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The synthesis and structural characterization of the first polymeric
M−HDTMP organic−inorganic hybrids are described [M ) Zn2+,
Ca2+; HDTMP ) hexamethylenediaminetetrakis(methylene-
phosphonate)]. The 3D crystal structure of the Zn2+ analogue [Zn-
(HDTMP)‚H2O] is described. The Zn center is found in a distorted
octahedral environment of phosphonate oxygens. There is a long
Zn‚‚‚O interaction (2.622 Å) originating from a protonated −P−
OH group. Synergistic combinations of Zn2+ and the tetraphos-
phonate are found to form films that protect against the corrosion
of carbon steels.

Organic phosphonates are used extensively in a wide array
of technological areas and applications.1 These range from
industrially important processes, such as chemical water
treatment,2 to biological and medicinal uses, such as regula-
tion of calcium metabolism or treatment of calcium-related
disorders.3 In water chemical technology, organic phospho-
nates are used as mineral scale inhibitors.4 In medical and
pharmaceutical applications, they are used extensively as
regulators of calcium phosphate metabolism,5 particularly in
relation to hydroxyapatite, the major inorganic constituent

of bone.6 Their utility in supramolecular chemistry and crystal
engineering has also been noted in the literature.7

Zn2+ is used extensively as an anodic inhibitor for metallic
corrosion protection.8 Literature reports point to a synergistic
action of Zn2+ and polyphosphonates that is explained in
terms of metal phosphonate inhibiting films on the metallic
surface.9 An accurate description of these protective materials
at the molecular level is lacking. In this Communication,
we describe the preparation and crystal and molecular
structure of a Zn-HDTMP polymeric inorganic-organic
hybrid,{Zn[(HO3PCH2)2N(H)(CH2)6N(H)(CH2PO3H)2]‚H2O}n

(HDTMP)hexamethylenediamine-tetrakis(methylenephos-
phonate), and its application as an inhibitor for the corrosion
of steel.

Reaction of zwitterionic HDTMP and ZnCl2 at pH ∼2.2
in a 1:1 molar ratio under ambient conditions gives{Zn-
[(HO3PCH2)2N(H)(CH2)6N(H)(CH2PO3H)2]‚H2O}n (Zn-
HDTMP; proton content on HDTMP also shown)10

The crystal structure of Zn-HDTMP11 shows that it is a
3D coordination polymer. The Zn-O distances are unex-
ceptional and consistent with those of other structurally
characterized zinc phosphonates.12 Zn2+ is found in a
distorted octahedral environment (Figure 1, top) formed
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exclusively by phosphonate oxygens. An interesting feature
is that the sixth oxygen ligand for Zn2+ originates from a
protonated phosphonate oxygen, O(9), and forms a long
interaction [2.622(3) Å] with Zn2+. Apparently, this interac-
tion offers local stabilization because of a strong hydrogen
bond, O(9)-H(9)‚‚‚O(3), 1.879 Å. The O(10)-Zn-O(4)
angle deviates greatly from linearity (156.03°), compared
to the O(7)-Zn-O(1) angle that is almost linear (175.83°).
Two Zn2+ centers and the aminobismethylenephosphonate
portions of HDTMP form an 18-membered ring (Figure 1,
bottom), and there is a concentric 8-membered ring formed
by the same Zn2+ centers and the protonated methylene-
phosphonate arm involved in the long Zn‚‚‚O(9) interaction.
The lattice water interacts weakly with O(5) (2.700 Å) and
O(2) (2.964 Å). The absence of chelate rings is noteworthy,
in contrast to several metal animomethylenephosphonate
structures.13 HDTMP’s four phosphonate groups are coor-
dinated to six different Zn2+ centers. O1 [from P(1)] and
O4 [from P(2)] act as unidentate ligands to Zn2+. O(10) and
O(12) [both from P(4)] bridge two Zn2+ centers that are 4.395
Å apart. O(7) and O(9) [both from P(3)] also bridge two
Zn2+ centers, but because of the long O(9)‚‚‚Zn interaction
(2.622 Å), their distance is much greater, 5.092 Å.

The Zn2+ centers reside very close to the unit cell edges,
and the cell’s interior is filled with the organic portion of
the tetraphosphonate. The C6 carbon chain runs almost
parallel to thebc diagonal. Also, the molecule does not
exhibit the expected zigzag configuration, but the portion
C(2)-C(3)-C(5)-C(6) is in a syn rather in an anti config-
uration.

Structurally characterized metal tetraphosphonate materials
are rare. To our knowledge, there is only one published metal
HDTMP structure, that of polymeric Co-HDTMP, in which
HDTMP is monodentate and bridging two Co(H2O)42+

centers.14 Some structural details of zinc tetramethylenedi-
aminetetraphosphonate have been reported.15 The structure
of Zn-HDTMP can be compared to that of Ca[(HO3-
PCH2)2N(H)CH2C6H4CH2N(H)(CH2PO3H)2]‚2H2O contain-
ing a flexible cyclohexane ring linker.16 Major structural
differences between the two include the bidentate chelation
of the tetraphosphonate to the metal center. These are absent
in Zn-HDTMP. Similar to the Ca2+ structure noted above
is the EDTMP-containing material Mn[(HO3PCH2)2N(H)-
(CH2)4(H)N(CH2PO3H)2].17
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Figure 1. (Top) Coordination environment of the Zn2+ center displaying
important bond distances (in angstroms). The nonlinear O(10)-Zn-O(4)
angle is 156.03°. (Bottom) Coordination modes of the tepraphosphonate
ligand. The C6 carbon chain is omitted for clarity. The aminomethylene
portions of the ligand and the Zn2+ centers create a “box” of∼160 Å3

capacity.
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Synergistic combinations of Zn2+ and organophosphonates
are reported to exhibit inhibition performance superior to
that of either Zn2+ or phosphonate alone. However, no
mention is made regarding the identity of the inhibitor species
involved in corrosion inhibition at the molecular level.

A corrosion experiment was designed18 to verify the
literature reports and demonstrate that the protective material
acting as a corrosion barrier is an organic-inorganic hybrid
composed of Zn2+ and HDTMP. A synergistic combination
of Zn2+ and HDTMP in a 1:1 ratio (under conditions identical
to those used to prepare crystalline Zn-HDTMP) offers
excellent corrosion protection for carbon steel (Figure 2).
Although differentiation between the control and Zn-
HDTMP-protected specimens was profound within the first
hours, the corrosion experiment was left to proceed over a
3-day period. According to mass loss measurements, the
corrosion rate for the control sample is 7.28 mm/year,

whereas that for the Zn-HDTMP-protected sample is 2.11
mm/year, a∼170% reduction in corrosion rate.19 The filming
material was collected and subjected to FT-IR, XRF, and
EDS studies.

These show that the corrosion-inhibiting film is a material
containing Zn2+ (from externally added Zn2+) and P (from
added HDTMP) in an approximate 1:4 ratio. Fe was also
present, apparently originating from the carbon steel speci-
men. FT-IR spectroscopy of the film material showed
multiple bands associated with phosphonate groups in the
950-1200 cm-1 region that closely resemble those of the
authentically prepared Zn-HDTMP material. For compari-
son, EDS and XRF spectra of protected and unprotected
regions show the presence of Zn and P in the former, but
their complete absence in the latter. Last, comparison
between SEM images of the protected vs unprotected
specimen areas also demonstrate the profound anticorrosive
effect of Zn-HDTMP films (Figure 2).

In this Communication, a conveniently synthesized and
structurally characterized Zn-HDTMP organic-inorganic
hybrid polymeric material is described. When generatedin
situ, it acts as corrosion inhibitor by creating anticorrosive
protective films on the carbon steel surface.

Organic polyphosphonates present a plethora of opportuni-
ties in basic research19 and chemical technology.20,21 They
are versatile polydentate ligands for the construction of
metal-organic hybrid architectures because of their acces-
sibility through organic synthesis, structural variations, and
multiple deprotonation processes and their ability to coor-
dinate to virtually any metal site.
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Figure 2. Anticorrosive effect of Zn-HDTMP films on carbon steel: (A)
control, no inhibitor present; (B)1 mM Zn2+/HDTMP synergistic combina-
tion, demonstrating dramatical corrosion inhibition. SEM image (bottom)
of the interface (indicated by a dotted line) between the unprotected area
(left) where growth of iron oxides is evident and the protected area (right)
where a film of Zn-HDTMP has grown (bar) 100 µm).
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