

Homodinuclear Iron Thiolate Nitrosyl Compounds $[(ON)Fe(S,S-C_6H_4)_2Fe(NO)_2]^-$ and $[(ON)Fe(SO_2,S-C_6H_4)(S,S-C_6H_4)Fe(NO)_2]^$ with $\{Fe(NO)\}^7 - \{Fe(NO)_2\}^9$ Electronic Coupling: New Members of a Class of Dinitrosyl Iron Complexes

Hao-Wen Chen,^{†,‡} Chin-Wei Lin,[†] Chiao-Chun Chen,[‡] Li-Bo Yang,[†] Ming-Hsi Chiang,[†] and Wen-Feng Liaw^{*,†}

Departments of Chemistry, National Tsing Hua University, Hsinchu 30043, and National Changhua University of Education, Changhua, Taiwan

Received July 8, 2004

Reaction of Fe(CO)₂(NO)₂ and [(ON)Fe(S,S-C₆H₃R)₂]⁻ (R = H (1), CH₃ (1-Me))/[(ON)Fe(SO₂,S-C₆H₄)(S,S-C₆H₄)]⁻ (4) in THF afforded the diiron thiolate/sulfinate nitrosyl complexes [(ON)Fe(S,S-C₆H₃R)₂Fe(NO)₂]⁻ (R = H (2), CH₃ (2-Me)) and [(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)Fe(NO)₂]⁻ (3), respectively. The average N–O bond lengths ([Fe-(NO)₂] unit) of 1.167(3) and 1.162(4) Å in complexes 2 and 3 are consistent with the average N–O bond length of 1.165 Å observed in the other structurally characterized dinitrosyl iron complexes with an {Fe(NO)₂}⁹ core. The lower ν (¹⁵NO) value (1682 cm⁻¹ (KBr)) of the [(¹⁵NO)FeS₄] fragment of [(¹⁵NO)Fe(S,S-C₆H₃CH₃)₂Fe(NO)₂]⁻ (2-Me-¹⁵N), compared to that of [(¹⁵NO)Fe(S,S-C₆H₃CH₃)₂]⁻ (1-Me-¹⁵N) (1727 cm⁻¹ (KBr)), implicates the electron transfer from {Fe(NO)₂}¹⁰ Fe(CO)₂(NO)₂ to complex 1-Me/1 may occur in the process of formation of complex 2-Me/2. Then, the electronic structures of the [(NO)FeS₄] and [S₂Fe(NO)₂] cores of complexes 2, 2-Me, and 3 were best assigned according to the Feltham–Enemark notation as the {Fe(NO)}⁷–{Fe(NO)₂}⁹ coupling (antiferromagnetic interaction with a *J* value of -182 cm⁻¹ for complex 2) to account for the absence of paramagnetism (SQUID) and the EPR signal. On the basis of Fe–N(O) and N–O bond distances, the dinitrosyliron {L₂Fe(NO)₂} derivatives having an Fe–N(O) distance of ~1.670 Å and a N–O distance of ~1.165 Å are best assigned as {Fe(NO)₂}⁹ electronic structures, whereas the Fe–N(O) distance of ~1.650 Å and N–O distance of ~1.190 Å probably imply an {Fe(NO)₂}¹⁰ electronic structure.

Introduction

Iron sulfur nitrosyl complexes, in particular the dinitrosyliron compounds (DNICs), have attracted considerable interest stimulated by their structures, functions, and biological activities; e.g. (i) the formation of protein-bound dinitrosyliron complexes was reported in the anaerobic reaction of high-potential iron protein with nitric oxide,^{1.2} (ii) DNICs have been suggested as storage and transporters of NO *in vivo* as well as intermediates of iron-catalyzed degradation and formation of *S*-nitrosothiols,^{3,4} (iii) activation of SoxR protein, a redox-sensitive transcription activator, in *Escherichia coli* on exposure to macrophage-generated NO has been suggested to occur through nitrosylation of the [2Fe-2S] clusters to form protein-bound dinitrosyliron dithiol adducts,⁵ and (iv) DNICs have been identified as endogenous NO carriers.⁴

Existence of the paramagnetic ${Fe(NO)_2}^9$ DNICs $[(RS)_2 - Fe(NO)_2]^-$ is generally characterized by an isotopic EPR

^{*} To whom correspondence should be addressed. E-mail: wfliaw@mx.nthu.edu.tw.

[†] National Tsing Hua University.

[‡] National Changhua University of Education.

 ⁽a) Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc. 1999, 121, 4093.
 (b) Morse, R. H.; Chan, S. I. J. Biol. Chem. 1980, 255, 7876. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217.

 ^{(2) (}a) Cooper, C. E. Biochim. Biophys. Acta 1999, 1411, 290. (b) Vanin,
 A. F.; Stukan, R. A.; Manukhina, E. B. Biochim. Biophys. Acta 1996, 1295, 5.

^{(3) (}a) Vanin, A. F. Biochemistry (Moscow) 1998, 63, 782. (b) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091. (c) Vanin, A. F. Biochemistry (Moscow) 1995, 60, 225. (d) Vanin, A. F.; Malenkova, I. V.; Serezhenkov, V. A. Nitric Oxide Biol. Chem. 1997, 1, 191.

⁽⁴⁾ Ford, P. C.; Bourassa, J.; Miranda, K.; Lee, B.; Lorkovic, I.; Boggs, S.; Kudo, S.; Laverman, L. *Coord. Chem. Rev.* **1998**, *171*, 185. (b) Ford, P. C.; Lorkovic, I. M. *Chem. Rev.* **2002**, *102*, 993. (c) Hayton, T. W.; Legzdins, P.; Sharp, W. B. *Chem. Rev.* **2002**, *102*, 935. (d) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. *Chem. Rev.* **2002**, *102*, 1091.

Homodinuclear Iron Thiolate Nitrosyl Compounds

signal of g = 2.03.^{1–5} The oxidation level of the {Fe(NO)₂} unit in the paramagnetic {Fe(NO)₂}⁹ DNICs was verified, recently, in a study of the photochemistry of the dinitrosyliron complex [S₅Fe(NO)₂]⁻ leading to reversible formation of [S₅-Fe(μ -S)₂FeS₅]^{2–,6} DFT calculations, magnetic susceptibility measurements, EPR, and Fe K/L-edge XAS suggest the electronic structure of the {Fe(NO)₂} core of the complex [S₅Fe(NO)₂]⁻ is better described as {Fe⁺(•NO)₂}⁹ than as {Fe⁻(NO⁺)₂}.⁹ Rhombic EPR signals ($g_z = 2.0148$, $g_x =$ 2.0270, and $g_y = 2.0485$) at 77 K confirmed the existence of the unpaired electron in [S₅Fe(NO)₂]^{-,6} In contrast, the neutral diamagnetic {Fe(NO)₂}¹⁰ DNICs [L₂Fe(NO)₂] are stabilized by neutral donor ligands such as L = PPh₃, CO, and N-containing ligands.⁴

Two heterobimetallic nickel—iron thiolate nitrosyl complexes containing a dinitrosyliron { $Fe(NO)_2$ }¹⁰/{ $Fe(NO)_2$ }⁹ motif, [Ni^{II}(μ -S(CH₂)₂N(Et)(CH₂)₃N(Et)(CH₂)₂S)Fe(NO)₂] (**A**)⁷ and [(NO)Ni⁰(μ -S(CH₂)₂S(CH₂)₂S)Fe(NO)₂] (**B**),⁸ were

reported. Complexes **A** and **B** with Ni–Fe distances of 2.797(1) and 2.8001(6) Å, respectively, may be viewed as mononuclear Fe(NO)₂ units with thiolate ligands modified by distal metal interactions. The distal Ni^{II} metal of complex **A** creates neutral sulfur donor sites and stabilizes the electronrich or -reduced form {Fe(NO)₂}¹⁰, as does CO or PR₃ in the neutral DNICs [L₂Fe(NO)₂].⁹ The {Ni⁰NO⁺} unit of complex **B** effectively generates a monoanionic dithiolate ligand donor set, which stabilizes the oxidized form {Fe(NO)₂}ⁿ unit in **A** and **B** also reflect the distinctly different hinge angles of the Ni(μ -SR)₂Fe unit, 104.6° for complex **A** and 162.8° for complex **B**.

Additionally, diiron thiolate nitrosyl complexes $[Fe(NO)_2-{Fe(NS_3)(CO)}]$ (C), $[Fe(NO)_2{Fe(NS_3)(CN)}]^-$ (D), and $[Fe(NO)_2{Fe(NS_3)(NO)}]$ (E) $(NS_3 = [N(CH_2CH_2S)_3]^{3-})$,

containing an Fe(NO)₂ motif and a CO/CN/NO ligand occupying the axial position of a trigonal bipyramidal Fe center, were also reported.¹⁰ It is proposed that the oxidation state of the iron of the Fe(NS₃) motif in complexes **C**, **D**, and **E** is essentially unchanged upon its ligation to the Fe-(NO)₂ motif, and the oxidation state of the iron of the Fe-(NS₃) motif is Fe(II) in complexes **C** and **D** and Fe(III) in complex **E**.¹⁰ Here the metal nitrosyl unit is generally designated as {M(NO)_x}ⁿ (M = transition metal).¹¹ This formalism {M(NO)_x}ⁿ invokes the Enemark–Feltham notation, which stresses the well-known covalency and delocalization in the electronically amorphous $M(NO)_x$ unit,¹¹ without committing to a formal oxidation state on M, that is, assignments to $M^{II}(NO^-)_2$, $M^0(^{\bullet}NO)_2$, $M^{II-}(NO^+)_2$, or some mixture thereof.

Despite a large number of mononuclear/tetranuclear iron thiolate nitrosyl complexes, 10,12,13 examples of dinuclear iron thiolate complexes containing an {Fe(NO)₂} motif are limited. 10,13 To gain understanding of the physical and chemical properties of dinitrosyliron complexes and mimic the metalloprotein-bound DNICs, 1a we have prepared complexes [(ON)Fe(μ -S,S-C₆H₃R)₂Fe(NO)₂]⁻ (R = H (2), CH₃ (2-Me)) and [(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)Fe(NO)₂]⁻ (3). The isolated crystals of complexes 2, 2-Me, and 3 were characterized by IR, NMR, UV/vis, X-ray diffraction, EPR, and magnetic susceptibility measurements.

Results and Discussion

In contrast to NO binding to the $[(C_4H_8O)Fe(S,S-C_6H_4)_2]^-$, leading to the formation of $[Fe(NO)(S,S-C_6H_4)_2]^{-,14}$ the dark red-brown $[Fe(NO)(S,S-C_6H_3R)_2]^-$ (R = H (1), CH₃ (1-Me)) were prepared, alternatively, by reaction of 1,2-benzenedithiol (or toluene-3,4-dithiol, 0.8 mmol) and $[Fe(CO)_3(NO)]^-$ (0.4 mmol) in THF. Complexes 1 and 1-Me are thermally stable and soluble in CH₂Cl₂, THF, and CH₃CN. Diamagnetism of the magnetic measurements of complex 1/1-Me is in accord with the ¹H NMR spectrum, which displays the expected signals (δ 6.87 (m), 7.65 (m) ppm (CDCl₃) for complex 1) for the [S,S-C₆H₄]²⁻ ligands. The reversibility of the NO ligand lability of complex 1-Me was demonstrated by exposing the THF solution of [(¹⁵NO)Fe(S,S-C₆H₃CH₃)₂]⁻ to a NO atmosphere. The IR ν_{NO} peak at 1727 cm⁻¹ shifted to a single absorbance at 1763 cm⁻¹ (KBr).

As shown in Scheme 1a, diiron thiolate nitrosyl complexes [PPN][(NO)Fe(S,S-C₆H₃R)₂Fe(NO)₂] (R = H (2), CH₃ (2-**Me**)) were synthesized in a single step by treating Fe(CO)₂-(NO)₂ with complex 1/1-Me in THF under a N₂ atmosphere at 10 °C. Complex 2, soluble in THF, CH₂Cl₂, and CH₃CN, was isolated as a dark green solid. The IR spectrum of complex 2 in the aprotic solvent THF reveals three ν (NO) absorption bands at 1766 sh, 1746 vs, and 1719 s cm⁻¹.

- (5) Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5146.
- (6) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. *Inorg. Chem.* 2004, 43, 5159.
- (7) Osterloh, F.; Saak, W.; Haase. D.; Pohl, S. Chem. Commun. 1997, 979.
- (8) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H.; Darensbourg, M. Y. *Inorg. Chem.* **2000**, *39*, 480.
- (9) (a) Hedberg, L.; Hedberg, K.; Satija, S. K.; Swanson, B. I. *Inorg. Chem.* **1985**, *24*, 2766. (b) Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. *J. Organomet. Chem.* **1974**, *67*, 413.
- (10) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473.
- (11) Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339.
- (12) (a) Chu, C. T.-W.; Dahl, L. F. *Inorg. Chem.* **1977**, *16*, 3245. (b) Chu, C. T.-W.; Lo, F. Y.-K.; Dahl, L. F. J. Am. Chem. Soc. **1982**, *104*, 3409. (c) Goh, C.; Holm, R. H. *Inorg. Chim. Acta* **1998** 270, 46. (d) Sung, S.-S.; Glidewell, C.; Butler, A. R.; Hoffmann, R. *Inorg. Chem.* **1985**, *24*, 3856.
- (13) Butler, A. R.; Glidewell, C.; Li, M.-H. Adv. Inorg. Chem. 1988, 32, 335.
- (14) Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492.

Complex 2 exhibits a diagnostic ¹H NMR spectrum with resonances at δ 6.72–6.75 (m) and 7.44–7.62 (m) ppm (CDCl₃). On the basis of ¹H NMR, EPR, and magnetic measurements, complex 2 is characterized as a diamagnetic species.

Figure 1 displays a thermal ellipsoid plot of the anionic complex **2**, and selected bond distances and angles are given in Table 1. The geometry of Fe(1) of complex **2** is trigonal bipyramidal ([Fe(NO)(S)₄] core) with a NO ligand occupying the equatorial position $(N(1)-Fe(1)-S(4) = 121.67(8)^{\circ}, N(1)-Fe(1)-S(2) = 128.58(8)^{\circ}, and S(4)-Fe(1)-S(2) = 109.75(3)^{\circ})$, while N(3)-Fe(2)-N(2) = 119.80(13)^{\circ}, N(2)-Fe(2)-S(2) = 107.69(10)^{\circ}, and S(4)-Fe(2)-S(2) = 106.06-(3)^{\circ} are consistent with the nearly regular tetrahedral coordination environment about Fe(2). In contrast to the distorted square pyramidal complex **1** with a S₄ base and an apical NO group,¹⁴ the geometry of Fe(1) in complex **2** is disturbed by the coordination of an additional [Fe(NO)₂] unit

Figure 1. ORTEP drawing and labeling scheme of $[(NO)Fe(S,S-C_6H_4)_2-Fe(NO)_2]^-$.

 Table 1.
 Selected Bond Distances (Å) and Angles (deg) for Complexes

 2 and 3

Complex 2				
Fe(1) = N(1)	1.632(3)	Fe(1) - S(2)	2.2466(7)	
Fe(1) - S(3)	2.3001(8)	Fe(1) - S(4)	2.2352(7)	
Fe(1) - S(1)	2.2935(7)	Fe(1)-Fe(2)	2.6688(5)	
Fe(2)N(3)	1.660(3)	Fe(2) - N(2)	1.661(3)	
Fe(2) - S(4)	2.2860(7)	Fe(2) - S(2)	2.3019(8)	
N(1) - O(1)	1.167(3)	N(2) - O(2)	1.168(3)	
N(3)-O(3)	1.167(3)			
N(1) - Fe(1) - S(4)	121.67(8)	S(4) - Fe(1) - S(2)	109.75(3)	
S(4) - Fe(1) - S(1)	89.39(3)	S(4) - Fe(1) - S(3)	88.64(3)	
S(1) - Fe(1) - S(3)	175.72(3)	N(1) - Fe(1) - Fe(2)	176.38(8)	
N(2)-Fe(2)-N(3)	119.80(13)	N(2) - Fe(2) - S(4)	108.97(9)	
N(2) - Fe(2) - S(2)	107.69(10)	N(1) - Fe(1) - S(2)	128.58(8)	
S(4) - Fe(2) - S(2)	106.06(3)	O(1) - N(1) - Fe(1)	178.2(3)	
O(3)-N(3)-Fe(2)	172.2(3)	O(2) - N(2) - Fe(2)	169.2(3)	
Fe(1) - S(2) - Fe(2)	71.84(2)			
	Comp	blex 3		
Fe(1) - N(1)	1.641(3)	Fe(1) - S(2)	2.2272(9)	
Fe(1)-S(3)	2.2929(11)	Fe(1)-S(4)	2.2318(9)	
Fe(1) - S(1)	2.2630(10)	Fe(1)-Fe(2)	2.6482(7)	
Fe(2)-N(3)	1.672(3)	Fe(2)-N(2)	1.671(3)	
Fe(2) - S(4)	2.3005(10)	Fe(2)-S(2)	2.2728(10)	
N(1) - O(1)	1.169(4)	N(2) - O(2)	1.160(4)	
N(3)-O(3)	1.164(4)	S(1) - O(4)	1.459(3)	
S(1)-O(5)	1.463(3)			
N(1) - Fe(1) - S(4)	130.49(11)	N(1) - Fe(1) - S(2)	119.30(11)	
S(4) - Fe(1) - S(2)	110.20(4)	S(4) - Fe(1) - S(1)	89.97(3)	
S(4) - Fe(1) - S(3)	88.80(3)	S(1) - Fe(1) - S(3)	177.81(4)	
N(1) - Fe(1) - Fe(2)	174.05(11)	N(2) - Fe(2) - N(3)	121.12(16)	
N(2) - Fe(2) - S(4)	108.41(12)	N(2) - Fe(2) - S(2)	103.28(11)	
S(4) - Fe(2) - S(2)	106.19(4)	O(1) - N(1) - Fe(1)	178.4(3)	
O(3) - N(3) - Fe(2)	169.7(4)	O(2) - N(2) - Fe(2)	173.4(3)	
Fe(1) - S(2) - Fe(2)	72.09(3)			

to become trigonal bipyramidal. Such a geometrical change of the Fe(1) center from complex 1 to 2 may be accompanied by an electronic rearrangement resulting from a short Fe-(1) ···· Fe(2) distance character (Fe(1) ···· Fe(2) distance of 2.6688(5) Å) and two bridging thiolate ligands.¹⁵ Ligand displacement resulting in the formation of complex 1 and {Fe(NO)₂}¹⁰ (PPh₃)₂Fe(NO)₂ was not observed when complex 2 was stirred with 2 equiv of PPh_3 in THF at room temperature for two weeks.9 In contrast, reaction of complex 2 and 2 equiv of [PPN][SPh] in THF solution at room temperature yielded the known $\{Fe(NO)_2\}^9 [(PhS)_2Fe(NO)_2]^{-8}$ and $\{Fe(NO)\}^7 [(NO)Fe(S,S-C_6H_4)_2]^{2-1,6}$ which were characterized by IR, UV-vis, and X-ray single-crystal diffraction. On the basis of a recent study on the electronic structure of the {Fe(NO)₂}⁹ core of dinitrosyliron complex [S_5 Fe(NO)₂]^{-,6} and the reported qualitative MO energy level orderings for the five-coordinate $\{Fe(NO)\}^7$ metal nitrosyl structure types (square pyramidal with bent apical NO, trigonal bipyramidal with linear equatorial NO, and trigonal bipyramidal with linear axial NO),¹⁵ the oxidation levels of the $[S_2Fe(NO)_2]$ and [(NO)FeS₄] motifs of complex 2 may be assigned. For a five-coordinate metal nitrosyl complex, computational studies have suggested that a geometrical change from square pyramidal to trigonal bipyramidal with linear equatorial NO may occur upon changing from an {Fe(NO)}⁶ to an {Fe-(NO)}⁷ electronic structure.¹⁵ Assignment to the oxidation

⁽¹⁵⁾ Eisenberg, R.; Meyer, C. D. Acc. Chem. Res. 1975, 8, 26.

⁽¹⁶⁾ Lee, C.-M.; Chen, C.-H.; Chen, H.-W.; Hsu, J.-L.; Lee, G.-H.; Liaw, W.-F. Submitted for publication.

Homodinuclear Iron Thiolate Nitrosyl Compounds

levels of two Fe atoms of complex 2/2-Me would, then, have to invoke electronic coupling of the $\{Fe(NO)_2\}^9$ [S₂Fe(NO)₂] and the ${Fe(NO)}^7$ [(NO)FeS₄] centers to account for the diamagnetism and the EPR silence in complex 2/2-Me, although we cannot unambiguously rule out the possibility that the dimer formation (complexes 2 and 2-Me) may simply involve partial charge delocalization around the diamondshaped, planar [FeS₂Fe] core in complex 2/2-Me. The electronic configurations of the $\{Fe(NO)\}^7$ and $\{Fe(NO)_2\}^9$ centers are, therefore, best assigned as ${Fe^+(NO^+)}^7$ and {Fe⁺(•NO)₂}, ⁹ respectively. Both centers have S = 1/2 spins that magnetically couple to each other possibly via the pathway of direct d-d orbital overlap (Fe···Fe = 2.6688(5)) Å) and the bridging sulfurs.¹⁷ The relatively strong magnetic interaction ($J = -182 \text{ cm}^{-1}$) leads to the ground state $S_T =$ 0 17

Presumably, complex 2 was produced upon substitution of two carbonyls of $Fe(CO)_2(NO)_2$ by thiolate ligands of complex 1 accompanied by electron transfer from the {Fe- $(NO)_2$ ¹⁰ [Fe(NO)₂] unit of [Fe(CO)₂(NO)₂] to {Fe(NO)}⁶ complex 1. The proposed electron-donating/accepting process between $[Fe(2)(NO)_2]$ and $[(NO)Fe(1)S_4]$ units in the formation of complex 2 is also reflected in the $v_{\rm NO}$ values. On treatment of $[(^{15}NO)Fe(S,S-C_6H_3CH_3)_2]^-$ (1-Me-¹⁵N) with 1 equiv of Fe(CO)₂(NO)₂ in THF, the reaction mixture led to the formation of the dinuclear [(¹⁵NO)Fe(S,S-C₆H₃CH₃)₂- $Fe(NO)_2]^-$ (2-Me-¹⁵N) showing three v_{NO} infrared bands (1682 m, 1705 s, 1736 vs cm⁻¹ (KBr)). Known to serve as a reporter of electron density at iron similarly to CO,^{18a} the lower ν ⁽¹⁵NO) value (1682 cm⁻¹ (KBr)) of the [(¹⁵NO)FeS₄] fragment of 2-Me-¹⁵N, compared to that of 1-Me-¹⁵N (1727 cm⁻¹ (KBr)), would then imply that the [(¹⁵NO)FeS₄] unit of 2-Me-15N is substantially reduced. That is, the {Fe- $(NO)_2$ ¹⁰ [Fe(NO)₂] unit of Fe(CO)₂(NO)₂ acts as a donor motif of -1 charge to 1-Me-¹⁵N in the process of formation of complex 2-Me-¹⁵N. When a THF solution of complex 2-Me⁻¹⁵N is purged with NO, the IR $\nu_{\rm NO}$ peaks (1682 m, 1705 s, 1736 vs cm⁻¹) shift to 1707 s, 1737 vs, and 1761 m cm^{-1} (KBr), consistent with the formation of complex 2-Me (Scheme 2). The magnitude \sim 55 cm⁻¹ of the isotopic shift $(\Delta \nu_{\rm NO})$ is consistent with the calculated position, on the basis only of the difference in masses between ¹⁴NO and ¹⁵NO.

The Fe-N(1) distance of 1.599(2) Å in complex **1** is significantly shorter than those of {Fe(NO)}⁷ [Fe(NO)(S₂-CNMe₂)₂] (Fe-N = 1.705(16) Å)^{18b} and {Fe(NO)}⁸ [Fe(NO)(S₂C₂O₂)₂]²⁻ (Fe-N = 1.690(2) Å).¹⁹ The shorter Fe-S bond distances of 2.226(11) Å (average) in complex **1**, compared with the reported Fe-S bond length of 2.294-(2) Å in [Fe(NO)(S₂CNMe₂)₂],^{18b} are attributed to the strong π -donating ability of the bidentate [S,S-C₆H₄]²⁻ ligands.²⁰

υ(NO): 1761 cm⁻¹ ([Fe(NO)]) υ(NO): 1707, 1737 cm⁻¹ ([Fe(NO)₂], KBr)

Comparable to the shorter Fe-S (average 2.226(1) Å) and Fe-N(O) (1.599(2) Å) bond distances of complex 1, the Fe-(1)-S (average 2.2689(8) Å) and Fe(1)-N(1) (1.632(3) Å) bond distances of complex 2 are disturbed by the coordination of an additional $[Fe(NO)_2]$ unit. The $Fe(1)-S_{bridging}$ bond length (average 2.2409(7) Å, Fe(1)-S(2) = 2.2466(7) Å and Fe(1)-S(4) = 2.2352(7) Å) is shorter than that of Fe(1)- S_{terminal} (average 2.2968(8) Å, Fe(1)-S(3) = 2.3001(8) Å and Fe(1)-S(1) = 2.2935(7) Å). The average Fe(2)-NObond distance ([Fe(NO)₂] unit) of 1.661(3) Å (Fe(2)–N(3)) = 1.660(3) Å and Fe(2)-N(2) = 1.661(3) Å) in complex 2 is within the ranges observed for other structurally characterized {Fe(NO)₂}⁹ complexes **B** (average Fe-N(O) = 1.672-(3) Å),⁷ $[(NO)_2Fe(SePh)_2]^-$ (average Fe-N(O) = 1.669(4) Å),⁸ and $[(NO)_2FeS_5]^-$ (average Fe-N(O) = 1.678(3) Å),⁶ but significantly longer than the Fe-N(O) bond distances of 1.652(3) and 1.650(7) Å found in $\{Fe(NO)_2\}^{10}$ complexes A and $(PPh_3)_2Fe(NO)_2$, respectively.^{7,9} The Fe(1)-N(1) bond length of 1.632(3) Å in complex 2 is shorter than the Fe-NO bond distance (1.670(4) Å) found in [(NO)Fe(TC-5,5)].²¹

The ligand-modified analogue [(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)]⁻ (**4**) is also expected to promote the formation of the diiron sulfinate nitrosyl complex (Scheme 1b). To corroborate this interpretation, we treated a THF solution of complex **4** with 1 equiv of Fe(CO)₂(NO)₂ at 10 °C (Scheme 1c).¹⁴ The IR ν_{NO} stretching frequencies (1726 s, 1762 s, 1783 m cm⁻¹ (KBr)), UV-vis data, and X-ray structural study are consistent with the formation of [(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)Fe(NO)₂]⁻ (**3**). The higher ν_{NO} values of **3** versus **2** would then imply that the S-bonded monosulfinate substantially "neutralizes" the thiolate negative charge of

 ^{(17) (}a) Feig, A. L.; Bautista, M. T.; Lippard, S. T. Inorg. Chem. 1996, 35, 6892. (b) Kahn, O. Molecular Magnetism; VCH: New York, 1993.

 ^{(18) (}a) Horrocks, W. D.; Taylor, R. C. *Inorg. Chem.* 1963, 2, 723. (b) Davies, G. R.; Mais, R. H. B.; Owston, P. G. *Chem. Commun.* 1968, 81.

⁽¹⁹⁾ Qian, L.; Singh, P.; Ro, H.; Hatfield, W. E. Inorg. Chem. 1990, 29, 761.

^{(20) (}a) Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488. (b) Liaw, W.-F.; Hsieh, C.-K.; Lin, G.-Y.; Lee, G.-H. Inorg. Chem. 2001, 40, 3468.

⁽²¹⁾ Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504.

Figure 2. ORTEP drawing and labeling scheme of $[(ON)Fe(S,SO_2-C_6H_4)-(S,S-C_6H_4)Fe(NO)_2]^-$.

complex 4, and donates slightly less electron density to the {Fe(NO)₂}⁹ unit as compared to the two dithiolate donors of complex 2. The ¹H NMR spectrum of complex 3 shows the expected signals for the 1,2-benzenedithiolate and -sulfinate groups involved and displays characteristics of diamagnetic species. As observed in complex 2, the EPR and magnetic measurements of complex 3 also suggest the diamagnetism. Instead of formation of complex 4 and {Fe- $(NO)_2$ ¹⁰ (PPh₃)₂Fe(NO)₂,⁹ the S-bonded monosulfinate complex 3 undergoes oxygen-transfer reaction in THF solution with 2 equiv of PPh₃ (expected to be an O atom abstracting agent) over the course of 90 min at 50 °C to yield complex 2 and triphenylphosphine oxide identified by ³¹P NMR spectroscopy (Scheme 1d).²² This study also shows that complex 2 does not initiate O_2 activation to yield iron sulfinate complex 3 identified by IR spectra; complexes 1 and 4 and an insoluble solid were isolated instead.

The structure of complex 3 is presented in Figure 2. Analysis of the bond angles of complex 3 reveals that Fe(1) is best described as existing in a distorted trigonal bipyramidal coordination environment with NO and sulfinate groups occupying equatorial and axial positions, respectively. Distorted tetrahedral geometry is adopted in Fe(2). Consistent with other published transition-metal sulfinate complexes,²³ the S–O bond lengths average ca. 1.461(3) Å. The relief of the antibonding character from the Fe $d\pi/S$ $p\pi$ overlap overwhelming the S-donating ability from thiolate to sulfinate may rationalize the observed shortening (Δ (Fe-S) = 0.03 Å) of the Fe-S(O₂) bond length in complex 3^{23} Presumably, the change in Fe(1)-Fe(2) distance (2.6625(2) Å for 2 and 2.6482(7) Å for 3) is undoubtedly caused by electronic perturbations from the sulfur oxygenation. The shorter Fe-(1)-Fe(2) distance of 2.6482(7) Å in complex 3 further implies an electronic interaction between the two metal centers, and an assignment of $\{Fe(NO)\}^7 - \{Fe(NO)_2\}^9$

coupling would be realistic. The average N–O bond lengths ([Fe(NO)₂] unit) of 1.167(3) and 1.162(4) Å in complexes **2** and **3**, respectively, are comparable to those of the other structurally characterized {Fe(NO)₂}⁹ complexes **B** (average N–O = 1.161(3) Å),⁷ [(NO)₂Fe(SePh)₂]⁻ (average N–O = 1.162(5) Å),⁸ and [(NO)₂FeS₅]⁻ (average N–O = 1.177(3) Å),⁶ but significantly shorter than the N–O bond lengths of 1.190(7) and 1.190(10) Å (average) observed in {Fe(NO)₂}¹⁰ complexes **A** and (PPh₃)₂Fe(NO)₂, respectively.^{7,9} Consistent with the observation in complex **B**, the hinge angle of the Fe(μ -SR)₂Fe unit, 178.9° for **2** and 178° for **3**, also supports a [(NO)FeS₄]^{-/}[(NO)FeS₃(SO₂)]⁻ moiety bound by an {Fe(NO)₂}⁹ unit.⁸

Conclusion and Comments

Studies on the dinuclear iron thiolate nitrosyl complexes 2/2-Me and 3 have led to the following results.

(1) Dinuclear iron thiolate/sulfinate nitrosyl complexes 2/2-**Me** and **3** stabilized by {Fe(1)(NO)}⁷-{Fe(2)(NO)₂}⁹ coupling were synthesized and characterized by IR, UV-vis, ¹H NMR, and X-ray single-crystal diffraction. The magnetic coupling between the {Fe(NO)}⁷ and {Fe(NO)₂}⁹ centers (*J* value of -182 cm⁻¹ in complex **2**) is responsible for the absence of paramagnetism (SQUID) and the EPR signal in complexes **2/2-Me** and **3**.

(2) The roughly planar structure in the $[FeS_2Fe]$ core of complexes 2 and 3 (hinge angles 178.9° and 178°, respectively) also supports that complex 2/3 is best described as a $[(NO)FeS_4]/[(NO)FeS_3(SO_2)]$ moiety bound by an interacting $\{Fe(NO)_2\}^9$ unit, respectively.

(3) In contrast to the distorted square pyramidal complex 1/1-Me with a S₄ base and an apical NO group,¹⁴ the geometry of Fe(1) in complex 2 becomes trigonal bipyramidal upon complex 1 being coordinated by an additional [Fe(NO)₂] unit.

(4) For the formation mechanism of complex 2/3, the isotopic experiments imply that the {Fe(NO)₂}¹⁰ [Fe(NO)₂] unit of Fe(CO)₂(NO)₂ acts as a donor motif of -1 charge to complex 1/4 to yield the stable diiron thiolate/sulfinate nitrosyl complex 2/3 containing an {Fe(NO)₂}⁹ motif, respectively.

(5) From the viewpoint of the Fe–N(O) and N–O bond distances, the dinitrosyliron {Fe(NO)₂} derivatives having an Fe–N(O) distance of ~1.670 Å and a N–O distance of ~1.165 Å are best assigned as {Fe(NO)₂}⁹ electronic structures. The much shorter Fe–N(O) distance of ~1.650 Å and longer N–O distance of ~1.190 Å probably imply an {Fe(NO)₂}¹⁰ electronic structure.

Isolation and characterization of the dinuclear iron thiolate nitrosyl complexes **2/2-Me** and **3** containing a dinitrosyl iron motif may be useful for taking into consideration the formation/existence of the metalloprotein-bound dinitrosyliron complexes in the anaerobic reaction of iron–sulfur protein and nitric oxide.^{1–5} Also, the findings in this study imply that the dinitrosyl nonheme iron complexes may exist after biosynthetic evolution of NO *in vitro* and from the

⁽²²⁾ Buonomo, R. M.; Font, I.; Maguire, M. J.; Reibenspies, J. H.; Tuntulani, T.; Darensbourg, M. Y. J. Am. Chem. Soc. 1995, 117, 963– 973.

⁽²³⁾ Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. 1998, 31, 451–459.

addition of NO to iron-centered proteins, even without the characteristic isotropic EPR signal of g = 2.03.²⁴

Experimental Section

Manipulations, reactions, and transfers of samples were conducted under nitrogen according to standard Schlenk techniques or in a glovebox (argon gas). Solvents were distilled under nitrogen from appropriate drying agents (hexane and tetrahydrofuran (THF) from sodium/benzophenone, diethyl ether and methylene chloride from CaH₂, and acetonitrile from CaH₂-P₂O₅) and stored in dried, N₂-filled flasks over 4 Å molecular sieves. Nitrogen was purged through these solvents before use. Solvent was transferred to a reaction vessel via a stainless steel cannula under a positive pressure of N2. The reagents iron pentacarbonyl, sodium nitrite, toluene-3,4-dithiol, and 1,2-benzenedithiol (Lancaster/Aldrich) were used as received. Compounds [PPN][Fe(CO)₃(NO)], Fe(CO)₂(NO)₂, and [PPN][(ON)Fe(S,S-C₆H₄)₂] were synthesized and characterized by published procedures.^{9,14} Infrared spectra of the $\nu_{\rm NO}/\nu_{\rm CO}$ stretching frequencies were recorded on a Perkin-Elmer model Spectrum One B spectrometer with sealed solution cells (0.1 mm) and KBr windows. ¹H NMR spectra were recorded on a Varian Unity-500 spectrometer. GBC Cintra 10e spectrophotometers were used to record the UV-vis spectra of each complex. Analyses of carbon, hydrogen, and nitrogen were obtained with a CHN analyzer (Heraeus).

Preparation of [PPN][(ON)Fe(S,S-C₆H₃CH₃)₂] (1-Me). Toluene-3,4-dithiol (0.8 mmol, 100 μ L) was added to a THF solution (5 mL) of [PPN][Fe(CO)₃(NO)] (0.4 mmol, 0.283 g), and the resulting solution was stirred overnight at room temperature in contact with air. The reaction was monitored with FTIR. The IR spectrum (IR (THF): 1785 s ($\nu_{\rm NO}$) cm⁻¹) was assigned to the formation of 1-Me.¹⁴ The solution was then filtered through Celite, and hexane (15 mL) was added to precipitate the dark red-brown solid 1-Me (yield 0.3356 g, 90%). Diffusion of hexane into a THF solution of complex 1-Me at -15 °C for 2 weeks gave dark red-brown crystals suitable for X-ray crystallography. IR (ν_{NO}): 1785 s (THF); 1763 s (KBr) cm⁻¹. ¹H NMR (CDCl₃): δ 2.20 (s) (CH₃); 6.693 (d), 7.51-7.55 (m) (C₆H₃) ppm. Absorption spectrum (THF) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 321 (37700), 500 (4200). Anal. Calcd for C₅₀H₄₂-OFeN₂S₄P₂: C, 64.37; H, 4.54; N, 3.00. Found: C, 64.25; H, 4.19; N, 3.51.

Preparation of [PPN][(ON)Fe(μ -S,S-C₆H₃R)₂Fe(NO)₂] (R = H (2), CH₃ (2-Me)). Compound 1 (0.5 mmol, 0.452 g) was dissolved in 2 mL of dry THF, and 5 mL of a THF solution of Fe(CO)₂(NO)₂ (0.5 mmol) prepared freshly (obtained from reaction of [NO][PF₆] and [PPN][Fe(CO)₃(NO)] in THF in a 1:1 ratio)⁹ was added to it by cannula under a positive pressure of N2. The reaction mixture was stirred at 10 °C for 1 h. The solution was then filtered through Celite, and hexane was added to precipitate a green solid. The solid was washed twice with THF-hexane and dried under vacuum. The yield of complex 2 was 0.418 g (80%). X-ray-quality crystals were obtained by diffusion of hexane into a saturated THF solution of complex 2 at -15 °C. The following are data for 2. IR (v_{NO}): 1766 sh, 1746 vs, 1719 s (THF); 1768 sh, 1748 s, 1720 s (CH₂Cl₂); 1759 m, 1735 vs, 1715 s (KBr) cm⁻¹. ¹H NMR (CDCl₃): δ 6.72–6.75 (m), 7.44–7.62 (m) ppm (C₆H₄). Absorption spectrum (CH₂Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 313 (46619), 363 (15936), 417 (7557), 623 (3059), 790 (1367). Anal. Calcd for C48H38O3N4P2S4Fe2: C, 56.48; H, 3.75; N, 5.49. Found: C, 56.29; H, 3.66; N, 5.55. The following are data for **2-Me**. IR (ν_{NO}): 1764 sh, 1745 vs, 1717 s (THF); 1761 m, 1737 vs, 1707 s (KBr) cm⁻¹.

Table 2. Crystallographic Data of Complexes 2 and 3

	2	3
empirical formula	C48H38Fe2N4O3P2S4	$C_{48}H_{38}Fe_2N_4O_5P_2S_4$
fw	1020.70	1052.70
cryst syst	monoclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/n$
λ, Å (Mo Kα)	0.71073	0.71073
<i>a</i> , Å	10.3579(4)	10.2033(4)
b, Å	24.8932(11)	25.0154(9)
<i>c</i> , Å	18.2655(8)	18.2842(6)
α, deg	90	90
β , deg	93.8840(10)	91.941(1)
γ, deg	90	90
V, Å ³	4698.8(3)	4664.2(3)
Ζ	4	4
$d_{ m calcd}$, g cm ⁻³	1.443	1.499
μ , mm ⁻¹	0.909	0.921
<i>T</i> , K	150(2)	150(1)
R	0.0369 ^a	0.0615 ^a
$R_{\rm w}$	0.1015^{b}	0.1334^{b}
GOF	0.749	1.276

 ${}^{a}R = \sum |(F_{\rm o} - F_{\rm c})| / \sum F_{\rm o} \cdot {}^{b}R_{\rm w} = \{ \sum w(F_{\rm o}^{2} - F_{\rm c}^{2})^{2} / \sum [w(F_{\rm o}^{2})^{2}] \}^{1/2}.$

¹H NMR (CDCl₃): δ 2.088 (s), 2.117 (s) (CH₃); 6.518–6.543 (m), 7.579–7.635 (m) (C₆H₃) ppm. Absorption spectrum (THF) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 370 (10465), 427 (5266), 590 (2038), 650 (2129), 793 (1160). Anal. Calcd for C₅₀H₄2O₃N₄P₂S₄Fe₂: C, 57.26; H, 4.04; N, 5.34. Found: C, 57.66; H, 4.38; N, 4.85.

The analogous [15 N]nitrosyl complexes **1-Me-** 15 N and **2-Me-** 15 N were prepared as above using enriched [PPN][15 NO₂] to prepare the starting material [PPN][Fe(CO)₃(15 NO)].

Preparation of [PPN][(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)Fe-(NO)₂] (3). Compound [PPN][(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)] (0.2 mmol, 0.187 g) was dissolved in 2 mL of dry THF in a 25 mL Schlenk tube, 5 mL of a THF solution of Fe(CO)₂(NO)₂ (0.2 mmol) prepared freshly was added to it by cannula under a positive pressure of N₂, and the resulting solution was stirred at 10 °C for 1 h.¹⁴ The solution was then filtered through Celite, and hexane was added to precipitate a green solid. The solid was washed twice with THFhexane, and the yield of 3 was 0.150 g (71%). X-ray-quality crystals were obtained by diffusion of hexane-diethyl ether into a saturated CH_2Cl_2 solution of complex 3 at -15 °C. IR: 1783 m, 1762 s, 1726 s (v_{NO}); 1192 m, 1055 m (v_{SO}) (KBr); 1790 sh, 1771 s, 1733 m (ν_{NO}) (CH₂Cl₂); 1787 sh, 1768 s, 1733 m (ν_{NO}) (THF) cm⁻¹. ¹H NMR (CD₂Cl₂): δ 6.832 (t), 7.174 (t), 7.252 (t), 7.260 (d), 7.332 (d), 7.722 (d), 7.772 (d) ppm (C₆H₄). Absorption spectrum (CH₂-Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 305 (33836), 363 (14272), 595 (2113), 717 (1468). Anal. Calcd for C₄₈H₃₈O₅N₄P₂S₄Fe₂: C, 54.765; H, 3.64; N, 5.32. Found: C, 54.96; H, 3.49; N, 5.28.

Magnetic Measurements. The magnetic data were recorded on a SQUID magnetometer (MPMS5, Quantum Design) under a 1 T external magnetic field in the temperature range of 2–300 K. The magnetic susceptibility data were corrected with temperature-independent paramagnetism (TIP; 2×10^{-4} cm³ mol⁻¹) and the ligand diamagnetism by the tabulated Pascal constants. The equation for one *J* spin-coupled system is derived from the Hamiltonian and Van Vleck's equation. The magnetic coupling constant *J* of **2** is obtained from the least-squares fit of the magnetic susceptibility data.

Crystallography. Crystallographic data of complexes 2 and 3 are summarized in Table 2. The crystals of 2 and 3 chosen for X-ray single-crystal diffraction studies were measured $0.50 \times 0.50 \times 0.50 \times 0.25 \times 0.25$ mm, respectively. Each crystal was mounted on a glass fiber and quickly coated in epoxy resin. Unit cell parameters were obtained by least-squares refinement. Diffraction measurements for complexes 2 and 3 were carried out at 150(1) K on a SMART CCD diffractometer with graphite-

⁽²⁴⁾ Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217.

Acknowledgment. We gratefully acknowledge financial support from the National Science Council (Taiwan). We appreciate the assistance of Fen-Ling Liao (National Tsing Hua University, Taiwan).

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of [PPN][(NO)Fe-(S,S-C₆H₄)₂Fe(NO)₂] and [PPN][(ON)Fe(S,SO₂-C₆H₄)(S,S-C₆H₄)-Fe(NO)₂]. This material is available free of charge via the Internet at http://pubs.acs.org. The CCDC reference numbers are 235829 and 235830.

IC049105J

⁽²⁵⁾ Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1996.

⁽²⁶⁾ Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.