Inorg. Chem. **2005**, 44, 3762−3766

Low-Dimensional Ferromagnetic Properties of SrCuV₂O₇ and BaCuV₂O₇

Alexei A. Belik,*,†,‡ Masaki Azuma,†,‡ Akira Matsuo,§ Koichi Kindo,§ and Mikio Takano†

*Institute for Chemical Research, Kyoto Uni*V*ersity, Uji, Kyoto-fu 611-0011, Japan, PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan, and KYOKUKEN, Osaka Uni*V*ersity, Toyonaka, Osaka 560-8531, Japan*

Received January 31, 2005

The crystal structure of isostructural $SrCuV₂O₇$ and BaCuV₂O₇ consists of one-dimensional (1D) zigzag chains of Cu atoms with next-nearest-neighbor interaction. The main intrachain interaction was found to be ferromagnetic and estimated at 4.6 K (Hamiltonian $H \sim -2J$). SrCuV₂O₇ and BaCuV₂O₇ are new examples in the scanty family of 1D ferromagnets. Isothermal magnetization measurements at 0.08 K and specific heat data showed that MCuV₂O₇ exhibits antiferromagnetic long-range ordering at $T_N = 1.36$ K for SrCuV₂O₇ and $T_N = 1.47$ K for BaCuV₂O₇. Spin-flop transitions were observed in the antiferromagnetic state at 0.08 K near 0.5 kOe in SrCuV₂O₇ and 2 kOe in BaCuV₂O₇. In air, SrCuV₂O₇ and BaCuV₂O₇ melted incongruently above 983 and 1018 K, respectively.

1. Introduction

The properties of low-dimensional magnets continue to be of great interest to physicists and chemists.¹ One of the reasons for such interest is to understand superconducting properties of the two-dimensional copper oxides. Of the many possible combinations of dimensionality and spin quantum number (*S*), one combination which has been conspicuous by the lack of realizations is the one-dimensional (1D) $S =$ $1/2$ Heisenberg ferromagnet.²⁻⁴ The numerous studies on 1D magnetic systems have been on antiferromagnets, for example, $S = 5/2$ Heisenberg (Mn²⁺), $S = 1$ (Ni²⁺, Haldane system), $S = 1/2$ Ising (Co²⁺), and $S = 1/2$ Heisenberg (Cu²⁺) systems. However, there are only few examples of the 1D *S* $= 1/2$ Heisenberg ferromagnets, for example, $(CH_3)NCuCl_3^2$
 $[(CH_3)NH]_2CuCl_2^2$ KaCuessZne u.E. (diluted two-dimen- $[(CH₃)₃NH]₃Cu₂Cl₇,²K₂Cu_{0.59}Zn_{0.41}F₄ (diluted two-dimensional$ sional ferromagnet),⁵ some organic radical compounds, $3,4,6$ and the most studied $(C_6H_{11}NH_3)CuBr_3$ and $(C_6H_{11}NH_3)$ -

- (1) Lemmens, P.; Gu¨ntherodt, G.; Gros, C. *Phys. Rep.* **2003**, *375*, 1.
- (2) Landee, C. P.; Willett, R. D. *Phys. Re*V*. Lett.* **¹⁹⁷⁹**, *⁴³*, 463.
- (3) Takeda, K.; Konishi, K.; Nedachi, K.; Mukai, K. *Phys. Re*V*. Lett.* **¹⁹⁹⁵**, *74*, 1673.
- (4) Mukai, K.; Suzuki, K.; Ohara, K.; Jamali, J. B.; Achiwa, N. *J. Phys. Soc. Jpn.* **1999**, *68*, 3078.
- (5) Takeda, K.; Okuda, Y.; Yamada, I., Haseda, T. *J. Phys. Soc. Jpn.* **1981**, *50*, 1917.
- (6) Takeda, K.; Hamano, T.; Kawae, T.; Hidaka, M.; Takahashi, M.; Kawasaki, S.; Mukai, K. *J. Phys. Soc. Jpn.* **1995**, *64*, 2343.

CuCl₃.⁷⁻⁹ The 1D $S = 1/2$ Ising ferromagnets are presented,
for example, by CoCl^{*2}H, Q, CoRr.^{*2}H, Q, RbEeCl^{*2}H, Q for example, by CoCl₂*2H₂O, CoBr₂*2H₂O, RbFeCl₃*2H₂O, and $CoCl₂(NC₅H₅)₂$.⁷

1D ferromagnets are particularly of interest because quantum effects are expected to be most pronounced in them. The anisotropies of *J* values (Ising-type contribution), even if they are very small, give rise to a qualitative change in the thermodynamical quantities, especially in an applied field, for 1D ferromagnets in comparison with 1D antiferromangets.^{2,3,9} Theoretically, the 1D $S = 1/2$ Heisenberg ferromagnet has been investigated a lot.¹⁰⁻¹² However, the comparison of theory and experiments is restricted by a very small number of the 1D $S = 1/2$ Heisenberg ferromagnets.

Magnetic sublattice in two isostructural compounds $SrCuV₂O₇$ (space group *Pnma*, $a = 14.470$ Å, $b = 5.4704$ Å, and $c = 7.4201 \text{ Å}$ ¹³ and BaCuV₂O₇,¹⁴ whose magnetic properties have not been investigated yet, can be presented properties have not been investigated yet, can be presented, from the structural point of view, by a model of the double * Author to whom correspondence should be addressed. Present ad-
chain or by a model of the uniform zigzag chain with next-

- (7) Haines, D. N.; Drumheller, J. E. *Phys. Re*V*. Lett.* **¹⁹⁸⁷**, *⁵⁸*, 2702.
- (8) Kopinga, K.; Delica, T.; Leschke, H.; Riedel, I. *Phys. Re*V*. B* **¹⁹⁹³**, *47*, 5447.
- (9) Campana, L. S.; Caramico D'Auria, A.; Esposito, U.; Kamieniarz, G. *Phys. Rev. B* **1990**, *41*, 6733. (10) Bonner, J. C.; Fisher, M. E. *Phys. Rev. A* **1964**, *135*, 640.
- (10) Bonner, J. C.; Fisher, M. E. *Phys. Re*V*. A* **¹⁹⁶⁴**, *¹³⁵*, 640.
- (11) Johnson, J. D.; Bonner, J. C. *Phys. Re*V*. B* **¹⁹⁸⁰**, *²²*, 251.
- (12) Takahashi, M.; Turek, P.; Nakazawa, Y.; Tamura, M.; Nozawa, K.; Shiomo, D.; Ishikawa, M.; Kinoshita, M. *Phys. Re*V*. Lett.* **¹⁹⁹¹**, *⁶⁷*, 746.
- (13) Vogt, R.; Mueller-Buschbaum, H. *Z. Anorg. Allg. Chem.* **1991**, *594*, 127
- (14) Vogt, R.; Mueller-Buschbaum, H. *J. Less-Common Met.* **1991**, *171*, 35.

dress: International Center for Young Scientists, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan. E-mail: Alexei.BELIK@nims.go.jp.

[†] Kyoto University.

[‡] Japan Science and Technology Agency.

[§] Osaka University.

Figure 1. (a) The double Cu chain in $SrCuV₂O₇$ along the *b* axis (or uniform zigzag chain with next-nearest-neighbor interaction). (b) The arrangement of the double Cu chains in the crystal structure of $SrCuV₂O₇$: projection along the *b* axis.

nearest-neighbor (NNN) interaction¹⁵ (Figure 1a) along the *b* axis (Figure 1b). These models are described by two exchange constants, J_1 and J_2 . There is one Cu site in $MCuV₂O₇$ (M = Sr and Ba), and the Cu atom has a square pyramidal coordination. The Cu atoms are connected with each other through super-superexchange interactions¹⁶ including two $Cu-O \cdots O-Cu$ paths, where the $O \cdots O$ is an edge of $VO₄$ groups (Figure 1a). The basal planes of the CuO₅ pyramids lie on one plane and the Cu $-$ O \cdots O angles are 134.3° and 134.6° (for SrCuV₂O₇). Such a type of connection between magnetic ions usually gives rather strong antiferromagnetic interaction (J_1 ~ −50 K, Hamiltonian *H* $= -2J_1 \Sigma S_i S_{i+1}$ ¹⁷ On the other hand, the connection between Cu atoms responsible for J_2 includes long apical Cu-O bonds (Figure 1a), and one of the Cu $-$ O \cdot \cdot \cdot O angles (149.3 \circ and 98.0° for $SrCuV₂O₇$) is close to 90°. $J₂$ was therefore expected to be very small. As a result, we expected vanadates $MCuV₂O₇$ (M = Sr and Ba) to be simple uniform 1D *S* = 1/2 linear chain Heisenberg antiferromagnets such as phosphates $SrCuP₂O₇¹⁷$ and $BaCuP₂O₇¹⁸$ However, phosphates $SrCuP₂O₇$ and $BaCuP₂O₇$ have different crystal structures in comparison with vanadates $MCuV₂O₇$ (M = Sr and Ba).

Surprisingly, magnetic properties of $MCuV₂O₇$ (M = Sr and Ba) resembled those observed for the 1D $S = 1/2$ Heisenberg ferromagnets. In This Paper, we present the results of specific heat and dc and ac magnetization measurements in different static magnetic fields. These results evidence on the 1D ferromagnetic properties of $MCuV₂O₇$ $(M = Sr \text{ and } Ba)$. SrCuV₂O₇ and BaCuV₂O₇ are new examples in the scanty family of the 1D $S = 1/2$ ferromagnets.

2. Experimental Section

Synthesis. SrCuV₂O₇, BaCuV₂O₇, and BaZnV₂O₇ were synthesized from stoichiometric mixtures of $SrCO₃$ (99.99%), BaCO₃ (99.99%), CuO (99.9%), ZnO (99.99%), and V_2O_5 (99.8%) by the solid-state method. The mixtures were pressed into pellets and allowed to react at 943 K (SrCuV₂O₇ and BaCuV₂O₇) and 873 K $(BaZnV₂O₇)¹⁹$ for 200 h with four intermediate grindings on Pt plates. X-ray powder diffraction (XRD) data collected with a RIGAKU RINT 2500 diffractometer (2 θ range of 5-60°, a step width of 0.02°, and a counting time of 1 s/step) showed that the three samples were monophasic. $SrCuV₂O₇$ and $BaCuV₂O₇$ were khaki green and BaZnV₂O₇ was pink. BaZnV₂O₇ is isotypic¹⁹ with $BaCuV₂O₇$ and can be used to estimate the lattice contribution in the specific heat. $SrZnV₂O₇$ crystallizes, however, in a different structure type (space group $P2_1/n$).²⁰

Magnetic and Specific Heat Measurements. Direct current (dc) magnetic susceptibility ($\chi = M/H$) was measured on a Quantum Design SQUID magnetometer (MPMS XL) between 2 and 300 K in an applied field of 100 Oe under both zero-field-cooled (ZFC) and field-cooled (FC) conditions. Isothermal magnetization curves were recorded between -50 and $+50$ kOe at 2, 3, 4, 5, 10, and 15 K. Magnetization data at 0.08 K were taken in a pulsed magnetic field up to 150 kOe by an induction method using a multilayer pulse magnet at KYOKUGEN, Osaka University. Alternating current (ac) susceptibility measurements were performed with a Quantum Design PPMS instrument in the temperature range of 1.8- 30 K (on cooling) at frequencies (*f*) of 10, 10^2 , 5×10^2 , and 10^3 Hz, applied oscillating magnetic field (H_{ac}) of 1 Oe, and different static magnetic fields (H_{dc}) ranging from 0 to 20 kOe. Specific heat, C_p versus *T*, of SrCuV₂O₇ and BaCuV₂O₇ was recorded between 0.45 and 300 K (between 1.8 and 170 K for BaZnV₂O₇) on cooling at zero magnetic field by a pulse relaxation method using a commercial calorimeter (Quantum Design PPMS). At magnetic fields of 5, 10, 30, 50, and 90 kOe, the C_p versus T data were taken between 2 and 21 K for $SrCuV₂O₇$ and $BaCuV₂O₇$.

Thermal Analysis. Thermal stability of $SrCuV₂O₇$, BaCuV₂O₇, and BaZn V_2O_7 was examined under air with a MacScience TG-DTA 2000 instrument. The samples were placed in Pt crucibles, heated, and then cooled with a rate of 10 K/min. $SrCuV₂O₇$ was heated to 1013 K, BaCuV₂O₇ up to 1058 K, and BaZnV₂O₇ up to 1073 K. Differential thermal analysis (DTA) showed peaks at 993 and 998 K on heating and at 976 and 917 K on cooling for $SrCuV₂O₇$; at 1029, 1033, and 1047 K on heating and a very broad peak at 887 K on cooling for $BaCuV₂O₇$; and at 1047 K on heating and broad peaks at 978 and 905 K on cooling for BaZnV₂O₇. Such inconsistency of heating and cooling behavior suggests that $SrCuV₂O₇$, BaCuV₂O₇, and BaZnV₂O₇ melt incongruently above 983, 1018, and 1033 K, respectively. No structural phase transition was detected by DTA in BaZnV₂O₇ at 943 K.¹⁹

⁽¹⁵⁾ Maeshima, N.; Okunishi, K. *Phys. Re*V*. B* **²⁰⁰⁰**, *⁶²*, 934.

⁽¹⁶⁾ Whangbo, M.-H.; Koo, H.-J.; Dai, D.; Jung, D. *Inorg. Chem*. **2003**, *42*, 3898.

⁽¹⁷⁾ Belik, A. A.; Azuma, M.; Takano, M. *Inorg. Chem*. **2003**, *42*, 8572. (18) Belik, A. A.; Azuma, M.; Takano, M. *J. Magn. Magn. Mater.* **2004**, *²⁷²*-*276*, 937.

⁽¹⁹⁾ International Centre for Diffraction Data. Powder Diffraction File No. 46-0759.

⁽²⁰⁾ Velikodnyi, Yu. A.; Myrashova, E. V.; Trunov, V. K. *Kristallografiya* **1989**, *34*, 607.

Figure 2. (a) The χ vs *T* (symbols with line) and χ^{-1} vs *T* (symbols) curves measured at 100 Oe for $SrCuV₂O₇$ and BaCuV₂O₇. The solid line for the χ^{-1} vs *T* curve shows the fit to eq 2 and the dashed line presents the fit to eq 1 for BaCuV₂O₇ as an example. (b) The χ *T* vs *T* curves between 2 and 50 K for SrCuV₂O₇ and BaCuV₂O₇. Inset gives the χ^{-1} vs *T* curves for $SrCuV₂O₇$ and $BaCuV₂O₇$ between 2 and 300 K with the Curie-Weiss fit for BaCuV₂O₇.

3. Results and Discussion

Figure 2a depicts the χ versus *T* and χ^{-1} versus *T* curves for $SrCuV₂O₇$ and $BaCuV₂O₇$. No noticeable difference was found between the ZFC and FC curves. The *ø* versus *T* curves showed no broad maxima characteristic of low-dimensional antiferromagnets. The χ values increased with decreasing temperature in the whole temperature range of $2-300$ K. Thus, $SrCuV₂O₇$ and $BaCuV₂O₇$ are not low-dimensional antiferromagnets. The χ^{-1} versus *T* data at 15-300 K were fitted by a modified Curie-Weiss expression

$$
\chi(T) = \chi_0 + C/(T - \theta) \tag{1}
$$

with temperature independent term $\chi_0 = -6(7) \times 10^{-6}$ cm³/
mol. Curie constant $C = 0.440(2)$ cm³K/mol. and Weiss mol, Curie constant $C = 0.440(2)$ cm³K/mol, and Weiss
constant $\theta = 3.4(2)$ K for SrCuV-O- and $\chi_0 = -3.17(2)$ × constant θ = 3.4(2) K for SrCuV₂O₇ and χ ₀ = -3.17(2) \times 10^{-4} cm³/mol, $C = 0.4219(5)$ cm³K/mol, and $\theta = 3.75(7)$
K for BaCuV₂O₂. The positive Weiss constant indicates that K for $BaCuV₂O₇$. The positive Weiss constant indicates that the main interaction between Cu atoms is ferromagnetic. Below about 15 K, the χ^{-1} versus *T* curves deviated from the Curie-Weiss law. The similar behavior of the χ^{-1} versus *T* curves was observed in other 1D ferromagnets.3,4,12 The *ø T* versus *T* curve for $SrCuV₂O₇$ demonstrated the sharp increase at low-temperature region while the χ *T* versus *T* curve for BaCuV₂O₇ exhibited a broad maximum at 3 K (Figure 2b). Taking into account the structural features of $SrCuV₂O₇$ and BaCuV₂O₇, the positive Weiss constants are the first indication that $SrCuV₂O₇$ and $BaCuV₂O₇$ are a 1D $S = 1/2$ ferromagnetic system.

To roughly estimate the main intrachain interaction, we used the model of the uniform 1D $S = 1/2$ Heisenberg

Figure 3. Isothermal magnetization curves, *M* vs *H*, at 2, 3, 4, 5, 10, and 15 K for (a) SrCuV₂O₇ and (b) BaCuV₂O₇. The dotted lines are the $S =$ 1/2 Brillouin function with $g = 2.1$ at 2 K.

ferromagnet,^{3,4} that is, assuming that J_1 is dominant $(J_1 \gg$ *J*₂) or *J*₂ is dominant $(J_2 \gg J_1)$

$$
\chi(T) = \chi_0 + \frac{N g^2 \mu_B^2}{4k_B T} \left[1 + \left(\frac{J_1}{k_B T} \right) \right]
$$
 (2)

where *N* is Avogadro's number, *g* is the spectroscopic splitting factor (g -factor), μ_B is the Bohr magneton, and k_B is Boltzmann's constant. Equation 2 is valid for $k_B T / J_1 > 1$. The fitting of the χ^{-1} versus *T* curves to eq 2 between 5 and 300 K yields $\chi_0 = 1.0(7) \times 10^{-5}$ cm³/mol, $g = 2.151(5)$,
and $L/k_p = 4.6(2)$ K for SrCuV-O₂ and $\chi_0 = -3.10(1) \times$ and $J_1/k_B = 4.6(2)$ K for SrCuV₂O₇ and $\chi_0 = -3.10(1)$ × 10^{-4} cm³/mol, $g = 2.1131(9)$, and $J_1/k_B = 4.58(6)$ K for $B_2C_1N_2O_2$ BaCuV₂O₇.

The real part of the ac susceptibility curves, χ' versus *T*, at zero static magnetic field almost coincided with the dc *ø* versus *T* curves measured at 100 Oe. Strong dependence of the χ' versus *T* curves on static magnetic field, H_{dc} , was found and a broad maximum appeared on the χ' versus T curves from $H_{dc} = 2$ kOe for SrCuV₂O₇ and $H_{dc} = 10$ kOe for BaCuV₂O₇.⁷ No noticeable difference was found for the χ' versus *T* curves measured at different frequencies.

Isothermal magnetization curves are given in Figure 3. No hysteresis was observed on the *M* versus *H* curves. The saturation of magnetization occurred at about 40 kOe for $SrCuV₂O₇$ and 50 kOe for BaCuV₂O₇ at 2 K. The saturation value of about 1.05 μ _B/mol was expected for $S = 1/2$ and *g* \approx 2.1. Such magnetization curves were observed in other 1D $S = 1/2$ ferromagnets.^{2,8,12} The experimental magnetization data for $SrCuV₂O₇$ and $BaCuV₂O₇$ saturated much faster than expected for the $S = 1/2$ Brillouin function with $g =$ 2.1 (Figure 3). This fact shows the dominating ferromagnetic interaction between Cu^{2+} ions.

Figure 4 depicts the *M* versus *H* and d*M*/d*H* versus *H* curves for $SrCuV₂O₇$ and $BaCuV₂O₇$ at 0.08 K, that is, below the temperatures of long-range magnetic ordering (see the

Figure 4. (a) The *M* vs *H* and dM/dH vs *H* curves for SrCuV₂O₇ at 0.08 K between -5 and 5 kOe. The dotted line is the $S = 1/2$ Brillouin function with $g = 2.1$ at 0.08 K. (b) The *M* vs *H* and d*M*/d*H* vs *H* curves for BaCuV₂O₇ at 0.08 K between -15 and 15 kOe. The *M* vs *H* curve for $SrCuV₂O₇$ is also shown for comparison.

specific heat data). The saturation magnetization was the same, $1.05 \mu_{\text{B}}$ /mol. At low magnetic fields, the magnetization increased linearly with the field and slower than expected for the $S = 1/2$ Brillouin function with $g = 2.1$. No hysteresis was found and the *M* versus *H* curves passed through the origin. These facts indicate that the 1D ferromagnetic chains are ordered antiferromagnetically in both $SrCuV₂O₇$ and BaCuV₂O₇. At about 0.5 kOe for SrCuV₂O₇ and 2 kOe for BaCuV₂O₇, the slope change of the M versus H curve because of a spin flop transition was detected in the antiferromagnetic state. The small value of the magnetic field for the spin flop transition reflects the very small value of the interchain interaction. The d*M*/d*H* versus *H* curve for $SrCuV₂O₇$ clearly exhibited two peaks near 0.5 kOe. Thus, two-step spin flop transition is possible.

The C_p/T versus *T* curves for SrCuV₂O₇, BaCuV₂O₇, and BaZnV₂O₇ are given in Figure 5a. The C_p was almost the same in the temperature range of $40-300$ K for MCuV₂O₇ $(M = Sr$ and Ba). The M sublattice seems to give the same constant contribution to the specific heat. This behavior is quite unusual because in the series of isostructural compounds, the heavier atoms give the larger contribution to C_p ^{17,21} On the other hand, the specific heat of BaZnV₂O₇ was larger than that of $BaCuV₂O₇$ in the temperature range of about $13-150$ K (Figure 5). This fact shows that the sublattice of the transition-metal ion has a very strong effect on *C*p, that is, even a small change in the mass results in the strong change in *C*p. The estimation of the lattice contribu-

Figure 5. (a) Temperature dependence of C_p/T for $SrCuV_2O_7$, BaCuV₂O₇, and BaZnV₂O₇. Inset shows the enlarge fragment of the figure. (b) The C_p vs *T* curves up to 18 K for $SrCuV₂O₇$, BaCuV₂O₇, and BaZnV₂O₇.

Figure 6. The C_p/T vs *T* and S_m vs *T* curves for $SrCuV_2O_7$ and $BaCuV_2O_7$. The solid lines show the lattice contribution (C_1/T) vs *T* curves).

tion, C_1 , in MCuV₂O₇ (M = Sr and Ba) was therefore not straightforward. The lattice contribution was estimated between 16 and 21 K using the equation

$$
C_1 (=C_p) = \beta_1 T^3 + \beta_2 T^5 \tag{3}
$$

with $\beta_1 = 9.38 \times 10^{-4}$ J K⁻⁴ mol⁻¹ and $\beta_2 = -3.56 \times 10^{-7}$ J K⁻⁶ mol⁻¹ for SrCuV₂O₇ and $\beta_1 = 7.21 \times 10^{-4}$ J K⁻⁴ mol⁻¹ and $\beta_2 = -3.86 \times 10^{-9}$ J K⁻⁶ mol⁻¹ for BaCuV₂O₇. Then, this equation was extended to the lower temperature region.

The magnetic entropy, $S_m(T) = f(C_m/T) dT$, where C_m $C_p - C_l$, was close to *R* ln 2 \approx 5.76 J K⁻¹ mol⁻¹ expected for the $S = 1/2$ systems (5.17 J K⁻¹ mol⁻¹ for SrCuV₂O₇ and 5.42 J K⁻¹ mol⁻¹ for BaCuV₂O₇; Figure 6). This fact gives the support that the estimation of C_1 is reasonable. However, the reduced values of S_m show that the C_1 was overestimated.

The very large difference in the values of broad maximum, *C*max, of the zero-field specific heat curves (Figure 5) for $SrCuV₂O₇$ ($C_{max} = 2.30$ J K⁻¹ mol⁻¹) and BaCuV₂O₇ (C_{max})
= 3.16 J K⁻¹ mol⁻¹) was quite noticeable. This fact shows $=$ 3.16 J K⁻¹ mol⁻¹) was quite noticeable. This fact shows
that the ferromagnetic intrachain interaction is affected by that the ferromagnetic intrachain interaction is affected by

different J_2 (if J_1 is dominant) or J_1 (if J_2 is dominant), interchain interactions, or anisotropies.10,22 In the series of isostructural 1D $S = 1/2$ antiferromagnets, for example, $MCuP_2O_7$ (M = Ca, Sr, and Pb),^{17,18} the values of C_{max} are almost the same ($C_{\text{max}} \approx 3.0 \text{ J K}^{-1} \text{ mol}^{-1}$) and are consistent with the theoretical value. In addition to the broad maxima, the specific heat data also exhibited the sharp peaks at 1.36 K for $SrCuV₂O₇$ and 1.47 K for BaCuV₂O₇ because of longrange antiferromagnetic ordering (Figures 5). The C_p versus *T* curves for $SrCuV₂O₇$ and $BaCuV₂O₇$ were strongly affected by static magnetic field as for other 1D ferromagnets.^{3,6,8-10}

A spin exchange constant, *J*, is expressed as $J = J_{AF}$ + J_F , where J_{AF} and J_F are the antiferromagnetic and ferromagnetic contributions, respectively.²³ J_{AF} is proportional to *OI*² , where *OI* is the overlap integral between magnetic $x^2 - y^2$ orbitals of Cu²⁺ ions. Therefore, when *OI* is almost zero, the J_F will dominate and the spin exchange becomes ferromagnetic.

Strong dependence of the sign and strength of *J* values on the Cu-O-Cu bridge angle is well-known in copper dimers bridged by two $Cu-O-Cu$ paths.^{24,25} The exchange interaction is usually ferromagnetic for the $Cu-O-Cu$ angle less than 97° and antiferromagnetic for the larger angles. However, this simple rule does not work in some compounds, for example, organic complexes containing tetranuclear or trinuclear clusters of Cu^{2+} ions.²⁶⁻²⁸ In ref 28, the ferromagnetic interaction was found between Cu^{2+} ions having the Cu $-O-Cu$ angles of 139.2-140.5°.

In $SrCuV₂O₇$ and $BaCuV₂O₇$, the situation is more complicated because Cu^{2+} ions are connected through supersuperexchange interactions, $Cu-O$ ^{**}O-Cu. The strength and sign of exchange interaction obviously depend on many parameters including bond length and angles and the nature of the chemical bonds in TO_4 (T = P or V) tetrahedra. In particular, the overlap between two Cu^{2+} magnetic orbitals associated with the $Cu-O \cdots O-Cu$ paths depends on the overlap between two *p* orbitals of oxygen residing on the O…O contact. Intuitively, the shorter the O…O distance (i.e., the edge of TO₄ tetrahedron), the larger the overlap between

p orbitals.¹⁶ For phosphate groups, PQ_4^{3-} or $P_2Q_7^{4-}$, the O.

20 distance is usually $2.5-2.55$ Å. On the other hand, for \cdot O distance is usually 2.5–2.55 Å. On the other hand, for vanadate groups, VO_4^{3-} or $\text{V}_2\text{O}_7^{4-}$, the O $\cdot\cdot\cdot\text{O}$ distance is about $2.7-2.8$ Å. This fact can qualitatively explain why I about 2.7-2.8 Å. This fact can qualitatively explain why *^J* is antiferromagnetic in such one-dimensional compounds as SrCuP₂O₇,¹⁷ BaCuP₂O₇,¹⁸ and $(VO)_{2}P_{2}O_{7}$ ²⁹ while *J* is ferromagnetic in $SrCuV₂O₇$ and $BaCuV₂O₇$ despite the fact that they have similar connections between magnetic ions, that is, including $Cu-O \cdots O-Cu$ or $V-O \cdots O-V$ paths.

We hope that this work will encourage theoreticians to investigate the model shown in Figure 1a for (anti) ferromagnetic J_1 and (anti)ferromagnetic J_2 in more details. The exact quantitative description of $SrCuV₂O₇$ and $BaCuV₂O₇$ and determination of *J* values requires numerical calculations and experiments using single crystals. In particular, the first principle calculations may help to distinguish between two possibilities: (1) coupled ferromagnetic chains $(J_1 > J_2)$ and (2) zigzag chains with NNN interaction $(J_2 > J_1)$.

In conclusion, all the results obtained and the structural features of $SrCuV₂O₇$ and $BaCuV₂O₇$ confirm that these two compounds behave as the 1D $S = 1/2$ ferromagnets. The typical features of 1D ferromagnets observed in $SrCuV₂O₇$ and $BaCuV₂O₇$ include (1) positive Weiss constant in the Curie-Weiss fitting, (2) strong field dependence of the specific heat and the real part of the ac susceptibility, (3) strong composition dependence of the value of broad maximum of the specific heat, and (4) fast saturation of the isothermal magnetization curves. $SrCuV₂O₇$ and $BaCuV₂O₇$ are therefore new examples in the scanty family of the 1D $S = 1/2$ ferromagnets.

Acknowledgment. The authors express their thanks to the Ministry of Education, Culture, Sports, Science, and Technology, Japan, for Grants-in-Aid No. 12CE2005, for COE Research on Elements Science (No. 13440111 and No. 14204070), and for 21COE on the Kyoto Alliance for Chemistry. ICYS is supported by Special Coordination Funds for Promoting Science and Technology from MEXT, Japan.

Supporting Information Available: Experimental XRD patterns for $SrCuV₂O₇$, BaCuV₂O₇, and BaZnV₂O₇ (Figures S1-S2). TG and DTA curves for $SrCuV₂O₇$, BaCuV₂O₇, and BaZnV₂O₇ (Figure S3). The real part of the ac susceptibility, χ' versus *T*, at different static magnetic fields for $SrCuV₂O₇$ and $BaCuV₂O₇$ (Figures S4 and S5). The C_m versus T and excess heat capacity curves at different static magnetic fields for $SrCuV₂O₇$ and $BaCuV₂O₇$ (Figures S6 and S7) (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC050164M

⁽²²⁾ Campana, L. S.; Caramico D'Auria, A.; Esposito, U.; Kamieniarz, G. *Phys. Re*V*. B* **¹⁹⁸⁹**, *³⁹*, 9224. (23) Hay, P. J.; Thibeault, J. C.; Hoffmann, R. *J. Am. Chem. Soc.* **1975**,

⁹⁷, 4884.

⁽²⁴⁾ Crawford, V. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, D. J.; Hatfield, W. E. *Inorg. Chem*. **1976**, *15*, 2107.

⁽²⁵⁾ Mizuno, Y.; Tohyama, T.; Maekawa, S.; Osafune, T.; Motoyama, N.; Eisaki, H.; Uchida, S. *Phys. Re*V*. B* **¹⁹⁹⁸**, *⁵⁷*, 5326.

⁽²⁶⁾ Buvaylo, E. A.; Kokozay, V. N.; Vassilyeva, O. Y.; Skelton, B. W.; Jezierska, J.; Brunel, L. C.; Ozarowski, A. *Inorg. Chem*. **2005**, *44*, 206.

⁽²⁷⁾ Wei, M.; Willett, R. D.; Gomez-Garcia, C. J. *Inorg. Chem*. **2004**, *43*, 4534.

⁽²⁸⁾ Xu, Z.; Thompson, L. K.; Miller, D. O. *J. Chem. Soc., Dalton Trans.* **2002**, 2462.

⁽²⁹⁾ Koo, H.-J.; Whangbo, M.-H.; VerNooy, P. D.; Torardi, C. C.; Marshall, W. J. *Inorg. Chem.* **²⁰⁰²**, *⁴¹*, 4664-4672.