Inorg. Chem. **2005**, 44, 2570−2572

Spin Density Distribution in Five- and Six-Coordinate Iron(II)−**Porphyrin NO Complexes Evidenced by Magnetic Circular Dichroism Spectroscopy**

V. K. K. Praneeth,† Frank Neese,‡ and Nicolai Lehnert*,†

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, *24098 Kiel, Germany, and Max-Planck Institut fu¨r Bioanorganische Chemie,* Stiftstrasse, 34-36, 45470 Mülheim an der Ruhr, Germany

Received January 28, 2005

Using magnetic circular dichroism (MCD) spectroscopy together with DFT calculations, the spin density distributions in fivecoordinate [Fe(TPP)(NO)] (**I**) and six-coordinate [Fe(TPP)(MI)(NO)] $(\mathbf{II}, \mathbf{M}) = 1$ -methylimidazole) are defined. In the five-coordinate complex, a strong Fe–NO σ bond between π^*_{h} and d_z2 is present that leads to a large transfer of spin density from the NO ligand to Fe(II) corresponding to an electronic structure with noticeable Fe(I)–NO⁺ character. Consequently, the MCD spectrum is dominated by paramagnetic **C**-term contributions. On coordination of the sixth ligand, the spin density is pushed back from the iron toward the NO ligand, resulting in an Fe(II)−NO(radical) type of electronic structure. This is reflected by the fact that the MCD spectrum is dominated by diamagnetic contributions.

Iron-porphyrin NO complexes play a key role in the mechanisms of many metalloproteins.1,2 Hence, synthetic model systems for these species have been investigated in great detail.³ Corresponding iron(II)-NO complexes are still the focus of many ongoing studies because of their interesting spectroscopic and photochemical properties⁴ and their mechanistic significance.3 In this communication, the low-temperature magnetic circular dichroism (MCD) spectra of fivecoordinate $[Fe^{II}(TPP)(NO)]$ (**I**, $TPP = tetraphenyloorphyrin)$ and six-coordinate $[Fe^{II}(TPP)(MI)(NO)]$ (**II**, MI = 1-methylimidazole) are reported for the first time and analyzed with the help of density functional (DFT) calculations. Both complexes **I** and **II** have $S = \frac{1}{2}$ ground states.⁵ From their

different EPR spectra, Wyllie et al. speculated that these systems have different electronic ground states, 6 but no further evidence for this conjecture is provided. Judging from the MCD spectra and DFT calculations presented here, this difference in electronic structure of **I** and **II** is elucidated.

MCD intensity is generally considered to arise from three different mechanisms.7 The **C** term is temperature-dependent and originates from spin-orbit coupling of the ground and target excited states with other intermediate excited states. On the other hand, the **A** and **B** terms are temperatureindependent and are also present in diamagnetic materials. Thus, the paramagnetic (**C**-term) contribution to the total spectrum can be extracted by subtracting MCD data taken at variable temperatures. Figure 1 shows the MCD spectra of five-coordinate (5C) $[Fe^{II}(TPP)(NO)]$ (top) and sixcoordinate (6C) $[Fe^{II}(TPP)(MI)(NO)]$ (bottom) in comparison. As one can see, these data are very different. In the case of **I**, the **C**-term spectrum obtained from temperaturedependent data is identical in appearance to the total spectrum. Consequently, the MCD response is dominated by the paramagnetic **^C**-term contribution. Because spinorbit coupling is weak for light elements such as carbon, nitrogen, and oxygen, the **C**-term nature of the spectrum indicates that a significant amount of spin density of the unpaired electron in **I** must be located on the formally iron- (II) center. This is dramatically different for the 6C complex **II**. From Figure 1, bottom, one can see that the deconvoluted MCD **C**-term spectrum is different from the total spectrum, which is, in fact, dominated by temperature-independent diamagnetic contributions (**A** and **B** terms). These are generally observed for diamagnetic metal porphyrin complexes because of the occurrence of (practically) degenerate excited states in the porphyrin dianion with approximate *D*⁴*^h*

^{*} To whom correspondence should be addressed. E-mail: nlehnert@ ac.uni-kiel.de.

[†] Christian-Albrechts-Universität Kiel.

[‡] Max-Planck Institut fu¨r Bioanorganische Chemie.

⁽¹⁾ McCleverty, J. A. *Chem. Re*V*.* **²⁰⁰⁴**, *¹⁰⁴*, 403.

^{(2) (}a) Richardson, D. J.; Watmough, N. J. *Curr. Opin. Chem. Biol.* **1999**, *3*, 207. (b) Ding, X. D.; Weichsel, A.; Andersen, J. F.; Shokhireva, T. K.; Balfour, C.; Pierik, A. J.; Averill, B. A.; Montfort, W. R.; Walker, F. A. *J. Am. Chem. Soc.* **1999**, *121*, 128. (c) Poulos, T. L.; Li, H.; Raman, C. S. *Curr. Opin. Chem. Biol.* **1999**, *3*, 131.

^{(3) (}a) Ford, P. C.; Lorkovic, I. M. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 993. (b) Wyllie, G. R. A.; Scheidt, R. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 1067.

⁽⁴⁾ Cheng, L.; Novozhilova, I.; Kim, C.; Kovalevsky, A.; Bagley, K. A.; Coppens, P.; Richter-Addo, G. B. *J. Am. Chem. Soc.* **2000**, *122*, 7142.

⁽⁵⁾ Westcott, B. L.; Enemark, J. H. *Transition Metal Nitrosyls*; Solomon, E. I., Lever, A. B. P., Eds.; Wiley: New York, 1999; Vol. 2, pp 403- 450.

⁽⁶⁾ Wyllie, G. R. A.; Schulz, C. E.; Scheidt, W. R. *Inorg. Chem.* **2003**, *42*, 5722.

^{(7) (}a) Cheesman, M. R.; Greenwood, C.; Thomson, A. J. *Ad*V*. Inorg. Chem.* **1991**, *36*, 201. (b) Neese, F.; Solomon, E. I. *Inorg. Chem.* **1999**, *38*, 1847. (c) Oganesyan, V. S.; George, S. J.; Cheesman, M. R.; Thomson, A. J. *J. Chem. Phys.* **1999**, *110*, 762.

Table 1. Comparison between Experimental and Calculated Properties of Fe(II)-Porphyrin NO Adducts (All $S = \frac{1}{2}$) *a*

	geometric parameters $(\AA$ or deg)				$\nu(N-O)$	spin density ^b		Mössbauer parameters (mm/s)		EPR parameters				
molecule		$Fe-N$ $N=0$	$Fe-N-O$	$Fe-X$	$\rm (cm^{-1})$	Fe	N _O	δ	ΔE_{α}	g_{max}	g_{mid}	g_{\min}	orientation	ref
Fe(TPP)(NO) $(I)^c$ $Fe(OEP)(NO)^c$	1.72 1.73	1.12 1.17	149 143	$\overline{}$ -	1697 1673^a			0.33^a 0.35^a	1.25^a 1.26^a	2.102	2.064	2.010	2.106 2.057 2.015 $g_{min}/Fe-N=8^{\circ}$	11a 11 _b
$Fe(P)(NO)$ (Ia) BP86/TZVP Fe(P)(NO) ^d	1.70	1.18	146	$\overline{}$	1703	$+0.47$	$+0.53$	0.36	0.73	2.043			2.007 1.997 $g_{min}/Fe-N = 24^{\circ}$ 2.049 2.025 2.004 $g_{min}/Fe-N = 20^{\circ}$	
Fe(TPP)(MI)(NO) $(II)^c$.75	1.18	138	2.17	1630			0.34 ^a	0.73°	2.079		2.004 1.972		11d
$Fe(P)(MI)(NO)$ (IIa) BP86/TZVP	.73	1.19	140	2.18	1662	$+0.21$	$+0.78$			2.031	1.998	1.972	$g_{mid}/Fe-N = 41^{\circ}$ $g_{min}/Fe-N = 49^{\circ}$	
Fe(P)(MI)(NO) ^d								0.38	0.57	2.024	.991	1.955	g_{mid} /Fe $-N = 29^{\circ}$	

a For abbreviations, see text. Fe-X is the Fe-N(imidazole) distance. Because there is an ambiguity about the N-O stretch in five-coordinate [Fe(TPP)(NO)] (values of 170011a and 16703b cm-¹ have been reported), we have reinvestigated the IR spectra of **I** and **II** as shown in Figure S3. For [Fe(OEP)(NO)], *ν*(N-O) is taken from ref 6. Experimental Mössbauer parameters are taken from ref 6. *b* Spin densities are calculated at the B3LYP/LanL2DZ* level (cf. Experimental Details in the Supporting Information). ^{*c*} Structural data: [Fe(TPP)(NO)] and [Fe(OEP)(NO)], ref 3b; [Fe(TPP)(MI)(NO)], ref 6. ^{*d*} Calculated with B3LYP and the following basis sets: Fe, CP(PPP); N, EPR-II; C and O, TZVP; H, TZV (see Supporting Information).

Figure 1. MCD spectra of [Fe^{II}(TPP)(NO)] (top) and [Fe^{II}(TPP)(MI)-(NO)] (bottom) measured in a butyronitrile/propionitrile glass.

symmetry.⁸ This indicates that the unpaired spin density is mostly located on the NO unit in the 6C case, which leads to the temperature-independent MCD spectrum of diamagnetic low-spin Fe(II)-porphyrins. Detailed assignments of the observed electronic transitions are complicated and will therefore be presented in a forthcoming full paper.

The fact that the paramagnetic complex **II** exhibits such low **C**-term intensity is surprising and indicates a different ground state for **II** compared to **I**. To elucidate the electronic structural origin of this difference, DFT calculations at the BP86/TZVP level have been applied using the model systems $[Fe^{II}(P)(NO)]$ (**Ia**) and $[Fe^{II}(P)(NO)(MI)]$ (**IIa**, P = porphine; cf. Figure S4, Supporting Information).⁹ As shown in Table

Figure 2. Contour plots of important α -MOs of $[Fe^{II}(P)(MI)(NO)]$ (left) and $[Fe^{II}(P)(NO)]$ (right) calculated with BP86/TZVP.

1, the obtained agreement between the calculated and experimental structures is excellent. In complex **II**, the Fe-NO bond is dominated by two interactions. First, a pseudo- σ donation from the singly occupied π^* _h orbital of NO (h = horizontal, the π^* orbital in the Fe-N-O plane) into the unoccupied d_{z} ² orbital of iron(II) is present.⁹ The corresponding bonding combination, α $\langle 123 \rangle$, has an additional admixture of d_{xz} and is therefore labeled $\pi^*_{h} d_z^2 / d_{xz}$. It is the HOMO of **II** (cf. Figure 2, left). Because d_z ² also interacts with the σ donor orbital of the bound 1-methylimidazole, this competition for d_{z} ² explains the strong trans effect of NO on *σ*-donor ligands. This can also

⁽⁸⁾ Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In *The Porphyrins*; Dolphin, D., Ed.; Academic Press: New York, 1978; Vol. III.

⁽⁹⁾ The model systems and the applied coordinate system are shown in Figure S4. The complete MO diagram and contour plots of **II** are shown in Figures S6 and S7.

COMMUNICATION

be seen from the corresponding antibonding orbital, d_{*z*}/d_{*xz*} π ^{*}h (α (129)). The second interaction is a mediumstrength π back-bond between the π^*_{γ} orbital of NO (v = vertical the π^* orbital perpendicular to the Fe-N-O plane) vertical, the π^* orbital perpendicular to the Fe-N-O plane) and the d_{yz} orbital of iron.⁹ Corresponding bonding $(\alpha \langle 118 \rangle)$ and antibonding $(\alpha \langle 126 \rangle)$ orbitals are also shown in Figure 2. To calculate accurate spin densities for **IIa**, the B3LYP functional was applied, as pure density functionals tend to clearly overestimate metal-ligand covalencies. Importantly, only a small amount of spin population is obtained on iron $(+0.2)$, which is mostly due to the Fe-NO σ bond, whereas the contribution from the back-bond is small. As shown in Table 1, most spin population is actually located on the coordinated NO ligand, in agreement with the MCD result. Altogether, a satisfactory theoretical description of the sixcoordinate complex **II** is obtained. This is also reflected by the calculated $N-O$ stretching frequency, which is in good agreement with experiment. Therefore, complex **II** must be described as the prototype of a low-spin $Fe(II)-NO(radical)$ adduct.

The interesting question is then how this electronic structure changes when going to the five-coordinate complex **I**. The most important difference is that, because of the absence of the sixth ligand, the d*^z* ² orbital strongly decreases in energy.5 Hence, mixing with *π** ^h becomes very strong such that the HOMO $d_z^2 \pi^*_{h} (\alpha \langle 101 \rangle)$ has mostly d_z^2 character
(cf. contour in Figure 2, right). Because of mixing with (cf. contour in Figure 2, right). Because of mixing with porphyrin orbitals, an additional 18% d*^z* ² occurs in orbital α (98) (π ^{*}_h contribution = 3%). In total, this corresponds to a net transfer of about one-half of an electron to the Fe(II) a net transfer of about one-half of an electron to the Fe(II) center. Hence, the complex has noticeable $Fe(I)-NO^{+}$ character. This leads to the occurrence of a large amount of positive spin density on iron (cf. Table 1) and explains the **C**-term MCD spectrum obtained for **I**. In agreement with this description, the $N-O$ stretching frequency is shifted to higher energy by ∼70 cm-¹ in **I** compared to **II** (cf. Table 1). On the other hand, the *π* back-bond is comparable for **I** and **II**, as shown in Figure 2, right.¹⁰ From single-crystal EPR spectroscopy, the spin populations in the related complex [Fe(OEP)(NO)] have been estimated to $+0.9$ on iron and ⁺0.1 on NO.11b Similar values have been obtained in a recent computational study using pure density functionals.12 However, this would correspond to an almost complete electron transfer from NO to iron, leading to a low-spin

Fe(I)-NO⁺ with a d^7 configuration on iron. In contrast, the occurrence of the N-O stretching frequency below 1700 cm^{-1} in **I** shows that this is a clear overestimate. This is also not in agreement with the calculations presented here, which show an even distribution of the unpaired electron over the $Fe-N-O$ unit. In a previous DFT study, it was claimed that complex **I** has $Fe(III)-NO^-$ character.¹³ This, however, is not in agreement with our experimental and DFT results.

The results presented above are also useful for evaluating the very different EPR spectra of five- and six-coordinate Fe(II)-porphyrin NO adducts.11 For complex **^I**, a characteristic spectrum is observed with hyperfine lines from the nitrogen of NO on the smallest *g* value *g*min. The sixcoordinate complex **II** shows a broader spectrum, where hyperfine lines are observed for the nitrogens of NO and of the trans-N donor on *g*_{mid}. In addition, different *g* values are obtained for these complexes. It was claimed that these differences in the EPR spectra are due to different orientations of the g tensor with respect to the molecular frame.^{6,11c} In agreement with these results, our calculations show that the strong Fe $-NO$ σ interaction in **I** mediated by the orbital $d_z^2 \pi^*$ orients the *g* tensor along the Fe-N(O) bond as shown in Table 1. In this case, the axis of g_{min} (the smallest *^g* value) is almost aligned with the Fe-N(O) bond, which leads to the occurrence of the experimentally observed hyperfine lines on g_{min} . In complex \mathbf{II} , the *g* tensor is rotated away from the Fe-N(O) bond, with g_{mid} now being closest to the Fe-N(O) and Fe-N(imidazole) axes. Correspondingly, this *g* value now shows strong hyperfine splittings. We have also calculated Mössbauer parameters (cf. Table 1) and the 14N hyperfine tensor *A* of the coordinated NO (cf. Table S2, Supporting Information), which show acceptable agreement with experiment, further indicating that a good theoretical description of **I** and **II** is achieved.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft (DFG, Grant LE 1393/ 1) and the Fonds der Chemischen Industrie. F.N. acknowledges financial support by the Max Planck Gesellschaft and the DFG (SPP 1137).

Supporting Information Available: Experimental details, UVvis absorption vs MCD spectra of **I** and **II** including Gaussian fits, IR spectra of **I** and **II**, MO diagram of **II**, and contour plots. This material is available free of charge via the Internet at http://pubs.acs.org.

IC050144K

⁽¹⁰⁾ Small differences in *π* back-bonding are observed for the *â*-MOs. The somewhat increased β -back-bond for **I** compared to **II** leads to the transfer of a small additional amount of spin density from NO to iron in **I** relative to **II**. This will be discussed in detail in the forthcoming full paper.

^{(11) (}a) Wayland, B. B.; Olson, L. W. *J. Am. Chem. Soc.* **1974**, *96*, 6037. (b) Hayes, R. G.; Ellison, M. K.; Scheidt, W. R. *Inorg. Chem.* **2000**, *39*, 3665. (c) Patchkovskii, S.; Ziegler, T. *Inorg. Chem.* **2000**, *39*, 5354. (d) Hu¨ttermann, J.; Burgard, C.; Kappl, R. *J. Chem. Soc., Faraday Trans.* **1994**, *90*, 3077. (e) Zhang, Y.; Gossman, W.; Oldfield, E. *J. Am. Chem. Soc.* **2003**, *125*, 16387.

⁽¹²⁾ Zhang, Y.; Mao, J.; Godbout, N.; Oldfield, E. *J. Am. Chem. Soc.* **2002**, *124*, 13921.

⁽¹³⁾ Rovira, C.; Kunc, K.; Hutter, J.; Ballone, P.; Parrinello, M. *J. Phys. Chem. A* **1997**, *101*, 8914.