₃N·Al(C=Ct-Bu)₃ **5** and AlH₃·NMe₃ in boiling toluene yielded [H(n-Bu)Al(NMe₃)₂][(AlH)₇(AlNMe₃)(CCH₂t-Bu)₆], **6**, in trace amounts. The single-crystal X-ray structures of **3** and **6** are reported. The compounds **3**, **4**, and **6** consist of well-separated ion pairs introducing carbaalanates as weakly coordinating anions and stabilizing aluminum hydride cations.

Introduction

Weakly coordinating anions $(WCAs)^1$ are an attractive research field for the stabilization of reactive cationic species mainly in catalysis. Systems such as BAT_4^- , $Al(OR)_4^-$, and carbaboranates² were extensively used to study the chemistry of free cations. The *closo*-carbaboranates $CB_{11}H_6X_6$ (X = Cl, Br, etc.) show high inertness and could be isolated with $H⁺$ as a super-Brönsted acid and also with extremely reactive cations.3,4 Moreover, these anions form easily crystallizable salts and allow structural determinations. The stability arises from a *σ*-aromaticity in the cluster core.2 Computed larger *closo*-carbaboranes/carbaboranates5 are isoelectronic to the $[(AIH)_{6}(AlNMe_{3})_{2}(CCH_{2}R)_{6}]$ system $(1, R = Ph, prepared)$ from PhC \equiv CH and excess AlH₃ \cdot NMe₃ in boiling toluene)⁶ and $[(AlH)_{8}(CCH_{2}t-Bu)_{6}]^{2-}$ in $[\{t-BuCH_{2}C(AIH_{2} \cdot NMe_{3})_{3-}$ Li ₂{(AlH)₈(CCH₂*t*-Bu)₆}, **2**.⁷ In **2**, the Li atoms are coordinated to the anion through hydrides giving a contact ion pair. The carbaalane cluster compounds are not stable

- (3) Reed, C. A.; Kim, K.-C.; Bolskar, R. D.; Mueller, L. J. *Science* **2000**,
- *²⁸⁹*, 101-104. (4) Kim, K.-C.; Reed, C. A.; Elliot, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. *Science* **²⁰⁰²**, *²⁹⁷*, 825-827.
- (5) Wang, Z.-X; Schleyer, P. v. R. *J. Am. Chem. Soc.* **²⁰⁰³**, *¹²⁵*, 10484- 10485.
- (6) Stasch, A.; Ferbinteanu, M.; Prust, J.; Zheng, W.; Cimpoesu, F.; Roesky, H. W.; Magull, J.; Schmidt, H.-G.; Noltemeyer, M. *J. Am. Chem. Soc.* **²⁰⁰²**, *¹²⁴*, 5441-5448.
- (7) Stasch, A.; Roesky, H. W.; Schleyer, P. v. R.; Magull, J. *Angew. Chem.* **²⁰⁰³**, *¹¹⁵*, 5665-5667; *Angew. Chem., Int. Ed.* **²⁰⁰³**, *⁴²*, 5507-5509.

toward protic reagents.6,8 Altogether, we set our interest in synthesizing carbaalanates with free anions with a potential use as WCAs.

Results and Discussion

Compound 2 was prepared from a mixture of t -BuC \equiv CLi, $CIAIH_2$ ⁻NMe₃, and AlH_3 ⁻NMe₃ in a ratio of approximately 1:1:2 in boiling toluene. Salt metathesis and hydroalumination reactions led to the formation of the cluster during the reaction. To fully eliminate the $Li⁺$ from the reaction leading to **2**, we used additives such as quaternary ammonium chlorides and a bulky β -diketimine. The ammonium chloride and *t*-BuC=CLi were used in a ratio of 2:6. The reaction of 2 equiv of $[t-BuCH_2(Bz1)NMe_2]$ Cl with 6 equiv of $t-BuC\equiv$ CLi in a mixture of AlH_3 ·NMe₃ and ClAlH₂·NMe₃ in boiling toluene leads to crystals of $[H_2Al(NMe_3)_2]_2[(AlH)_8(CCH_2$ *t-*Bu)6], **3**, in 50% yield. Applying the same synthetic procedure for **3** using $[n-Bu_4N]$ Cl instead of $[t-BuCH_2(Bz])$ - $NMe₂|Cl$ resulted in crystals of $[n-Bu₄N]₂[(AlH)₈(CCH₂t Bu$ ₆], **4**, in 47% yield (Scheme 1). Use of Me₃SiCl in the synthesis of **4** facilitates partial and selective chlorination of alane which takes place with the elimination of LiCl, which is opposite to LiH elimination. Compound **3** could be characterized by its X-ray single-crystal structure and is shown in Figure 1. An X-ray single-crystal structural analysis of **4** is of poor quality and not given, but its constitution is unambiguous.^{9a} Both compounds consist of well-separated

^{*} To whom correspondence should be addressed. E-mail: hroesky@ gwdg.de.

⁽¹⁾ Krossing, I.; Raabe, I. *Angew. Chem.* **²⁰⁰⁴**, *¹¹⁶*, 2116-2142, *Angew. Chem., Int. Ed.* **²⁰⁰⁴**, *⁴³*, 2066-2090.

⁽²⁾ Reed, C. A. *Acc. Chem. Res.* **¹⁹⁹⁸**, *³¹*, 133-139.

^{(8) (}a) Uhl, W.; Breher, F. *Eur. J. Inorg.Chem.* **²⁰⁰⁰**, 1-11. (b) Uhl, W.; Breher, F. *Angew. Chem.* **¹⁹⁹⁹**, *¹¹¹*, 1578-1580; *Angew. Chem., Int. Ed.* **¹⁹⁹⁹**, *³⁸*, 1477-1479.

Scheme 1

ion pairs with a free $[(AII)_8(CCH_2t-Bu)_6]^2$ ⁻ anion. The Al-C
and Al-Al distances in the carbaalane cluster of 3 (as well and Al-Al distances in the carbaalane cluster of **³** (as well as those in **4**) are in the region of previously characterized compounds. Compound 3 contains two free $[H_2A1(NMe_3)_2]^+$ cations per formula unit. It has a distorted tetrahedral arrangement with a N-Al-N angle of $112.4(3)^\circ$ and Al-N bond lengths of 1.977(6) and 1.981(6) Å, respectively. H atoms in **3** on Al (also at the cation) were freely refined with distance restraints of the Al–H bond length of 1.53 Å. This value is in the range of previously observed Al-^H distances in neutral and anionic complexes of aluminum hydride $(1.5-1.8 \text{ Å})^{.9b-d}$ The H-Al-H angle in **3** is 127-(3)°, which is comparable to the H-Al-H angle¹⁰ of 132° in amine stabilized $[H_2A1(pmdien)]^+ [A1H_4]^-$, however the latter is arranged in another coordination sphere. The cation is neither stabilized by a bulky ligand nor stabilized by a high coordination number. Two complexes of the type $[LA]$ [H_2][A] H_4] with chelating tri- and tetradentate amine ligands were structurally characterized with the Al atoms of the cations in a penta- and hexacoordinate coordination sphere.^{10,11} Very recently, a bulky phosphinimine-amide ligand was used to stabilize aluminum hydride cations with borate anions which were not structurally characterized.¹² An aluminum hydride cation coordinated by THF molecules was structurally characterized in $[H_2Al(THF)_4][(Cp_3Yb)_2Na]$.¹³ For comparison, the $[H_2Al(NMe_3)_2]$ ^{*}

Figure 1. ORTEP drawing of **3** (50% thermal ellipsoids). Only one [H2Al(NMe3)2] cation and hydrogen atoms on Al atoms are shown. Selected bond lengths (\AA) and angles (deg): Al(5)-N(51) 1.981(6), Al(5)-N(52) 1.977(6); $N(52)-Al(5)-N(51)$ 112.4(3).

radical was detected by electron paramagnetic resonance (EPR) spectroscopy and was analyzed to have a quasitrigonal bipyramidal structure.14 Compounds **3** and **4** are nearly insoluble in organic solvents, and no significant NMR spectra could be recorded. Furthermore, electron impact (EI) mass experiments showed small C-H fragments for compounds **3** and **4** and $[Bu_4N]^+$ ion for **4**. The compounds are too sensitive for fast atom bombardment (FAB) experiments. The IR spectra of **3** and **4** show strong absorptions for the Al-H bonds of the carbaalanate anion (1751 cm-¹ for **³** and 1753 cm^{-1} for **4**) as well as sharp absorptions in **3** (1874) and 1881 cm⁻¹) for the $[H_2Al(NMe_3)_2]^+$ cation. When treated with THF, compounds 2 and 3 lose their NMe₃ ligands and a small amount of gas evolution was observed. Moreover, in the elemental analysis of the resulting compound, no nitrogen was found. These results could not be supported by NMR because of the very poor solubility of the resulting compound. We used 2 equiv of the bulky β -diketimine ligand Dipp nacnacH¹⁵ (2-((2,6-diisopropylphenyl)amino)-4-((2,6-diisopropylphenyl)imino)pent-2-ene) as an additive (instead of the quarternary ammonium chlorides), which is known to stabilize aluminum cations¹⁶ and performed a comparable reaction (Scheme 2). Compound **3** was obtained in 58% yield, which was characterized by X-ray single-crystal structure determination as well as by IR spectroscopy. The compound Dipp nacnac AlH_2 ¹⁷ was detected in the remaining solution. We assume that-comparable to chemistry in water solution—several cationic species exist in the boiling reaction mixture and the ion pair with low solubility (or highest lattice

^{(9) (}a) Selected crystal data for **4**: $C_{68}H_{146}Al_8N_2$, $a = 20.325(4)$, $b =$ energy) crystallizes. 19.064(4), $c = 20.841(4)$ Å, orthorhombic. (b) Atwood, J. L.; Bennett, F. R.; Elms, F. M.; Jones, C.; Raston, C. L.; Robinson, K. D. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 8183-8185. (c) Bennett, F. R.; Elms, F. M.; Gardiner, M. G.; Koutsantonis, G. A.; Raston, C. L.; Roberts, N. K. *Organometallics* **¹⁹⁹²**, *¹¹*, 1457-1459. (d) Atwood, J. L.; Bennett, F. R.; Jones, C.; Koutsantonis, G. A.; Raston, C. L.; Robinson, K. D. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹²**, 541-543.

⁽¹⁰⁾ Atwood, J. L.; Robinson, K. D.; Jones, C.; Raston, C. L. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹¹**, 1697-1699.

⁽¹¹⁾ On cationic group 13 complexes see: Atwood, D. A. *Coord. Chem. Re*V*.* **¹⁹⁹⁸**, *¹⁷⁶*, 407-430. (12) Masuda, J. D.; Walsh, D. M.; Wei, P.; Stephan, D. W. *Organometallics*

²⁰⁰⁴, *²³*, 1819-1824.

⁽¹³⁾ Knjazhansky, S. Y.; Nomerotsky, I. Y.; Bulychev, B. M.; Belsky, V. K.; Soloveichik, G. L. *Organometallics* **¹⁹⁹⁴**, *¹³*, 2075-2079.

⁽¹⁴⁾ Hudson, R. L.; Roberts, B. P. *J. Chem. Soc., Chem. Commun.* **1986**,

¹¹⁹⁴-1195. (15) Stender, M.; Wright, R. J.; Eichler, B. E.; Prust, J.; Olmstead, M. M.; Roesky, H. W.; Power, P. P. *J. Chem. Soc., Dalton Trans.* **²⁰⁰¹**, 3465- 3469.

⁽¹⁶⁾ Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. *J. Am. Chem. Soc.* **1999**, *¹²¹*, 8673-8674. (17) Cui, C.; Roesky, H. W.; Hao, H.; Schmidt, H.-G.; Noltemeyer, M.

Angew. Chem. **²⁰⁰⁰**, *¹¹³*, 1885-1887; *Angew. Chem., Int. Ed.* **²⁰⁰⁰**, *³⁹*, 1815-1817.

When we treated $Me₃N·Al(C\equiv Ct-Bu)₃$, **5**, prepared from $Me₃N·AlCl₃$ and LiC=Ct-Bu in toluene, with 6 equiv of AH_3 ⁻NMe₃ in boiling toluene for 45 min, we obtained a crop of a carbaalane product at 4 °C which we could not properly characterize. However, storing the supernatant solution at -25 °C for 6 months resulted in the formation of the byproduct $[H(n-Bu)Al(NMe₃)₂][(AlH)₇(AlNMe₃)$ - $(CCH₂t-Bu)₆$, **6**, in trace amounts. **6** was characterized by X-ray single-crystal structural analysis (Figure 2) and NMR spectroscopy. Compound **6** contains the cation [H(*n*-Bu)Al- $(NMe₃)₂$ ⁺, which is the mono-*n*-butyl derivative of the cation of **3**. The *n*-butyl group obviously arises from the use of *n*-butyllithium in the preparation of $LiC \equiv Ct$ -Bu in hexane, although this compound was isolated from the solution by filtration. The NMR spectra of compound **5** do not show noticeable resonances for the *n-*butyl group. The monoanionic $[(AlH)₇(AlNMe₃)(CCH₂t-Bu)₆]⁻$ is an intermediate between the neutral carbaalanes (e.g., **1**) and the dianionic carbaalanates. It also provides a better solubility when compared to $1-4$. The ¹H NMR spectrum of 6 shows six
singlets each for the $C(CH_2)$ and the CCH_2 groups with singlets each for the $CCH₃$ ₃ and the $CCH₂$ groups with different intensities but with a correct overall integral. The 13C NMR spectrum always exhibits six resonances each for the different carbon atoms of comparable organic groups of the cluster anion. Only one singlet in the ${}^{1}H$ and ${}^{13}C$ NMR spectra is observed for the $NMe₃$ groups on the different Al atoms with the expected integration.

When we used LiC=CPh instead of LiC=Ct-Bu in a comparable reaction like the preparation for **2**, the neutral compound **1** was obtained in 64% yield (Scheme 3). Moreover, we found compound **1** to be the product of the reaction of $Me_3N \cdot Al(C=CPh)_3$, 7, with $AlH_3 \cdot NMe_3$ in boiling toluene.¹⁸ This indicates that not only the use of the lithium starting material and the additives are responsible for the carbaalanate formation but also the nature of the organic group of the alkynyl moiety is important. Moreover, this is in accordance with the reaction of ethynyl adamantane AdC \equiv CH with 3 equiv of AlH₃ \cdot NMe₃ in boiling toluene. No straightforward synthesis of a neutral carbaalane is observed, although this compound does not evaporate like

Figure 2. ORTEP drawing of 6 ^{-2C₇H₈ (50% thermal ellipsoids). Solvents} molecules are omitted. Only hydrogen atoms on Al atoms are shown. Selected bond lengths (\hat{A}) and angles (deg): Al(9)-N(2) 199.7(3), Al(9)-N(3) 199.6(3), Al(9)-C(91) 192.7(6); N(3)-Al(9)-N(2) 110.03(12), $C(91) - A(9) - N(2)$ 110.1(3), $C(91) - A(9) - N(3)$ 113.0(3).

Scheme 3

the chemically related t -BuC \equiv CH (bp 37-38 °C) from the reaction mixture when refluxed. Furthermore, the reaction mixture of $AdC=CH$ and AlH_3 ⁻NMe₃ and all the presented carbaalanates turn violet upon treatment with air. We have not made a comparable observation for our neutral derivatives. Possibly, an oxidation of the cluster anions occurs although we could not detect a resonance in the EPR spectrum of oxidized **2**, ⁷ and a diamagnetic oxidation product is probable.

In summary, we have introduced the class of weakly coordinating carbaalanates with the free anions $[(AII)_{8}$ - $(CCH₂t-Bu)₆$ ²⁻ and $[(AlH)₇(AlNMe₃)(CCH₂t-Bu)₆$ ⁻ which are able to stabilize aluminum hydride cations such as $[H_2-]$ $A1(NMe₃)₂$ ⁺ in **3**. Although they are not stable toward protic reagents, their chemical inertness in general makes them an attractive target for future applications.

Experimental Section

General. All manipulations were performed with dried and degassed reagents in a dry and oxygen free atmosphere $(N_2$ or Ar) using Schlenk line and glovebox techniques. IR spectra were recorded in a Nujol mull between KBr plates. Melting points are not corrected.

Synthesis of $[H_2Al(NMe_3)_2]_2[(AlH)_8(CCH_2t-Bu)_6]$, 3. Me₃SiCl (1.47 g, 1.72 mL, 13.6 mmol, 5.7 equiv) was added dropwise to a

⁽¹⁸⁾ Kumar, S. S.; Rong, J.; Singh, S.; Roesky, H. W.; Vidovic, D.; Magull, J.; Neculai, D.; Chandrasekhar, V.; Baldus, M. *Organometallics* **2004**, *²³*, 3496-3500.

Table 1. Crystallographic Data

mixture of AlH₃ \cdot NMe₃ (50 mL of a 0.90 M solution in toluene, 45.0 mmol, 18.9 equiv), [t-BuCH₂(Bzl)NMe₂]Cl (1.15 g, 4.76 mmol, 2.0 equiv), and toluene (20 mL) at 0 °C and stirred at room temperature for 30 min. This mixture was added at 0 °C to solid t -BuC \equiv CLi (1.26 g, 14.3 mmol, 6.0 equiv). The suspension was stirred for 30 min at room temperature, refluxed for 45 min, and filtered hot. The solution was stored overnight at room temperature and for several weeks at 4 °C yielding two crops of colorless crystals of **3**. Yield: 1.20 g (1.18 mmol, 50%). In a similar reaction, 2.0 equiv of DippnacnacH (1.99 g, 4.76 mmol) was used instead of [t-BuCH₂(Bzl)NMe₂]Cl and allowed to react with the AlH₃·NMe₃ prior to adding further reagents. Yield: 1.40 g (1.38 mmol, 58%). Mp: 170 °C (dec). IR: \tilde{v} 1882 and 1874 (Al-H from [H₂Al-(NMe₃)₂]⁺), 1751 (Al-H from [(AlH)₈(CCH₂t-Bu)₆]²⁻), 1262, 1033, 1002, 798, 755, 557, 516 cm⁻¹. Anal. Calcd for C₄₈H₁₁₄Al₁₀N₄: C, 56.67; H, 11.30; N, 5.51. Found: C, 56.32; H, 11.19; N, 5.31.

Synthesis of $[n-Bu_4N]_2[(AIH)_8(CCH_2t-Bu)_6]$ **, 4.** Me₃SiCl (1.67) g, 1.94 mL, 15.4 mmol, 5.7 eq) was added dropwise to a mixture of AlH₃NMe₃ (60 mL of a 0.85 M solution in toluene, 51.0 mmol, 18.9 equiv) and [*n-*Bu4N]Cl (1.50 g, 5.40 mmol, 2.0 equiv) at 0 °C and stirred at room temperature for 30 min. This mixture was added at 0 °C to solid *t*-BuC=CLi (1.43 g, 16.2 mmol, 6.0 equiv). The suspension was stirred for 1 h at room temperature, refluxed for 45 min, and filtered hot. The solution was stored at room temperature affording colorless crystals of **4**. Yield: 1.51 g (1.27 mmol, 47%). Mp: 180 °C (dec). EI-MS: *m*/*z* (%): 242 (*n-*Bu4N+, 100). IR: \tilde{v} 1753 (Al-H from [(AlH)₈(CCH₂t-Bu)₆]²⁻), 1330, 1262, 1196, 1034, 1004, 925, 891, 754, 700, 552 cm-1. Anal. Calcd for C68H146Al8N2: C, 67.62; H, 12.18; N, 2.32. Found: C, 68.27; H, 12.05; N, 2.47.

Synthesis of Me₃N'Al($C \equiv Ct$ **·Bu)₃, 5.** Toluene (25 mL) was added at 0 °C to a mixture of AlCl₃^{-N}Me₃¹⁹ (0.63 g, 3.28 mmol, 1.0 equiv) and $\frac{1}{2}$ if $C=Ct$ -Bu (0.92 g, 10.4 mmol, 3.2 equiv) and 1.0 equiv) and LiC \equiv Ct-Bu (0.92 g, 10.4 mmol, 3.2 equiv) and stirred 4 h at room temperature. The mixture was filtered, all the volatiles were removed, and the residue was recrystallized from hexane/toluene (2:1) affording fine colorless needles of **5**. Yield: 0.83 g (2.53 mmol, 77%). Mp: 253 °C (sublimation starts at 200 ^oC). ¹H NMR (300 MHz, C₆D₆): δ 1.17 (s, 27 H, C(CH₃)₃), 2.26 (s, 9 H, N(C*H*3)3). 13C NMR (126 MHz, C6D6): *δ* 28.3 (C(*C*H3)3), 31.6 ($C(CH_3)$ ₃), 46.7 (N(CH_3)₃), 89.5 (very broad, AlC \equiv C), 117.0 (C=CC(CH₃)₃). EI-MS: m/z (%): 329 (M⁺, 18), 314 (M⁺ - Me, 7), 272 (M⁺ − *t*-Bu, 78). IR: \tilde{v} 2158 and 2130 (C≡C), 1245, 798, 653 cm⁻¹. Anal. Calcd for C₂₁H₃₆AlN: C, 76.55; H, 11.01; N, 4.25. Found: C, 76.00; H, 11.25; N, 4.33.

Synthesis of $[H(n-Bu)Al(NMe_3)_2][(AlH)7(AlNMe_3)(CCH_2t Bu)$ ₆], 6. AlH₃·NMe₃ (8.55 mL of a 0.85 M solution in toluene, 7.27 mmol, 6.3 equiv) was added to a solution of $Me₃N·Al(C\equiv$ $CtBu$ ₃ **5** (0.38 g, 1.15 mmol, 1.0 eq) in toluene (10 mL). The mixture was refluxed for 50 min and concentrated to ca. 10 mL. A crystalline product precipitated at room temperature and 4 °C, but the composition could not be determined. The remaining solution was concentrated to ca. 3 mL and stored at -25 °C for 6 months, yielding colorless blocks of 6 ⁻²C₇H₈. Yield: ca. 10 mg (9 μ mol, 1.5%). ¹H NMR (500 MHz, C₆D₆): δ 0.75-1.20 (m, 7 H, *n*-Bu), 1.37, 1.39, 1.42, 1.44, 1.47, 1.53 (6 s, 54 H, C(C*H*3)3), 2.00 (s, 18 H, N(C*H*3)3), 2.24, 2.28, 2.29, 2.30, 2.32, 2.40 (6 s, CC*H*2), ca. 5.3 (s, very broad, Al-H). ¹³C NMR (126 MHz, C_6D_6): δ 14.4, 15.5, 23.2, 29.5, 29.6 (*n-*Bu group and/or cluster C), 30.3, 30.4, 30.8, 30.9, 31.0, 31.1 (C(*C*H3)3), 35.4, 35.5, 35.5, 35.6, 35.8, 35.9 (*C*(CH3)3), 47.6 (N(*C*H3)3), 49.9, 50.0, 50.1, 50.8, 50.9, 51.3 $(CCH₂)$.

X-ray Crystallography. Crystals were mounted in oil and measured on a Stoe IPDS II diffractometer at 133(2) K using Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods and refined by full-matrix least squares on $F²$ using SHELX-97 programs for crystal structure refinement (Sheldrick, Universität Göttingen, 1997).

Acknowledgment. We are thankful for financial support of the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Göttinger Akademie der Wissenschaften.

Supporting Information Available: Structural data for **3** and 6 ⁻²C₇H₈ is available as a CIF. This material is available free of charge via the Internet at http://pubs.acs.org.

(19) Beattie, I. R.; Ozin, G. A. *J. Chem. Soc., Sect. A* **¹⁹⁶⁸**, 2373-2377. IC048594K