

Homodinuclear Iron Thiolate Nitrosyl Compounds $[(ON)Fe(S, S-C_6H_4)_2Fe(NO)_2]^-$ and $[(ON)Fe(SO_2, S-C_6H_4)(S, S-C_6H_4)Fe(NO)_2]^$ **with** {**Fe(NO)**}**7**−{**Fe(NO)2**}**⁹ Electronic Coupling: New Members of a Class of Dinitrosyl Iron Complexes**

Hao-Wen Chen,†,‡ Chin-Wei Lin,† Chiao-Chun Chen,‡ Li-Bo Yang,† Ming-Hsi Chiang,† and Wen-Feng Liaw*,†

Departments of Chemistry, National Tsing Hua University, Hsinchu 30043, and *National Changhua Uni*V*ersity of Education, Changhua, Taiwan*

Received July 8, 2004

Reaction of Fe(CO)₂(NO)₂ and [(ON)Fe(S,S-C₆H₃R)₂] = (R = H (1), CH₃ (1-Me))/[(ON)Fe(SO₂,S-C₆H₄)(S,S-C₆H₄)] =
(4) in THE afforded the diiren thiolate/sulfinate nitrosyl complexes [(ON)Ee(S,C,H,R),Ee(NO (4) in THF afforded the diiron thiolate/sulfinate nitrosyl complexes [(ON)Fe(S,S-C₆H₃R)₂Fe(NO)₂] = (R = H (**2**), CH₃
(2.Mo)) and [(ON)Fe(S SO, C H)(S S C H)Fe(NO)] = (**2**), respectively. The average N, O bend (2-**Me**)) and [(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)Fe(NO)₂][–] (3), respectively. The average N–O bond lengths ([Fe-(NO)2] unit) of 1.167(3) and 1.162(4) Å in complexes **2** and **3** are consistent with the average N−O bond length of 1.165 Å observed in the other structurally characterized dinitrosyl iron complexes with an ${Fe(NO)_2}^9$ core. The lower *ν*(15NO) value (1682 cm⁻¹ (KBr)) of the [(¹⁵NO)FeS₄] fragment of [(¹⁵NO)Fe(S,S-C₆H₃CH₃)₂Fe(NO)₂]⁻ (**2**- $Me^{-15}N$, compared to that of [(¹⁵NO)Fe(S,S-C₆H₃CH₃)₂]⁻ (**1-Me-¹⁵N**) (1727 cm⁻¹ (KBr)), implicates the electron transfer from ${Fe(NO)_2}^{10}$ Fe(CO)₂(NO)₂ to complex **1-Me/1** may occur in the process of formation of complex **2-Me**/2. Then, the electronic structures of the $[(NO)FeS₄]$ and $[S₂Fe(NO)₂]$ cores of complexes **2, 2-Me**, and **3** were best assigned according to the Feltham–Enemark notation as the {Fe(NO)}⁷–{Fe(NO)₂}⁹ coupling (antiferromagnetic interaction with a ^J value of −182 cm-¹ for complex **2**) to account for the absence of paramagnetism (SQUID) and the EPR signal. On the basis of Fe–N(O) and N–O bond distances, the dinitrosyliron {L₂Fe(NO)₂} derivatives having an Fe−N(O) distance of ∼1.670 Å and a N−O distance of ∼1.165 Å are best assigned as {Fe(NO)2}⁹ electronic structures, whereas the Fe−N(O) distance of ∼1.650 Å and N−O distance of ∼1.190 Å probably imply an ${Fe(NO)₂}^{10}$ electronic structure.

Introduction

Iron sulfur nitrosyl complexes, in particular the dinitrosyliron compounds (DNICs), have attracted considerable interest stimulated by their structures, functions, and biological activities; e.g. (i) the formation of protein-bound dinitrosyliron complexes was reported in the anaerobic reaction of high-potential iron protein with nitric oxide, $1,2$ (ii) DNICs have been suggested as storage and transporters of NO *in vivo* as well as intermediates of iron-catalyzed degradation and formation of *S*-nitrosothiols,^{3,4} (iii) activation of SoxR protein, a redox-sensitive transcription activator, in *Escherichia coli* on exposure to macrophage-generated NO has been suggested to occur through nitrosylation of the [2Fe-2S] clusters to form protein-bound dinitrosyliron dithiol adducts,⁵ and (iv) DNICs have been identified as endogenous NO carriers.4

Existence of the paramagnetic ${Fe(NO)₂}⁹$ DNICs $[(RS)₂]$ $Fe(NO)₂$ ⁻ is generally characterized by an isotopic EPR

^{*} To whom correspondence should be addressed. E-mail: wfliaw@ mx.nthu.edu.tw.

[†] National Tsing Hua University.

[‡] National Changhua University of Education.

^{(1) (}a) Foster, M. W.; Cowan, J. A. *J. Am. Chem. Soc*. **1999**, *121*, 4093. (b) Morse, R. H.; Chan, S. I. *J. Biol. Chem*. **1980**, *255*, 7876. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. *J. Am. Chem. Soc*. **1999**, *121*, 10217.

^{(2) (}a) Cooper, C. E. *Biochim. Biophys. Acta* **1999**, *1411*, 290. (b) Vanin, A. F.; Stukan, R. A.; Manukhina, E. B. *Biochim. Biophys. Acta* **1996**, *1295*, 5.

^{(3) (}a) Vanin, A. F. *Biochemistry (Moscow)* **1998**, *63*, 782. (b) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J.
Chem. Rev. 2002, 102, 1091. (c) Vanin, A. F. Biochemistry (Moscow) *Chem. Re*V. **²⁰⁰²**, *¹⁰²*, 1091. (c) Vanin, A. F. *Biochemistry (Moscow)* **1995**, *60*, 225. (d) Vanin, A. F.; Malenkova, I. V.; Serezhenkov, V. A. *Nitric Oxide Biol. Chem*. **1997**, *1*, 191.

⁽⁴⁾ Ford, P. C.; Bourassa, J.; Miranda, K.; Lee, B.; Lorkovic, I.; Boggs, S.; Kudo, S.; Laverman, L. *Coord. Chem. Re*V. **¹⁹⁹⁸**, *¹⁷¹*, 185. (b) Ford, P. C.; Lorkovic, I. M. *Chem. Re*V. **²⁰⁰²**, *¹⁰²*, 993. (c) Hayton, T. W.; Legzdins, P.; Sharp, W. B. *Chem. Re*V. **²⁰⁰²**, *¹⁰²*, 935. (d) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. *Chem. Re*V. **²⁰⁰²**, *¹⁰²*, 1091.

Homodinuclear Iron Thiolate Nitrosyl Compounds

signal of $g = 2.03$ ¹⁻⁵ The oxidation level of the ${Fe(NO)₂}$ unit in the paramagnetic ${Fe(NO)₂}⁹$ DNICs was verified, recently, in a study of the photochemistry of the dinitrosyliron complex $[S_5Fe(NO)_2]$ ⁻ leading to reversible formation of $[S_5-P_2O(NO)_2]$ ⁻ $Fe(\mu-S)_2FeS_5]^{2-6}$ DFT calculations, magnetic susceptibility measurements, EPR, and Fe K/L-edge XAS suggest the electronic structure of the ${Fe(NO)₂}$ core of the complex $[S_5Fe(NO)_2]^-$ is better described as $\{Fe^+(NO)_2\}^9$ than as {Fe⁻(NO⁺)₂}.⁹ Rhombic EPR signals ($g_z = 2.0148$, $g_x = 2.0270$ and $g_y = 2.0485$) at 77 K confirmed the existence 2.0270, and $g_y = 2.0485$) at 77 K confirmed the existence of the unpaired electron in $[S_5Fe(NO)_2]^{-.6}$ In contrast, the neutral diamagnetic ${Fe(NO)₂}¹⁰$ DNICs $[L₂Fe(NO)₂]$ are stabilized by neutral donor ligands such as $L = PPh₃$, CO, and N-containing ligands.4

Two heterobimetallic nickel-iron thiolate nitrosyl complexes containing a dinitrosyliron ${Fe(NO)₂}^{10}/{Fe(NO)₂}^9$ motif, $[Ni^{II}(\mu-S(CH_2))\cdot N(Et)(CH_2)\cdot N(Et)(CH_2)\cdot S)Fe(NO_2)$ $(A)^7$ and $[(NO)Ni^0(\mu-S(CH_2)_2S(CH_2)_2S)Fe(NO)_2]$ (**B**),⁸ were

reported. Complexes **^A** and **^B** with Ni-Fe distances of $2.797(1)$ and $2.8001(6)$ Å, respectively, may be viewed as mononuclear $Fe(NO)_2$ units with thiolate ligands modified by distal metal interactions. The distal Ni^{II} metal of complex **A** creates neutral sulfur donor sites and stabilizes the electronrich or -reduced form ${Fe(NO)₂}^{10}$, as does CO or PR₃ in the neutral DNICs $[L_2Fe(NO)_2]$.⁹ The $\{Ni^0NO^+\}$ unit of complex **B** effectively generates a monoanionic dithiolate ligand donor set, which stabilizes the oxidized form {Fe- $(NO)_2$ ⁹. The different oxidation levels of the ${Fe(NO)_2}^n$ unit in **A** and **B** also reflect the distinctly different hinge angles of the $Ni(\mu$ -SR)₂Fe unit, 104.6° for complex **A** and 162.8° for complex **B**. 7,8

Additionally, diiron thiolate nitrosyl complexes $[Fe(NO)₂-$ {Fe(NS3)(CO)}] (**C**), [Fe(NO)2{Fe(NS3)(CN)}]- (**D**), and $[Fe(NO)_2\{Fe(NS_3)(NO)\}]$ (**E**) $(NS_3 = [N(CH_2CH_2S)_3]^{3-}$),

containing an $Fe(NO)_2$ motif and a CO/CN/NO ligand occupying the axial position of a trigonal bipyramidal Fe center, were also reported.¹⁰ It is proposed that the oxidation state of the iron of the $Fe(NS_3)$ motif in complexes C , D , and **E** is essentially unchanged upon its ligation to the Fe- $(NO)_2$ motif, and the oxidation state of the iron of the Fe-(NS3) motif is Fe(II) in complexes **C** and **D** and Fe(III) in complex **E**. ¹⁰ Here the metal nitrosyl unit is generally designated as ${M(NO)_x}^n$ (M = transition metal).¹¹ This formalism ${M(NO)_x}^n$ invokes the Enemark-Feltham notation, which stresses the well-known covalency and delocalization in the electronically amorphous $M(NO)_x$ unit,¹¹ without committing to a formal oxidation state on M, that is, assignments to $M^{II}(NO^-)_2$, $M^{0}({}^{\bullet}NO)_2$, $M^{II-}(NO^+)_2$, or some mixture thereof.

Despite a large number of mononuclear/tetranuclear iron thiolate nitrosyl complexes, $10,12,13$ examples of dinuclear iron thiolate complexes containing an ${Fe(NO)₂}$ motif are limited.10,13 To gain understanding of the physical and chemical properties of dinitrosyliron complexes and mimic the metalloprotein-bound DNICs,^{1a} we have prepared complexes $[(ON)Fe(\mu-S,S-C_6H_3R)$ ₂Fe(NO)₂]⁻ (R = H (2), CH₃ $(2-Me)$) and $[(ON)Fe(S, SO_2-C₆H₄)(S, S-C₆H₄)Fe(NO)₂]⁻ (3).$ The isolated crystals of complexes **2**, **2-Me**, and **3** were characterized by IR, NMR, UV/vis, X-ray diffraction, EPR, and magnetic susceptibility measurements.

Results and Discussion

In contrast to NO binding to the $[(C_4H_8O)Fe(S,S-C_6H_4)_2]^{-}$, leading to the formation of $[Fe(NO)(S,S-C_6H_4)_2]^{-1}$,¹⁴ the dark red-brown $[Fe(NO)(S, S-C_6H_3R)_2]^ (R = H(1), CH_3 (1-Me))$
were prepared alternatively by reaction of 1.2-benzenewere prepared, alternatively, by reaction of 1,2-benzenedithiol (or toluene-3,4-dithiol, 0.8 mmol) and $[Fe(CO)₃(NO)]$ ⁻ (0.4 mmol) in THF. Complexes **1** and **1-Me** are thermally stable and soluble in CH_2Cl_2 , THF, and CH_3CN . Diamagnetism of the magnetic measurements of complex **1**/**1-Me** is in accord with the ¹H NMR spectrum, which displays the expected signals (δ 6.87 (m), 7.65 (m) ppm (CDCl₃) for complex 1) for the $[S, S-C_6H_4]^{2-}$ ligands. The reversibility of the NO ligand lability of complex **1-Me** was demonstrated by exposing the THF solution of $[(^{15}NO)Fe(S, S-C₆H₃CH₃)₂]$ ⁻ to a NO atmosphere. The IR v_{NO} peak at 1727 cm⁻¹ shifted to a single absorbance at 1763 cm^{-1} (KBr).

As shown in Scheme 1a, diiron thiolate nitrosyl complexes $[PPN]$ [(NO)Fe(S,S-C₆H₃R)₂Fe(NO)₂] (R = H (2), CH₃ (2-**Me**)) were synthesized in a single step by treating $Fe(CO)₂$ - $(NO)_2$ with complex $1/1$ -Me in THF under a N_2 atmosphere at 10 °C. Complex 2, soluble in THF, CH_2Cl_2 , and CH_3CN , was isolated as a dark green solid. The IR spectrum of complex **2** in the aprotic solvent THF reveals three *ν*(NO) absorption bands at 1766 sh, 1746 vs, and 1719 s cm^{-1} .

- (5) Ding, H.; Demple, B. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 5146. (6) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang,
- K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. *Inorg. Chem.* **2004**, *43*, 5159.
- (7) Osterloh, F.; Saak, W.; Haase. D.; Pohl, S. *Chem. Commun*. **1997**, 979.
- (8) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H.; Darensbourg, M. Y. *Inorg. Chem*. **2000**, *39*, 480.
- (9) (a) Hedberg, L.; Hedberg, K.; Satija, S. K.; Swanson, B. I. *Inorg. Chem*. **1985**, *24*, 2766. (b) Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. *J. Organomet. Chem*. **1974**, *67*, 413.
- (10) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. *J. Chem. Soc., Dalton Trans*. **2002**, 2473.
- (11) Enemark, J. H.; Feltham, R. D. *Coord. Chem. Re*V. **¹⁹⁷⁴**, *¹³*, 339.
- (12) (a) Chu, C. T.-W.; Dahl, L. F. *Inorg. Chem*. **1977**, *16*, 3245. (b) Chu, C. T.-W.; Lo, F. Y.-K.; Dahl, L. F. *J. Am. Chem. Soc.* **1982**, *104*, 3409. (c) Goh, C.; Holm, R. H. *Inorg. Chim. Acta* **1998** *270*, 46. (d) Sung, S.-S.; Glidewell, C.; Butler, A. R.; Hoffmann, R. *Inorg. Chem*. **1985**, *24*, 3856.
- (13) Butler, A. R.; Glidewell, C.; Li, M.-H. *Ad*V*. Inorg. Chem*. **¹⁹⁸⁸**, *³²*, 335.
- (14) Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. *J. Am. Chem. Soc*. **2003**, *125*, 11492.

Complex **2** exhibits a diagnostic 1H NMR spectrum with resonances at δ 6.72-6.75 (m) and 7.44-7.62 (m) ppm (CDCl₃). On the basis of ¹H NMR, EPR, and magnetic measurements, complex **2** is characterized as a diamagnetic species.

Figure 1 displays a thermal ellipsoid plot of the anionic complex **2**, and selected bond distances and angles are given in Table 1. The geometry of Fe(1) of complex **2** is trigonal bipyramidal ($[Fe(NO)(S)₄]$ core) with a NO ligand occupying the equatorial position $(N(1) - Fe(1) - S(4) = 121.67(8)°$, $N(1)-Fe(1)-S(2) = 128.58(8)$ °, and $S(4)-Fe(1)-S(2) =$ 109.75(3)°), while N(3)-Fe(2)-N(2) = 119.80(13)°, N(2)- $Fe(2)-S(2) = 107.69(10)$ °, and $S(4)-Fe(2)-S(2) = 106.06$ -(3)° are consistent with the nearly regular tetrahedral coordination environment about Fe(2). In contrast to the distorted square pyramidal complex 1 with a S₄ base and an apical NO group,¹⁴ the geometry of Fe(1) in complex 2 is disturbed by the coordination of an additional $[Fe(NO)_2]$ unit

Figure 1. ORTEP drawing and labeling scheme of $[(NO)Fe(S, S-C₆H₄)₂$ $Fe(NO)_2]^-$.

Table 1. Selected Bond Distances (Å) and Angles (deg) for Complexes **2** and **3**

	Complex 2		
$Fe(1)-N(1)$	1.632(3)	$Fe(1)-S(2)$	2.2466(7)
$Fe(1)-S(3)$	2.3001(8)	$Fe(1)-S(4)$	2.2352(7)
$Fe(1)-S(1)$	2.2935(7)	$Fe(1)-Fe(2)$	2.6688(5)
Fe(2)N(3)	1.660(3)	$Fe(2)-N(2)$	1.661(3)
$Fe(2)-S(4)$	2.2860(7)	$Fe(2)-S(2)$	2.3019(8)
$N(1)-O(1)$	1.167(3)	$N(2)-O(2)$	1.168(3)
$N(3)-O(3)$	1.167(3)		
$N(1) - Fe(1) - S(4)$	121.67(8)	$S(4)$ -Fe (1) -S (2)	109.75(3)
$S(4)$ -Fe (1) -S (1)	89.39(3)	$S(4)$ -Fe (1) -S (3)	88.64(3)
$S(1)$ -Fe (1) -S (3)	175.72(3)	$N(1)$ -Fe (1) -Fe (2)	176.38(8)
$N(2) - Fe(2) - N(3)$	119.80(13)	$N(2) - Fe(2) - S(4)$	108.97(9)
$N(2) - Fe(2) - S(2)$	107.69(10)	$N(1) - Fe(1) - S(2)$	128.58(8)
$S(4)$ -Fe (2) -S (2)	106.06(3)	$O(1)-N(1)-Fe(1)$	178.2(3)
$O(3)-N(3)-Fe(2)$	172.2(3)	$O(2)-N(2)-Fe(2)$	169.2(3)
$Fe(1)-S(2)-Fe(2)$	71.84(2)		
	Complex 3		
$Fe(1)-N(1)$	1.641(3)	$Fe(1)-S(2)$	2.2272(9)
$Fe(1)-S(3)$	2.2929(11)	$Fe(1)-S(4)$	2.2318(9)
$Fe(1)-S(1)$	2.2630(10)	$Fe(1)-Fe(2)$	2.6482(7)
$Fe(2)-N(3)$	1.672(3)	$Fe(2)-N(2)$	1.671(3)
$Fe(2)-S(4)$	2.3005(10)	$Fe(2)-S(2)$	2.2728(10)
$N(1) - O(1)$	1.169(4)	$N(2)-O(2)$	1.160(4)
$N(3)-O(3)$	1.164(4)	$S(1) - O(4)$	1.459(3)
$S(1) - O(5)$	1.463(3)		
$N(1) - Fe(1) - S(4)$	130.49(11)	$N(1) - Fe(1) - S(2)$	119.30(11)
$S(4)$ -Fe (1) -S (2)	110.20(4)	$S(4)$ -Fe (1) -S (1)	89.97(3)
$S(4)$ -Fe (1) -S (3)	88.80(3)	$S(1)$ -Fe (1) -S (3)	177.81(4)
$N(1)$ -Fe (1) -Fe (2)	174.05(11)	$N(2) - Fe(2) - N(3)$	121.12(16)
$N(2) - Fe(2) - S(4)$	108.41(12)	$N(2) - Fe(2) - S(2)$	103.28(11)
$S(4) - Fe(2) - S(2)$	106.19(4)	$O(1) - N(1) - Fe(1)$	178.4(3)
$O(3)-N(3)-Fe(2)$	169.7(4)	$O(2)-N(2)-Fe(2)$	173.4(3)
$Fe(1)-S(2)-Fe(2)$	72.09(3)		

to become trigonal bipyramidal. Such a geometrical change of the Fe(1) center from complex **1** to **2** may be accompanied by an electronic rearrangement resulting from a short Fe- (1) $\cdot \cdot$ Fe(2) distance character (Fe(1) $\cdot \cdot$ Fe(2) distance of 2.6688(5) \AA) and two bridging thiolate ligands.¹⁵ Ligand displacement resulting in the formation of complex **1** and ${Fe(NO)₂}^{10}$ (PPh₃)₂Fe(NO)₂ was not observed when complex 2 was stirred with 2 equiv of $PPh₃$ in THF at room temperature for two weeks.⁹ In contrast, reaction of complex **2** and 2 equiv of [PPN][SPh] in THF solution at room temperature yielded the known ${Fe(NO)_2}^9$ [(PhS)₂Fe(NO)₂]⁻⁸ and ${Fe(NO)}^7$ [(NO)Fe(S,S-C₆H₄)₂]²⁻,¹⁶ which were characterized by IR, UV-vis, and X-ray single-crystal diffraction. On the basis of a recent study on the electronic structure of the ${Fe(NO)_2}^9$ core of dinitrosyliron complex $[S_5Fe(NO)_2]^{-6}$ and the reported qualitative MO energy level orderings for the five-coordinate ${Fe(NO)}^7$ metal nitrosyl structure types (square pyramidal with bent apical NO, trigonal bipyramidal with linear equatorial NO, and trigonal bipyramidal with linear axial NO),¹⁵ the oxidation levels of the $[S_2Fe(NO)_2]$ and [(NO)FeS4] motifs of complex **2** may be assigned. For a five-coordinate metal nitrosyl complex, computational studies have suggested that a geometrical change from square pyramidal to trigonal bipyramidal with linear equatorial NO may occur upon changing from an ${Fe(NO)}^6$ to an ${Fe}$ $(NO)⁷$ electronic structure.¹⁵ Assignment to the oxidation

⁽¹⁵⁾ Eisenberg, R.; Meyer, C. D. *Acc. Chem. Res*. **1975**, *8*, 26.

⁽¹⁶⁾ Lee, C.-M.; Chen, C.-H.; Chen, H.-W.; Hsu, J.-L.; Lee, G.-H.; Liaw, W.-F. Submitted for publication.

Homodinuclear Iron Thiolate Nitrosyl Compounds

levels of two Fe atoms of complex **2**/**2-Me** would, then, have to invoke electronic coupling of the ${Fe(NO)_2}^9$ $[S_2Fe(NO)_2]$ and the ${Fe(NO)}^7$ [(NO)FeS₄] centers to account for the diamagnetism and the EPR silence in complex **2**/**2-Me**, although we cannot unambiguously rule out the possibility that the dimer formation (complexes **2** and **2**-**Me**) may simply involve partial charge delocalization around the diamondshaped, planar $[FeS_2Fe]$ core in complex $2/2$ -Me. The electronic configurations of the ${Fe(NO)}^7$ and ${Fe(NO)}_2$ ⁹ centers are, therefore, best assigned as ${Fe^+(NO^+)}^7$ and ${Fe^+(NO)_2}$, respectively. Both centers have $S = 1/2$ spins
that magnetically couple to each other possibly via the that magnetically couple to each other possibly via the pathway of direct d-d orbital overlap (Fe $\cdot \cdot$ Fe = 2.6688(5) Å) and the bridging sulfurs.¹⁷ The relatively strong magnetic interaction ($J = -182$ cm⁻¹) leads to the ground state $S_T = 0^{17}$ 0.17

Presumably, complex **2** was produced upon substitution of two carbonyls of $Fe(CO)₂(NO)₂$ by thiolate ligands of complex **1** accompanied by electron transfer from the {Fe- $(NO)_{2}$ ¹⁰ [Fe(NO)₂] unit of [Fe(CO)₂(NO)₂] to {Fe(NO)}⁶ complex **1**. The proposed electron-donating/accepting process between $[Fe(2)(NO)₂]$ and $[(NO)Fe(1)S₄]$ units in the formation of complex 2 is also reflected in the ν_{NO} values. On treatment of $[(^{15}NO)Fe(S, S-C₆H₃CH₃)₂]$ ⁻ (1-Me-¹⁵*N*) with 1 equiv of $Fe(CO)₂(NO)₂$ in THF, the reaction mixture led to the formation of the dinuclear $[(^{15}NO)Fe(S, S-C₆H₃CH₃)₂$ $[Fe(NO)_2]^-$ (2-Me-¹⁵*N*) showing three ν_{NO} infrared bands $(1682 \text{ m}, 1705 \text{ s}, 1736 \text{ vs } \text{cm}^{-1} \text{ (KBr)})$. Known to serve as a reporter of electron density at iron similarly to CO,18a the lower *ν*(¹⁵NO) value (1682 cm⁻¹ (KBr)) of the [(¹⁵NO)FeS₄] fragment of **2**-**Me**-**¹⁵***N*, compared to that of **1**-**Me**-**¹⁵***N* (1727 cm^{-1} (KBr)), would then imply that the $[(^{15}NO)FeS₄]$ unit of **2**-**Me**-**¹⁵***N* is substantially reduced. That is, the {Fe- $(NO)_2$ ¹⁰ [Fe(NO)₂] unit of Fe(CO)₂(NO)₂ acts as a donor motif of -1 charge to **1-Me**-¹⁵*N* in the process of formation of complex **2**-**Me**-**¹⁵***N*. When a THF solution of complex **2-Me-¹⁵***N* is purged with NO, the IR ν_{NO} peaks (1682 m, 1705 s, 1736 vs cm-¹) shift to 1707 s, 1737 vs, and 1761 m cm-¹ (KBr), consistent with the formation of complex **2-Me** (Scheme 2). The magnitude \sim 55 cm⁻¹ of the isotopic shift (Δv_{NO}) is consistent with the calculated position, on the basis only of the difference in masses between 14NO and 15NO.

The Fe-N(1) distance of 1.599(2) \AA in complex 1 is significantly shorter than those of ${Fe(NO)}^7$ $[Fe(NO)(S_2-$ CNMe₂)₂] (Fe-N = 1.705(16) Å)^{18b} and {Fe(NO)}⁸ $[Fe(NO)(S_2C_2O_2)_2]^2$ ⁻ (Fe-N = 1.690(2) Å).¹⁹ The shorter Fe-S bond distances of 2.226(11) Å (average) in complex **¹**, compared with the reported Fe-S bond length of 2.294- (2) Å in $[Fe(NO)(S_2CNMe_2)_2]$,^{18b} are attributed to the strong π -donating ability of the bidentate [S,S-C₆H₄]²⁻ ligands.²⁰

v(NO): 1761 cm⁻¹ ([Fe(NO)]) v(NO): 1707, 1737 cm⁻¹ ([Fe(NO)₂], KBr)

Comparable to the shorter Fe-S (average 2.226(1) \AA) and Fe-N(O) (1.599(2) Å) bond distances of complex **¹**, the Fe- (1)-S (average 2.2689(8) Å) and Fe(1)-N(1) (1.632(3) Å) bond distances of complex **2** are disturbed by the coordination of an additional [Fe(NO)₂] unit. The Fe(1)-S_{bridging} bond length (average 2.2409(7) Å, Fe(1)-S(2) = 2.2466(7) Å and Fe(1)-S(4) = 2.2352(7) Å) is shorter than that of Fe(1)-S_{terminal} (average 2.2968(8) Å, Fe(1)–S(3) = 2.3001(8) Å and Fe(1)-S(1) = 2.2935(7) Å). The average Fe(2)-NO bond distance ($[Fe(NO)_2]$ unit) of 1.661(3) Å ($Fe(2)-N(3)$ $= 1.660(3)$ Å and Fe(2)-N(2) $= 1.661(3)$ Å) in complex 2 is within the ranges observed for other structurally characterized ${Fe(NO)_2}^9$ complexes **B** (average Fe-N(O) = 1.672-(3) Å),⁷ [(NO)₂Fe(SePh)₂]⁻ (average Fe-N(O) = 1.669(4) Å),⁸ and $[(NO)_2FeS_5]^-$ (average Fe-N(O) = 1.678(3) Å),⁶ but significantly longer than the $Fe-N(O)$ bond distances of 1.652(3) and 1.650(7) Å found in ${Fe(NO)₂}^{10}$ complexes **A** and $(PPh_3)_2Fe(NO)_2$, respectively.^{7,9} The Fe(1)-N(1) bond length of 1.632(3) \AA in complex 2 is shorter than the Fe-NO bond distance $(1.670(4)$ Å) found in $[(NO)Fe(TC-5,5)]^{21}$

The ligand-modified analogue $[(ON)Fe(S, SO_2-C₆H₄)(S, S C_6H_4$]⁻ (4) is also expected to promote the formation of the diiron sulfinate nitrosyl complex (Scheme 1b). To corroborate this interpretation, we treated a THF solution of complex 4 with 1 equiv of $Fe(CO)₂(NO)₂$ at 10 °C (Scheme 1c).¹⁴ The IR v_{NO} stretching frequencies (1726 s, 1762 s, 1783 m cm⁻¹ (KBr)), UV-vis data, and X-ray structural study are consistent with the formation of $[(ON)Fe(S, SO₂-)]$ C_6H_4)(S,S- C_6H_4)Fe(NO)₂]⁻ (3). The higher ν_{NO} values of 3 versus **2** would then imply that the S-bonded monosulfinate substantially "neutralizes" the thiolate negative charge of

^{(17) (}a) Feig, A. L.; Bautista, M. T.; Lippard, S. T. *Inorg. Chem*. **1996**, *35*, 6892. (b) Kahn, O. *Molecular Magnetism*; VCH: New York, 1993.

^{(18) (}a) Horrocks, W. D.; Taylor, R. C. *Inorg. Chem.* **1963**, *2*, 723. (b) Davies, G. R.; Mais, R. H. B.; Owston, P. G. *Chem. Commun*. **1968**, 81.

⁽¹⁹⁾ Qian, L.; Singh, P.; Ro, H.; Hatfield, W. E. *Inorg. Chem*. **1990**, *29*, 761.

^{(20) (}a) Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. *J. Am. Chem. Soc.* **2000**, *122*, 488. (b) Liaw, W.-F.; Hsieh,

C.-K.; Lin, G.-Y.; Lee, G.-H. *Inorg. Chem*. **2001**, *40*, 3468. (21) Franz, K. J.; Lippard, S. J. *J. Am. Chem. Soc.* **1999**, *121*, 10504.

Figure 2. ORTEP drawing and labeling scheme of $[(ON)Fe(S, SO₂-C₆H₄)$ - $(S, S-C₆H₄)Fe(NO)₂$]⁻.

complex **4**, and donates slightly less electron density to the ${Fe(NO)_2}^9$ unit as compared to the two dithiolate donors of complex **2**. The ¹ H NMR spectrum of complex **3** shows the expected signals for the 1,2-benzenedithiolate and -sulfinate groups involved and displays characteristics of diamagnetic species. As observed in complex **2**, the EPR and magnetic measurements of complex **3** also suggest the diamagnetism. Instead of formation of complex **4** and {Fe- $(NO)_2$ ¹⁰ $(PPh_3)_2Fe(NO)_2$ ⁹ the S-bonded monosulfinate complex **3** undergoes oxygen-transfer reaction in THF solution with 2 equiv of $PPh₃$ (expected to be an O atom abstracting agent) over the course of 90 min at 50 $^{\circ}$ C to yield complex **2** and triphenylphosphine oxide identified by $31P$ NMR spectroscopy (Scheme 1d).²² This study also shows that complex 2 does not initiate O_2 activation to yield iron sulfinate complex **3** identified by IR spectra; complexes **1** and **4** and an insoluble solid were isolated instead.

The structure of complex **3** is presented in Figure 2. Analysis of the bond angles of complex **3** reveals that Fe(1) is best described as existing in a distorted trigonal bipyramidal coordination environment with NO and sulfinate groups occupying equatorial and axial positions, respectively. Distorted tetrahedral geometry is adopted in Fe(2). Consistent with other published transition-metal sulfinate complexes, 23 the S-O bond lengths average ca. 1.461(3) Å. The relief of the antibonding character from the Fe $d\pi/S$ p π overlap overwhelming the S-donating ability from thiolate to sulfinate may rationalize the observed shortening (Δ (Fe-S) = 0.03 Å) of the Fe-S(O₂) bond length in complex **3**.²³ Presumably,
the change in Fe(1)–Fe(2) distance (2.6625(2) $\hat{\Delta}$ for **2** and the change in Fe(1)-Fe(2) distance (2.6625(2) Å for 2 and 2.6482(7) Å for **3**) is undoubtedly caused by electronic perturbations from the sulfur oxygenation. The shorter Fe- (1)-Fe(2) distance of 2.6482(7) Å in complex **³** further implies an electronic interaction between the two metal centers, and an assignment of ${Fe(NO)}^7 - {Fe(NO)}^9$

coupling would be realistic. The average $N-O$ bond lengths ($[Fe(NO)_2]$ unit) of 1.167(3) and 1.162(4) Å in complexes 2 and **3**, respectively, are comparable to those of the other structurally characterized ${Fe(NO)₂}⁹$ complexes **B** (average $N-O = 1.161(3)$ Å),⁷ [(NO)₂Fe(SePh)₂]⁻ (average N-O = 1.162(5) Å),⁸ and $[(NO)_2FeS_5]$ ⁻ (average N-O = 1.177(3) \AA),⁶ but significantly shorter than the N-O bond lengths of 1.190(7) and 1.190(10) Å (average) observed in ${Fe(NO)₂}^{10}$ complexes \bf{A} and (PPh₃)₂Fe(NO)₂, respectively.^{7,9} Consistent with the observation in complex **B**, the hinge angle of the Fe(μ -SR)₂Fe unit, 178.9° for **2** and 178° for **3**, also supports a $[(NO)FeS₄]⁻ / [(NO)FeS₃(SO₂)]⁻$ moiety bound by an {Fe- $(NO)₂$ ⁹ unit.⁸

Conclusion and Comments

Studies on the dinuclear iron thiolate nitrosyl complexes **2**/**2-Me** and **3** have led to the following results.

(1) Dinuclear iron thiolate/sulfinate nitrosyl complexes **2**/**2- Me** and **3** stabilized by ${Fe(1)(NO)}^7 - {Fe(2)(NO)_2}^9$ coupling were synthesized and characterized by IR, $UV-vis$, ¹H NMR, and X-ray single-crystal diffraction. The magnetic coupling between the ${Fe(NO)}^7$ and ${Fe(NO)}^9$ centers (*J* value of -182 cm⁻¹ in complex 2) is responsible for the absence of paramagnetism (SQUID) and the EPR signal in complexes **2**/**2-Me** and **3**.

(2) The roughly planar structure in the $[FeS₂Fe]$ core of complexes **2** and **3** (hinge angles 178.9° and 178°, respectively) also supports that complex **2**/**3** is best described as a $[(NO)FeS₄]/[(NO)FeS₃(SO₂)]$ moiety bound by an interacting ${Fe(NO)₂}⁹$ unit, respectively.

(3) In contrast to the distorted square pyramidal complex **1/1-Me** with a S_4 base and an apical NO group,¹⁴ the geometry of Fe(1) in complex **2** becomes trigonal bipyramidal upon complex **1** being coordinated by an additional $[Fe(NO)₂]$ unit.

(4) For the formation mechanism of complex **2**/**3**, the isotopic experiments imply that the ${Fe(NO)₂}$ ¹⁰ [Fe(NO)₂] unit of Fe(CO)₂(NO)₂ acts as a donor motif of -1 charge to complex **1**/**4** to yield the stable diiron thiolate/sulfinate nitrosyl complex $2/3$ containing an ${Fe(NO)₂}^9$ motif, respectively.

(5) From the viewpoint of the $Fe-N(O)$ and $N-O$ bond distances, the dinitrosyliron ${Fe(NO)₂}$ derivatives having an Fe-N(O) distance of [∼]1.670 Å and a N-O distance of \sim 1.165 Å are best assigned as ${Fe(NO)_2}^9$ electronic structures. The much shorter Fe-N(O) distance of [∼]1.650 Å and longer N-O distance of \sim 1.190 Å probably imply an ${Fe(NO)_2}^{10}$ electronic structure.

Isolation and characterization of the dinuclear iron thiolate nitrosyl complexes **2**/**2-Me** and **3** containing a dinitrosyl iron motif may be useful for taking into consideration the formation/existence of the metalloprotein-bound dinitrosyliron complexes in the anaerobic reaction of iron-sulfur protein and nitric oxide. $1-5$ Also, the findings in this study imply that the dinitrosyl nonheme iron complexes may exist after biosynthetic evolution of NO *in vitro* and from the

⁽²²⁾ Buonomo, R. M.; Font, I.; Maguire, M. J.; Reibenspies, J. H.; Tuntulani, T.; Darensbourg, M. Y. *J. Am. Chem. Soc*. **¹⁹⁹⁵**, *¹¹⁷*, 963- 973.

⁽²³⁾ Grapperhaus, C. A.; Darensbourg, M. Y. *Acc. Chem. Res*. **1998**, *31*, $451 - 459$.

addition of NO to iron-centered proteins, even without the characteristic isotropic EPR signal of $g = 2.03^{24}$

Experimental Section

Manipulations, reactions, and transfers of samples were conducted under nitrogen according to standard Schlenk techniques or in a glovebox (argon gas). Solvents were distilled under nitrogen from appropriate drying agents (hexane and tetrahydrofuran (THF) from sodium/benzophenone, diethyl ether and methylene chloride from CaH₂, and acetonitrile from CaH₂ $-P_2O_5$) and stored in dried, N_2 -filled flasks over 4 Å molecular sieves. Nitrogen was purged through these solvents before use. Solvent was transferred to a reaction vessel via a stainless steel cannula under a positive pressure of N2. The reagents iron pentacarbonyl, sodium nitrite, toluene-3,4-dithiol, and 1,2-benzenedithiol (Lancaster/Aldrich) were used as received. Compounds [PPN][Fe(CO)₃(NO)], Fe(CO)₂(NO)₂, and $[PPN]$ [(ON)Fe(S,S-C₆H₄)₂] were synthesized and characterized by published procedures.^{9,14} Infrared spectra of the $\nu_{\text{NO}}/\nu_{\text{CO}}$ stretching frequencies were recorded on a Perkin-Elmer model Spectrum One B spectrometer with sealed solution cells (0.1 mm) and KBr windows. 1H NMR spectra were recorded on a Varian Unity-500 spectrometer. GBC Cintra 10e spectrophotometers were used to record the UV-vis spectra of each complex. Analyses of carbon, hydrogen, and nitrogen were obtained with a CHN analyzer (Heraeus).

Preparation of [PPN][(ON)Fe(S,S-C₆H₃CH₃)₂] (1-Me). Toluene-3,4-dithiol (0.8 mmol, 100 μ L) was added to a THF solution (5 mL) of $[PPN][Fe(CO)₃(NO)]$ (0.4 mmol, 0.283 g), and the resulting solution was stirred overnight at room temperature in contact with air. The reaction was monitored with FTIR. The IR spectrum (IR (THF): 1785 s (ν_{NO}) cm⁻¹) was assigned to the formation of **1**-**Me**. ¹⁴ The solution was then filtered through Celite, and hexane (15 mL) was added to precipitate the dark red-brown solid **1**-**Me** (yield 0.3356 g, 90%). Diffusion of hexane into a THF solution of complex **1-Me** at -15 °C for 2 weeks gave dark red-brown crystals suitable for X-ray crystallography. IR ($ν_{\text{NO}}$): 1785 s (THF); 1763 s (KBr) cm⁻¹. ¹H NMR (CDCl₃): δ 2.20 (s) (CH₃); 6.693 (d), 7.51-7.55 (m) (C_6H_3) ppm. Absorption spectrum (THF) [λ_{max} , nm (ϵ , M^{-1} cm⁻¹)]: 321 (37700), 500 (4200). Anal. Calcd for C₅₀H₄₂-OFeN2S4P2: C, 64.37; H, 4.54; N, 3.00. Found: C, 64.25; H, 4.19; N, 3.51.

Preparation of [PPN][(ON)Fe(μ **-S,S-C₆H₃R)₂Fe(NO)₂] (R = H (2), CH3 (2-Me)).** Compound **1** (0.5 mmol, 0.452 g) was dissolved in 2 mL of dry THF, and 5 mL of a THF solution of $Fe(CO)₂(NO)₂(0.5 mmol)$ prepared freshly (obtained from reaction of [NO][PF₆] and [PPN][Fe(CO)₃(NO)] in THF in a 1:1 ratio)⁹ was added to it by cannula under a positive pressure of N_2 . The reaction mixture was stirred at 10 °C for 1 h. The solution was then filtered through Celite, and hexane was added to precipitate a green solid. The solid was washed twice with THF-hexane and dried under vacuum. The yield of complex **2** was 0.418 g (80%). X-ray-quality crystals were obtained by diffusion of hexane into a saturated THF solution of complex 2 at -15 °C. The following are data for 2 . IR (*ν*_{NO}): 1766 sh, 1746 vs, 1719 s (THF); 1768 sh, 1748 s, 1720 s (CH_2Cl_2) ; 1759 m, 1735 vs, 1715 s (KBr) cm⁻¹. ¹H NMR (CDCl₃): δ 6.72–6.75 (m), 7.44–7.62 (m) ppm (C₆H₄). Absorption spectrum (CH₂Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 313 (46619), 363 (15936), 417 (7557), 623 (3059), 790 (1367). Anal. Calcd for C48H38O3N4P2S4Fe2: C, 56.48; H, 3.75; N, 5.49. Found: C, 56.29; H, 3.66; N, 5.55. The following are data for **2-Me**. IR (ν_{NO}) : 1764 sh, 1745 vs, 1717 s (THF); 1761 m, 1737 vs, 1707 s (KBr) cm-1.

Table 2. Crystallographic Data of Complexes **2** and **3**

	2	3
empirical formula	$C_{48}H_{38}Fe_2N_4O_3P_2S_4$	$C_{48}H_{38}Fe_2N_4O_5P_2S_4$
fw	1020.70	1052.70
cryst syst	monoclinic	monoclinic
space group	$P2_1/n$	$P2_1/n$
λ , \AA (Mo K α)	0.71073	0.71073
a, \check{A}	10.3579(4)	10.2033(4)
b, À	24.8932(11)	25.0154(9)
c. Å	18.2655(8)	18.2842(6)
α , deg	90	90
β , deg	93.8840(10)	91.941(1)
γ , deg	90	90
$V \text{A}^3$	4698.8(3)	4664.2(3)
Z	4	4
d_{calcd} , g cm ⁻³	1.443	1.499
μ , mm ⁻¹	0.909	0.921
T, K	150(2)	150(1)
R	0.0369^a	0.0615^a
$R_{\rm w}$	0.1015^{b}	0.1334^{b}
GOF	0.749	1.276

 $a \ R = \sum |(F_o - F_c)| / \sum F_o$. *b* $R_w = {\sum w (F_o^2 - F_c^2)^2 / \sum [w (F_o^2)^2]}^{1/2}$.

¹H NMR (CDCl₃): δ 2.088 (s), 2.117 (s) (CH₃); 6.518-6.543 (m), 7.579-7.635 (m) (C_6H_3) ppm. Absorption spectrum (THF) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 370 (10465), 427 (5266), 590 (2038), 650 (2129), 793 (1160). Anal. Calcd for C₅₀H₄₂O₃N₄P₂S₄Fe₂: C, 57.26; H, 4.04; N, 5.34. Found: C, 57.66; H, 4.38; N, 4.85.

The analogous [15N]nitrosyl complexes **1**-**Me**-**¹⁵***N* and **2**-**Me**-**¹⁵***N* were prepared as above using enriched $[PPN]$ ¹⁵NO₂] to prepare the starting material [PPN][Fe(CO)₃($15NO$)].

Preparation of [PPN][(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)Fe-**(NO)₂] (3).** Compound [PPN][(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)] (0.2 mmol, 0.187 g) was dissolved in 2 mL of dry THF in a 25 mL Schlenk tube, 5 mL of a THF solution of $Fe(CO)₂(NO)₂(O.2 mmol)$ prepared freshly was added to it by cannula under a positive pressure of N_2 , and the resulting solution was stirred at 10 °C for 1 h.¹⁴ The solution was then filtered through Celite, and hexane was added to precipitate a green solid. The solid was washed twice with THFhexane, and the yield of **3** was 0.150 g (71%). X-ray-quality crystals were obtained by diffusion of hexane-diethyl ether into a saturated CH₂Cl₂ solution of complex **3** at -15 °C. IR: 1783 m, 1762 s, 1726 s ($ν_{\text{NO}}$); 1192 m, 1055 m ($ν_{\text{SO}}$) (KBr); 1790 sh, 1771 s, 1733 m (*ν*_{NO}) (CH₂Cl₂); 1787 sh, 1768 s, 1733 m (*ν*_{NO}) (THF) cm⁻¹. ¹H NMR (CD2Cl2): *δ* 6.832 (t), 7.174 (t), 7.252 (t), 7.260 (d), 7.332 (d), 7.722 (d), 7.772 (d) ppm (C_6H_4). Absorption spectrum (CH₂-Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 305 (33836), 363 (14272), 595 (2113), 717 (1468). Anal. Calcd for C₄₈H₃₈O₅N₄P₂S₄Fe₂: C, 54.765; H, 3.64; N, 5.32. Found: C, 54.96; H, 3.49; N, 5.28.

Magnetic Measurements. The magnetic data were recorded on a SQUID magnetometer (MPMS5, Quantum Design) under a 1 T external magnetic field in the temperature range of $2-300$ K. The magnetic susceptibility data were corrected with temperature-independent paramagnetism (TIP; 2×10^{-4} cm³ mol⁻¹) and the ligand diamagnetism by the tabulated Pascal constants. The equation for one *J* spin-coupled system is derived from the Hamiltonian and Van Vleck's equation. The magnetic coupling constant *J* of **2** is obtained from the least-squares fit of the magnetic susceptibility data.

Crystallography. Crystallographic data of complexes **2** and **3** are summarized in Table 2. The crystals of **2** and **3** chosen for X-ray single-crystal diffraction studies were measured 0.50×0.50 \times 0.50 and 0.30 \times 0.25 \times 0.25 mm, respectively. Each crystal was mounted on a glass fiber and quickly coated in epoxy resin. Unit cell parameters were obtained by least-squares refinement. Diffraction measurements for complexes **2** and **3** were carried out at 150(1) K on a SMART CCD diffractometer with graphite-

⁽²⁴⁾ Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. *J. Am. Chem. Soc*. **1999**, *121*, 10217.

hydrogen atoms was based on F^2 . A SADABS²⁵ absorption correction was made. The SHELXTL²⁶ structure refinement program was employed. In the case of complex 3 , the $S(1)O₂$ group (shown in Figure 2) is found at disordered positions $(O(4)O(5))$: $O(4')O(5') = 1/2:1/2$ and was refined by partial occupancies.

Acknowledgment. We gratefully acknowledge financial support from the National Science Council (Taiwan). We appreciate the assistance of Fen-Ling Liao (National Tsing Hua University, Taiwan).

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of [PPN][(NO)Fe- $(S, S-C₆H₄)₂Fe(NO)₂]$ and [PPN][(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)- $Fe(NO)₂$]. This material is available free of charge via the Internet at http://pubs.acs.org. The CCDC reference numbers are 235829 and 235830.

IC049105J

⁽²⁵⁾ Sheldrick, G. M. *SADABS, Siemens Area Detector Absorption Cor*rection Program; University of Göttingen: Göttingen, Germany, 1996.

⁽²⁶⁾ Sheldrick, G. M. *SHELXTL, Program for Crystal Structure Determination*; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.