Inorg. Chem. 2005, 44, 8076-8086

Ground-State Electronic and Magnetic Properties of a μ_3 -Oxo-Bridged Trinuclear Cu(II) Complex: Correlation to the Native Intermediate of the Multicopper Oxidases

Jungjoo Yoon and Edward I. Solomon*

Department of Chemistry, Stanford University, Stanford, California 94305

Received May 16, 2005

The ground-state electronic and magnetic properties of one of the possible structures of the trinuclear Cu^{II} site in the native intermediate (NI) of the multicopper oxidases, the μ_3 -oxo-bridged structure, are evaluated using the *C*₃-symmetric Cu₃^{II} complex, μ_3 O. μ_3 O is unique in that no ligand, other than the oxo, contributes to the exchange coupling. However, μ_3 O has a ferromagnetic ground state, inconsistent with that of NI. Therefore, two perturbations have been considered: protonation of the μ_3 -oxo ligand and relaxation of the μ_3 -oxo ligand into the Cu₃ plane. Notably, when the oxo ligand is sufficiently close to the Cu₃ plane (<0.3 Å), the ground state of μ_3 O becomes antiferromagnetic and can be correlated to that of NI. In addition, the ferromagnetic ⁴A ground state of μ_3 O is found from variable-temperature EPR to undergo a zero-field splitting (ZFS) of 2D = -5.0 cm⁻¹, which derives from the second-order anisotropic exchange. This allows evaluation of the σ -to- π excited-state exchange pathways and provides experimental evidence that the orbitally degenerate ²E ground state of the antiferromagnetic μ_3 O would also undergo a ZFS by the first-order antisymmetric exchange that has the same physical origin as the anisotropic exchange. The important contribution of the μ_3 -oxo bridge to the ground-to-ground and ground-toexcited-state superexchange pathways that are responsible for the isotropic, antisymmetric, and anisotropic exchanges are discussed.

Introduction

Trimeric copper complexes with trigonal symmetry have attracted significant interest as these complexes resemble the active sites of the multicopper oxidases (MCOs), which include laccase, ascorbate oxidase, and ceruloplasmin.¹ The fully reduced forms of these enzymes react with O₂ to form the native intermediate (NI) that has a fully oxidized antiferromagnetically coupled trinuclear Cu^{II} cluster in which all Cu centers are bridged by the product of full O₂ reduction.² It has been suggested that the bridged structure results in new signals in the electron paramagnetic resonance (EPR) spectrum with *g* values of 2.15, 1.86, and 1.65, the latter two being < 2.0.² In addition, a low-lying excited

doublet state exists $\sim 150 \text{ cm}^{-1}$ above the ground doublet state as determined from EPR power saturation and variable-temperature (VT) magnetic circular dichroism (MCD) spectroscopies.²

Two limiting structures for the trinuclear Cu^{II} site in NI are consistent with its reactivity and spectral features.^{1.2} The first structure has three μ_2 -OH ligands, each bridging a Cu^{II} pair where two OH⁻ ligands derive from O₂ and the third from an ambient H₂O (Chart 1a); the second structure has a single μ_3 -oxo ligand bridging all three Cu^{II} centers of the cluster with the second O atom from O₂ reduction, either remaining bound or dissociated from the trinuclear site (Chart 1b). Recently, we have reported the ground-state properties

10.1021/ic0507870 CCC: \$30.25 © 2005 American Chemical Society Published on Web 09/20/2005

^{*} Author to whom correspondence should be addressed. E-mail: edward.solomon@stanford.edu.

 ⁽a) Solomon, E. I.; Chen, P.; Metz, M.; Lee, S.-K.; Palmer, A. E. Angew. Chem., Int. Ed. 2001, 40, 4570-4590.
 (b) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563-2605.
 (c) Solomon, E. I.; Baldwin, M. J.; Lowery, M. D. Chem. Rev. 1992, 92, 521-542.

⁽²⁾ Lee, S.-K.; DeBeer, G. S.; Antholine, W. E.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2002, 124, 6180-6193.

Figure 1. $\mu_3 O/\mu_3 OH$ models used in the DFT calculations (H atoms not shown) with the molecular (*x*, *y*, and *z*) and the local coordinate axes (*x'*, *y'*, and *z'*) indicated. The ethylene links in the bowl-shaped macrocyclic ligand were truncated with H atoms for simplification. Refer to Scheme S1 (Supporting Information) for the full structure of the N ligand.

of the first structure using a D_3 symmetric model complex, TrisOH.^{3,4} In TrisOH, all Cu^{II} pairs are antiferromagnetically coupled, yielding a ²E ground state with a zero-field splitting (ZFS) of 65 cm⁻¹. Moreover, a strongly anisotropic EPR signal, which shifts in resonance field with g_{eff} values from 2.32 to \sim 1.2, was observed in the single-crystal EPR spectrum.³ These characteristic features of the ²E ground state of TrisOH arise from the combined effect of symmetry lowering, which reflects a magnetic Jahn-Teller distortion, and antisymmetric exchange,⁵ which results from first-order spin-orbit coupling (SOC) to an excited state and excitedto-ground-state superexchange interactions. In particular, the low $g_{\rm eff}$ values < 2.0 are due to the antisymmetric exchange, which allows field-induced mixing between the two ZFS doublets of the ²E ground state when the molecular z axis (normal to the Cu₃ plane) is oriented perpendicular to the magnetic field.⁶ We have shown that the structure of TrisOH is well-suited for antisymmetric exchange as it provides efficient local $d_{x^2-y^2}$ -to- d_{xy} SOC as well as the pathways for ground-to-excited-state superexchange interactions between the $d_{x^2-y^2}$ ground state of one Cu center with the d_{xy} excited state of another Cu center through the Cu–OH σ bonds.³

The ground-state properties of the second possible structure of NI can be best studied using the C_3 -symmetric Cu₃^{II} complex (μ_3 O, Figure 1) synthesized by Suh et al.⁷ μ_3 O is the only μ_3 -oxo-bridged Cu₃^{II} complex without other effective bridging ligands, such as pyrazolates,⁸ that may significantly affect the exchange coupling.⁹ The distances between the Cu^{II} centers of the two neighboring trimer units is large enough (closest being 9.67 Å) to avoid significant intermolecular interactions. Moreover, μ_3 O exists in a protonated form, μ_3 OH, that has been also determined to be C_3 symmetric. Thus, the bonding interactions between the μ_3 oxo ligand and the Cu^{II} centers can be greatly simplified, and the protonated μ_3 OH form can be used as a perturbation of the μ_3 O structure. However, μ_3 O has a ferromagnetic ⁴A ground state ($J = +54.5 \text{ cm}^{-1}$),⁷ inconsistent with the ground state of NI. A possible reason for this difference is that the oxo ligand lies ~0.5 Å above the Cu₃ plane in μ_3 O. However, as the trinuclear Cu^{II} site in NI has a more flexible ligand environment, the oxo ligand is expected to be less protruded above the Cu₃ plane than in μ_3 O, which has a relatively rigid, bowl-shaped macrocyclic ligand.¹⁰

This study focuses on the ground-state electronic and magnetic properties of the μ_3O structure. First, the Cu–O bonding interactions in the ferromagnetic μ_3O and its protonated form, μ_3 OH, are evaluated using the combination of EPR spectroscopy and DFT calculations. Then, a set of DFT calculations evaluating the effect of the position of the oxo ligand relative to the Cu₃ plane is presented, which allows correlation to the anitiferromagnetic ground state of NI. In addition, the orbitally nondegenerate ⁴A ground state of μ_3 O can zero-field split into $M_8 = \pm \frac{1}{2}$ and $\pm \frac{3}{2}$ doublets via SOC that derives from second-order anisotropic exchange (see below). As the anisotropic exchange shares the same physical origin as the antisymmetric exchange, the evaluation of the contributions of the μ_3 -oxo bridging ligand to both the ground-to-ground and ground-to-excited-state superexchange interactions would provide insight into the groundstate properties of both the ferromagnetically and antiferromagnetically coupled μ_3 -oxo-bridged trimeric Cu^{II} systems and allow extension to the ground-state properties of NI.

Experimental Section

Detailed descriptions of the syntheses, crystal structures, and magnetic susceptibilities of μ_3 O and its protonated form, μ_3 OH, are as reported.⁷

EPR spectra were obtained using a Bruker EMX spectrometer. For X-/Q-band experiments, Bruker ER 041XG/ER 051QR microwave bridges and ER 4102ST/ER 5106QT cavities were used. Temperatures from 3.65 to 120 K were maintained using an Oxford ITC503 temperature controller with an ESR 900 continuous flow cryostat for X-band and a CF935 dynamic continuous flow cryostat

⁽³⁾ Yoon, J.; Mirica, L. M.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 2004, 126, 12586–12595.

⁽⁴⁾ Mirica, L. M.; Stack, T. D. P. Inorg. Chem. 2005, 44, 2131-2133.
(5) (a) Moriya, T. Phys. Rev. 1960, 120, 91-98. (b) Moriya, T. In Magnetism; Rado, G. T., Suhl, H., Eds.; Academic Press: New York, 1963; Vol. 1, pp 85-125. (c) Dzyaloshinsky, I. J. Phys. Chem. Solids 1958, 4, 241-255. (d) Gatteschi, D.; Bencini, A. In Magneto-Structural Correlations in Exchange Coupled Systems; Willett, R. D., Gatteschi, D., Kahn, O., Eds.; D. Reidel: Dordrecht, The Netherlands, 1985; pp 241-268. (e) Bencini, A.; Gatteschi, D. Electron Paramagnetic Resonance of Exchange Coupled Systems; Springer-Verlag: Berlin, 1990.

⁽⁶⁾ Tsukerblat, B. S.; Belinskii, M. I.; Fainzil'berg, V. E. Sov. Sci. Rev., Sect. B 1987, 9, 337–481.

⁽⁷⁾ Suh, M. P.; Han, M. Y.; Lee, J. H.; Min, K. S.; Hyeon, C. J. Am. Chem. Soc. 1998, 120, 3819–3820.

^{(8) (}a) Angaridis, P. A.; Baran, P.; Boča, R.; Cervantes-Lee, F.; Haase, W.; Mezei, G.; Raptis, R. G.; Werner R. *Inorg. Chem.* 2002, *41*, 2219–2228. (b) Butcher, R. J.; O'Conner, C. J.; Sinn, E. *Inorg. Chem.* 1981, 20, 537–545.

⁽⁹⁾ In the Cu₃ complexes of ref 8, the additional N=N bridging ligands from the pyrazolates are in the same plane as the magnetic orbitals (Cu d_{x²-y²}). Also, the conjugate π bonds of the N=N would be relatively close in energy to the metal d orbitals. These conditions would promote effective electron delocalization and spin polarization, and thus, the exchange coupling in these Cu₃ complexes would be considerably affected by the N=N bonds. On the other hand, the N−CH₂−N bridging ligands in the µ₃O/µ₃OH model complexes are not in the same plane as the magnetic orbitals (Cu d_{z²}) and the saturated methylene bridges (−CH₂−) have very stable occupied orbitals with larger energy gaps to the metal d orbitals. Therefore, contribution of the N−CH₂−N bridging ligands to the exchange coupling in µ₃O/µ₃-OH would be very limited.

⁽¹⁰⁾ The full structure of the macrocyclic ligand is given in the Supporting Information (Scheme S1).

for Q-band experiments (transfer line GFS650 from Oxford Instruments). The powder samples were prepared anaerobically by finely grinding the single crystals of μ_3 O and μ_3 OH under a N₂ atmosphere in a glovebox. EPR spectra were baseline subtracted and simulated using XSophe (Brüker).¹¹

Spin-unrestricted DFT calculations were performed using Gaussian 98¹² and Amsterdam Density Functional (ADF)¹³ programs, and the results were analyzed using AOMix.¹⁴ All geometry optimizations were performed at uB3LYP/Lanl2dz level.¹⁵ For both μ_3 O and μ_3 OH, all the ethylene groups linking N atoms in the macrocyclic ligand were truncated with H atoms (Figure 1) and geometry optimized in C_3 symmetry with $\langle S^2 \rangle \approx 3.75$. The resulting geometries were then used for single-point calculations with a triple- ζ Slater-type orbital basis set (ADF basis set TZP) with a single polarization function at the local density approximation of Vosko, Wilk, and Nusair¹⁶ with nonlocal gradient corrections of Becke and Perdew.¹⁷

Results

Electron Paramagnetic Resonance. (a) μ_3 O. The EPR spectra of the powder μ_3 O sample taken at the X-band (9.390 $GHz = 0.313 \text{ cm}^{-1}$, 8 K) and the Q-band (33.81 GHz = 1.13 cm⁻¹, 10 K) are presented with their simulated spectra in Figure 2. The EPR signals in X-band are observed only below 120 K, and their intensities reach their maxima near 8 K. No change in the spectral shape is observed over the temperature range of 3.73-120 K (Figure S1, Supporting Information). Two transitions at g_{eff} of 3.64 and 2.06 in X-band and 3.77 and 2.06 in Q-band are observed with no discernible hyperfine feature. These transitions correspond to the "g = 4" and "g = 2" resonances of an axial zerofield split quartet ($S_{tot} = \frac{3}{2}$) system demonstrating a ferromagnetic ground state, consistent with magnetic susceptibility data⁷ (the energy level is shown in Scheme 1). If the two Kramers doublets originating from the ZFS of the ⁴A ground state are well-separated in energy, such that the intermixing of these states can be ignored, then the $g_{\rm eff} \sim 4$ resonance is equal to twice the true $g_{x,y}$ of the molecule, which, in turn, corresponds to the vector-coupled g values

- (12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.11.3; Gaussian, Inc.: Pittsburgh, PA, 1998.
- (13) (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41–51.
 (b) Te Velde, G.; Baerends, E. J. J. Comput. Phys. 1992, 99, 84–98.
- (14) (a) Gorelsky, S. I. AOMix program, revision 6.04; http://www.sgchem.net/. (b) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187–196.
- (15) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
- (16) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200– 1211.
- (17) (a) Becke, A. D. J. Chem. Phys. 1986, 84, 4524-4529. (b) Perdew, J. P. Phys. Rev. B: Condens. Matter Mater. Phys. 1986, 33, 8822-8824.

Figure 2. EPR spectra of powder μ_3 O complex and their simulations using $g_x = g_y = 2.021$, $g_z = 2.064$, D = -2.50 cm⁻¹, E/D = 0, line width parameters $W_{x,y,z} = (650, 650, 280 \text{ G})$, and the ZFS D-E strain parameters σ_D and $\sigma_E = 0.06$ and 0.07, respectively. (a) X-band spectrum taken at 0.3 mW, 8.0 K, and 9.390 GHz and (b) Q-band EPR spectrum at 0.097 mW, 10.0 K, and 33.81 GHz.

Scheme 1. Ground-State Energy Diagram of μ_3 O

of the individual Cu sites in the trimer.¹⁸ However, with the g_{eff} of 3.64/3.77 (X-/Q-band), the molecular $g_{x,y}$ would be 1.82/1.89, which is too low for the individual Cu centers in μ_3 O. Therefore, the g_{eff} values indicate that the ZFS of the ground state is small enough that the doublets mix with applied magnetic field.

To evaluate the molecular g values and the ZFS of the ground state, simulations were performed simultaneously on the X- and Q-band EPR spectra using the spin-Hamiltonian:

$$\hat{H}_{\rm spin} = \beta H \bar{g} \hat{S} + \hat{S} \bar{D} \hat{S} \tag{1}$$

where β is the Bohr magneton, *H* is the magnetic field, \overline{g} is the **g** tensor in which $g_{xx} = g_{yy} \neq g_{zz}$ and $g_{ij} = 0$ ($i \neq j$), \hat{S} is the electron spin operator, and \overline{D} is the **D** tensor in which $D_{xx} = D_{yy} = -\frac{1}{2}D_{zz}$ (= -D/3) and $D_{ij} = 0$ ($i \neq j$). The best

⁽¹¹⁾ Hanson, G. R.; Gates, K. E.; Noble, C. J.; Griffin, M.; Mitchell, A.; Benson, S. J. Inorg. Biochem. 2004, 98, 903–916.

⁽¹⁸⁾ Pilbrow, J. R. J. Magn. Reson. 1978, 31, 479-490.

Figure 3. Boltzmann fit to the Curie law for the temperature dependence of the μ_3 O powder EPR intensities arising from the transitions between $M_S = \pm \frac{1}{2}$ levels. The dotted line is a least-squares fit to the data, with ZFS of $2D = -5.0 \pm 0.2$ cm⁻¹. (Inset) Similar plot of the μ_3 OH powder EPR intensities and fit curve with the ZFS of $2D = -1.6 \pm 0.4$ cm⁻¹.

simulated spectra were obtained with $g_x = g_y = 2.021$ (± 0.010) and $g_z = 2.064$ (± 0.005), with line width parameters $W_{x,y,z} =$ (650, 650, and 280 G) and the ZFS D-E strain parameters σ_D and σ_E of 0.06 and 0.07, respectively (Figure 2). The D value could not be quantitatively obtained, but the lower limit of its magnitude is |D| > 2.0 cm⁻¹.

The magnitude and the sign of the *D* value were obtained from the temperature-dependent behavior of the EPR intensities. Figure 3 gives a plot of the normalized EPR intensities (at several fields in X-band) against 1/T in nonsaturating conditions. Assuming the ZFS is sufficiently large so that no transition is made between the two zero-field-split Kramer doublets of the ⁴A ground state and that the plotted EPR intensities are purely from the transition between the $M_{\rm S} = \pm^{1}/_{2}$ components, a Boltzmann fit to the Curie law dependence was performed using eq 2:

EPR Intensity =
$$\frac{C}{T} \left[\frac{\exp(-2D/kT)}{1 + \exp(-2D/kT)} \right]$$
(2)

where *C* is Curie constant, *T* is the temperature in K, *D* is the axial ZFS parameter, and *k* is Boltzmann's constant. The best fit gives $D = -2.5 \pm 0.1$ cm⁻¹.

The energy levels are linearly dependent on field when the molecular *z* axis is aligned with the field but not linearly dependent when the field is perpendicular to the molecular *z* axis (Figure S2, Supporting Information). The nonlinearity in the latter case results from the interaction of the upper and lower doublets of the ZFS ⁴A ground state, and this gives g_{eff} values less than 4 (Figure 2). However, the ZFS (= 2*D*) of -5.0 cm^{-1} is large enough so that no transition between the two ZFS doublets occurs with the X- or Q-band energy. This large ZFS originates from the anisotropic exchange (also called pseudo-dipolar exchange) involving the ground-toexcited superexchange interaction between an electron in the ground ($d_{z'2}$) and the excited ($d_{x'z'}$) states (see below). The spin—spin dipolar contribution to ZFS is much smaller in

Figure 4. EPR spectra of powder μ_3 OH complex and their simulations using $g_x = g_y = 2.067$, $g_z = 2.224$, D = -1.02 cm⁻¹, E/D = 0, line width parameters $W_{x,y,z} = (580, 580, 330 \text{ G})$, and the ZFS D-E strain parameters σ_D and $\sigma_E = 0.05$ and 0.03, respectively. (a) X-band spectrum taken at 0.3 mW, 7.6 K, and 9.390 GHz and (b) Q-band EPR spectrum at 0.097 mW, 10.0 K, and 33.95 GHz.

magnitude ($|D_{dd}| = 0.27 \pm 0.01 \text{ cm}^{-1}$) as obtained from a point dipole model in which $|D_{dd}| \approx 0.650g^2/r^{3.19}$

The calculated molecular *g* values from these simulations can be directly correlated to the local *g* values of each Cu center: $(g_x, g_y) \sim (g_x, g_z)$ and $g_z \sim g_{y'}$, where the primed axes (x', y', and z') refer to the local coordinates of the Cu sites and the nonprimed axes (x, y, and z) refer to the μ_3 O molecular coordinates with *z* as the direction perpendicular to the Cu₃ plane (Figure 1). The $g_z \sim g_{y'} = 2.064$ is small compared to the typical g_{\perp} value of a trigonal pyramidal mononuclear Cu complex of $\sim 2.2.^{20}$ This is consistent with the large covalency of the Cu—oxo bonds. A significant orbital reduction would result in the low observed *g* value, as compared to those of Cu complexes with relatively weak Cu-to-ligand bonding interactions.

(b) μ_3 OH. The EPR spectra of the powder μ_3 OH sample taken at the X-band (9.390 GHz, 8 K) and at the Q-band (33.95 GHz, 10 K) are presented with their simulated spectra in Figure 4. The EPR signals in the X-band are observed only below 120 K, and their intensities increase as the temperature is lowered. No change in the spectral shape was observed over the temperature range of 3.65-120 K (Figure

^{(19) (}a) Chasteen, N. D.; Belford, R. L. Inorg. Chem. 1970, 9, 169–175, 2805. (b) Chikira, M.; Kon, H.; Hawley, R. A.; Smith, K. M. J. Chem. Soc., Dalton Trans. 1979, 245–249.

⁽²⁰⁾ Hathaway, B. J.; Billing, D. E. Coord. Chem. Rev. 1970, 5, 143– 207.

S3, Supporting Information). In the X-band spectrum, features are observed at $g_{\rm eff}$ of 3.70 and 2.22, with no discernible hyperfine structure. As with μ_3 O, these correspond to the "g = 4" and "g = 2" resonances of an axial ZFS quartet system with a ferromagnetic ground state, consistent with magnetic susceptibility data.⁷ In the Q-band spectrum, more than two resonances are observed (Figure 4b). Here, while the "g = 4" and "g = 2" resonances are still observed at $g_{\rm eff}$ values of 3.75 and 2.22, additional signals are present at 4360 G ($g_{\rm eff} \sim 5.57$) and between 8000 and 10 000 G.

Simulations were performed simultaneously on the X- and Q-band spectra using the spin Hamiltonian of eq 1. The best simulated spectra were obtained with $g_x = g_y = 2.067$ (\pm 0.010) and $g_z = 2.224$ (\pm 0.005), with the line width parameters $W_{x,y,z} = (580, 580, \text{ and } 330 \text{ G})$ and the ZFS D-E strain parameters σ_D and σ_E of 0.05 and 0.03, respectively (Figure 4). Here, the magnitude of the *D* value of 1.02 cm⁻¹ obtained as the new signal at $g_{\text{eff}} \sim 5.57$ is very sensitive to this value. The sign of the *D* value could be obtained from the plot of the normalized X-band EPR intensities against 1/T, which is presented in the inset of Figure 3. Using eq 2, the best fit gives $D = -0.8 \pm 0.2$ cm⁻¹.

As with μ_3 O, the energy levels are linearly dependent on the field where the molecular z axis is aligned with the field but are not linearly dependent when the field is perpendicular to the molecular z axis (Figure S4, Supporting Information). Again, the nonlinearity of the latter case results in g_{eff} values less than 4 (Figure 4). However, the ZFS is smaller than that of μ_3 O and is comparable to the Q-band energy. As a result, transitions between the doublets are observed. In particular, the $\Delta M = \pm 2$ transition that is observed at g_{eff} of 5.57 (Figure 4b) becomes allowed. The small ZFS, as compared to that of μ_3 O, reflects a decreased anisotropic exchange, indicating that the ground-to-excited exchange interactions have become smaller (see below). The spinspin dipolar contribution to ZFS in μ_3 OH ($|D_{dd}| = 0.26 \pm$ 0.02 cm^{-1}) is, again, much smaller in magnitude than the observed ZFS of -2.04 cm^{-1} .

The molecular g_z value of 2.224 that corresponds to the g_y' of the local Cu site is similar to the typical g_\perp value of a trigonal pyramidal mononuclear Cu complex. This demonstrates that the Cu–OH bonds in μ_3 OH are much less covalent compared to the Cu–O bonds in μ_3 O. This difference in Cu–O bond covalency is also reflected in the superexchange interactions in these complexes as the magnitudes of the coupling constants (e.g., isotropic exchange constant J; +54.5 cm⁻¹ for μ_3 O and +18.9 cm⁻¹ for μ_3 OH)⁷ depend on the exchange integrals, which are largely related to orbital overlap.

Analysis

Spin-unrestricted DFT calculations were performed on μ_3 O and its protonated form, μ_3 OH, where all the ethylene groups linking N atoms in the macrocyclic ligand have been truncated with H atoms, as shown in Figure 1. Atomic labels and the axis systems used throughout the manuscript are described in Figure 1: the primed axes $(x'_i, y'_i, \text{ and } z'_i)$ refer

Table 1. Structural Parameters of the DFT Optimized μ_3 O and μ_3 OH Models^{*a*}

	$\mu_3 O$		$\mu_3 OH$	Н	
	expt ^b	calcd	expt ^b	calcd	
R(Cu-Cu)	3.105/3.125	3.30	3.262/3.250	3.53	
R(Cu-O)	1.869/1.883	1.97	1.966/1.951	2.10	
$R(Cu-N_{ax})^{c}$	2.040/2.044	2.17	2.002/2.014	2.11	
$R(Cu-N_B)^c$	2.241/2.272	2.21	2.201/2.206	2.21	
$R(Cu-N_{s1})^c$	2.138/2.167	2.25	2.105/2.086	2.24	
$R(Cu-N_{s2})^{c}$	2.125/2.099	2.22	2.115/2.141	2.24	
$R(O-Cu_3 plane)$	0.528/0.539	0.507	0.564/0.537	0.521	
A(Cu-O-Cu)	112.3/112.2	113.6	112.1/112.8	114.1	

^{*a*} uB3LYP/LanL2Dz (Gaussian 98) results are presented, in which each structure resulted in C_3 symmetry. Distances are in Å, and angles are in degrees. ^{*b*} Two independent molecules are found in a unit cell.⁷ ^{*c*} See Figure 1 for atomic labels.

to the local coordinates of the *i*th Cu site, and the nonprimed axes (x, y, and z) refer to the molecular trimer coordinates where z is the direction perpendicular to the Cu₃ plane. These models were fully optimized in the high-spin quartet state $(\langle S^2 \rangle \approx 3.75)$ at the uB3LYP/LanL2Dz level (in Gaussian 98), both resulting in C_3 symmetric structures, with the structural parameters given in Table 1 (molecular coordinates are given in Tables S1 and S2 of the Supporting Information). Overall, these optimized structures are in good agreement with the crystal structures. The geometry of each Cu site in both models is best described as a distorted trigonal bipyramidal structure which yields a d_{r^2} ground state. The calculated Cu-O and Cu-Cu distances are slightly larger than those of the experiment, likely because of the relaxed ligand structure from the truncation of the ethylene links in the original ligand system. The Cu–O distance in the μ_3 OH model is 0.13 Å longer than that of the μ_3 O model (2.10 vs 1.97 Å), which reflects the weakening of the Cu–O bond as a result of the protonation at the oxo ligand.

These optimized geometries were further employed for the spin-unrestricted BP86 calculations (in ADF) using the triple- ζ Slater-type orbital basis set (ADF basis set TZP). Single-point calculations were performed in both the quartet and the broken-symmetry ($M_{\rm S} = 1/_2, \langle S^2 \rangle \approx 1.75$) states. The broken-symmetry method uses the $M_{\rm S} = 1/_2$ configurations of the trimer ($|\alpha_1\alpha_2\beta_3\rangle$, $|\alpha_1\beta_2\alpha_3\rangle$, $|\beta_1\alpha_2\alpha_3\rangle$, $|\alpha_1\beta_2\beta_3\rangle$, $|\beta_1 \alpha_2 \beta_3 \rangle$, or $|\beta_1 \beta_2 \alpha_3 \rangle$, where 1–3 refer to metal centers and α and β refer to up and down spins, respectively) to provide a better estimate of the multideterminant doublet state $(S_{\text{tot}} = \frac{1}{2}, \langle S^2 \rangle \approx 0.75)$ energy than can be obtained from a full-symmetry calculation using the single-determinant DFT approach.²¹ The relative energies of the quartet, the brokensymmetry, and the doublet states are described in Scheme 2. Accordingly, the total energy difference of the two singledeterminant quartet and the broken-symmetry states can be used to estimate the isotropic exchange constant J = $\frac{1}{2}(E_{\rm BS} - E_{\rm HS})$, where $E_{\rm BS}$ and $E_{\rm HS}$ refer to the total energy of broken-symmetry and quartet states, respectively] and, in turn, the quartet-doublet splitting energy 3|J|. Table 2 gives the total energies of the μ_3 O and μ_3 OH models and the

 ^{(21) (}a) Noodleman, L. J. Chem. Phys. 1981, 74, 5737-5743. (b) Noodleman, L.; Case, D. A.; Aizman, A. J. Am. Chem. Soc. 1988, 110, 1001-1005.

Properties of a μ_3 -Oxo-Bridged Trinuclear Cu(II) Complex

Scheme 2. Energy Splitting in the Ground State of a C_3 Symmetric Trimer with $s_1 = s_2 = s_3 = \frac{1}{2}$

Table 2. Total Energies and Isotropic Exchange Constants (*J*) of the μ_3 O and μ_3 OH Models from DFT (ADF) Calculations^{*a*}

	$\mu_3 O$	$\mu_3 OH$
$E_{\rm HS}{}^b$	-9.591 710 35 au	-9.077 810 61 au
$E_{\rm BS}{}^c$	-9.589 464 95 au	-9.077 596 94 au
$J_{\text{calc}}^{d,e}$	$+246.4 \text{ cm}^{-1}$	$+23.4 \text{ cm}^{-1}$
J_{expt}^{f}	$+54.5 \text{ cm}^{-1}$	$+18.9 \text{ cm}^{-1}$

^{*a*} uBP86/TZV (ADF) results are presented. ^{*b*} The total energy (LDA + GGA + XC) of the high-spin ($S_{tot} = {}^{3}/_{2}$) state. ^{*c*} The total energy (LDA + GGA + XC) of a broken-symmetry ($M_{\rm S} = {}^{1}/_{2}$) state. ^{*d*} $J = {}^{1}/_{2}(E_{\rm BS} - E_{\rm HS})$; refer to Scheme 2. ^{*e*} Conversion factor: 1 au = 2.19475 × 10⁵ cm⁻¹. ^{*f*} Magnetic susceptibility results.⁷

Figure 5. Energy level diagram obtained from DFT calculations on the μ_3 O model, where the dotted horizontal lines indicate unoccupied spin-orbitals. Only the MOs relevant to Cu–O bonds are presented. The superscripts (*x*, *y*, and *z*) on the orbital numbers refer to the O p orbital involved in the indicated MO.

corresponding *J* values. The *J*'s obtained indicate ferromagnetic quartet ground states for both structures, with the value for μ_3 O being considerably higher, in agreement with the experimental results from EPR (above) and magnetic susceptibility.⁷

The features of the molecular orbital (MO) energy level diagram relevant to the Cu–O bonding interactions in μ_3 O are presented in Figure 5 for both the quartet and the broken-symmetry states. The MOs are labeled with superscripts (*x*, *y*, and *z*, indicating the associated O p orbital) to facilitate the correlation between the quartet and the broken-symmetry

Figure 6. Contours of β -spin LUMO (β 123) and LUMO+1 (β 124 and β 125 degenerate) obtained from DFT calculations on the μ_3 O model in the high-spin state $S_{tot} = {}^{3}/_{2}$. (Inset) Side view of β 123.

Figure 7. Contours of α - and β -spin LUMOs obtained from DFT calculations on the μ_3 O model in the broken-symmetry $M_{\rm S} = 1/_2$ state. (Insets) Side views of $\alpha 125$ and $\beta 124$.

states. The energies and % Cu/O compositions of the MOs are listed in Tables 3 and 4. In addition, the contours of the unoccupied MOs in the high-spin and the broken-symmetry states are presented in Figures 6 and 7, respectively. In the quartet state, the MOs are categorized into four types: (1) the metal-based acceptor MO with the out-of-plane O 2p_zorbital character ($\beta 123^{z}$), (2) the metal-based acceptor MOs with in-plane O $2p_x$ - or $2p_y$ -orbital characters ($\beta 124^{y}/\beta 125^{x}$), (3) the donor MO based on the out-of-plane O $2p_z$ orbital $(\beta 107^z)$, and (4) the donor MOs based on the in-plane O $2p_x$ and $2p_y$ orbitals ($\beta 104^x/\beta 105^y$). The MOs associated with the in-plane O p_x/p_y orbitals are degenerate with $e (= e_x/e_y)$ symmetry in C_3 ($\beta 104^x/\beta 105^y$ and $\beta 124^y/\beta 125^x$), whereas those associated with the out-of-plane O p_z orbital are nondegenerate with a symmetry ($\beta 107^z$ and $\beta 123^z$). In the broken-symmetry state (Figure 5, right), the *a* and *e* MOs are mixed: the orbital shapes of $\alpha 123^{y+z}$, $\alpha 125^{y-z}$, $\beta 123^{y-z}$, and $\beta 124^{y+z}$ are the result of the *a* and e_y orbital mixing, whereas those of $\alpha 124^x$ and $\beta 125^x$ are mainly e_x . The $\alpha 125^{y-z}$ of the broken-symmetry state (Figure 7, α LUMO) is mainly localized on one metal and is useful in describing the ligand field around each Cu site. Each five-coordinated Cu^{II} site is best described by a distorted trigonal bipyramidal ligand field with the relative d-orbital energy order of $d_{z^2} \gg d_{xy} > d_{x^2-y^2}$ \gg d_{xz} > d_{yz} (Table 5). The two unoccupied β MOs of the broken-symmetry state, $\beta 124^{y+z}$ and $\beta 125^x$ (Figure 7, β LUMO and β LUMO+1), reflect the trimeric interactions in the broken-symmetry states (and, thus, the doublet state of μ_3 O) and are split in energy by 1500 cm^{-1} (Figure 5, right). The Cu–O bonds in both of these β MOs are involved in strong σ interactions, as reflected by the large amount of O p-orbital character in these MOs.

The ligand-to-metal bonding interactions of the high-spin state, as described in Figure 6 and Table 3, can be used to describe the superexchange interactions present in μ_3 O. The

Table 3. Energies and % Cu/O Compositions of μ_3 O and μ_3 OH in the High-Spin ($S_{tot} = 3/2$) State

description	β -MO #	symm. in C_3	E (eV)	rel. E $(cm^{-1})^{a,b}$	$\operatorname{Cu}_1 \operatorname{d}_{z^2}$	$\operatorname{Cu}_2 d_{z^2}$	$Cu_3 d_{z^2}$	O 2s	O 2p _x	O 2p _y	O 2p _z
$\mu_{3}O$ Acceptors											
β LUMO+1	$\beta 125^x$	е	-16.06	2450	23.2	2.8^{c}	27.6	0.0	19.7	0.1	0.0
β LUMO+1	β124 ^y	е	-16.06	2450	12.5^{d}	32.9	8.2^{d}	0.0	0.1	19.7	0.0
βLUMO	$\beta 123^z$	а	-16.37	0	16.1	16.1	16.1	0.4	0.0	0.0	21.7
	u ₂ O Donors										
Op _z	$\beta 107^z$	а	-19.52	-25 500	14.5	14.5	14.5	0.1	0.0	0.0	18.2
Op _x	$\beta 105^{x}$	е	-19.92	$-28\ 600$	7.4	10.2^{c}	5.9	0.0	29.3	0.1	0.0
Opy	$\beta 104^{y}$	е	-19.92	$-28\ 600$	8.3	5.5	9.7	0.0	0.1	29.3	0.0
				μ_3	OH Acceptor	s					
β LUMO+1	$\beta 125^x$	е	-20.21	2100	24.8	1.4^{c}	26.7	0.0	10.6	0.0	0.0
β LUMO+1	β124 ^y	е	-20.21	2100	10.5^{d}	33.9	8.6^{d}	0.0	0.0	10.6	0.0
βLUMO	$\beta 123^z$	а	-20.47	0	18.4	18.4	18.4	1.1	0.0	0.0	1.0
μ_3 OH Donors											
Op _v	β93 ^y	е	-25.36	-39 500	0.9	8.5	7.9	0.0	7.2	25.1	0.0
Op _x	$\beta 92^x$	е	-25.36	-39500	10.6	3.1^{c}	3.6	0.0	25.1	7.2	0.0
Op _z	$\beta 80^z$	а	-27.35	$-55\ 600$	1.1	1.1	1.1	3.9	0.0	0.0	31.9

^{*a*} Relative energies when β -LUMO (orbital #123) is set equal to zero. ^{*b*} Conversion factor: 1 eV = 8065.54 cm⁻¹. ^{*c*} d_{x'z'} character. ^{*d*} Comprises both d_{z²} and d_{x'z'} characters.

Table 4. Energies and % Cu/O Compositions of μ_3 O in the Broken-Symmetry ($M_S = 1/2$) State

description	MO #	<i>E</i> (eV)	Cu ₁	Cu ₂	Cu ₃	O 2s	O 2p <i>_x</i>	O 2p _y	O 2p _z
α-Spin Acceptors									
αLUMO	$\alpha 125^{y-z}$	-16.27	2.4	48.1	2.3	0.1	3.7	11.0	3.9
αΗΟΜΟ	$\alpha 124^x$	-16.94	17.2	8.0	17.4	0.0	16.0	5.6	0.0
aHOMO-1	$\alpha 123^{y+z}$	-17.11	13.9	7.3	13.8	0.0	1.1	3.0	26.0
				α-Spin Dong	ors				
Op _z	$\alpha 107^{y-z}$	-19.83	16.3	14.3	15.7	0.2	0.4	1.0	14.3
Op _y	$\alpha 103^{y+z}$	-20.21	12.4	7.3	12.5	0.0	5.6	12.8	10.4
Op_x	$\alpha 102^x$	-20.24	6.7	9.2	6.1	0.0	21.6	6.3	0.0
				β -Spin Accep	tors				
β LUMO+1	$\beta 125^x$	-16.09	26.1	1.9	25.7	0.0	14.7	4.9	0.0
βLUMO	$\beta 124^{y+z}$	-16.27	23.7	3.0	24.4	0.2	2.4	7.5	9.8
βΗΟΜΟ	$\beta 123^{y-z}$	-16.96	9.1	21.1	7.4	0.0	2.7	7.7	19.2
β -Spin Donors									
Op _z	$\beta 106^{y-z}$	-19.92	13.6	13.9	14.2	0.0	0.3	2.6	13.6
Op_x	$\beta 105^{x}$	-19.95	8.0	12.7	6.0	0.0	16.7	5.3	0.1
Op _y	$\beta 102^{y+z}$	-20.15	8.3	7.8	8.1	0.0	5.3	17.3	3.2

Table 5. d orbital Energies of $\mu_3 O$ and $\mu_3 O H^a$

		$\mu_3 O$	μ_3 OH			
	$\overline{E(\mathrm{eV})}$	rel. $E(cm^{-1})$	$\overline{E(\mathrm{eV})}$	rel. E (cm ⁻¹)		
d _{z²}	-16.3	0	-20.3	0		
$d_{x'y'}$	-17.6	10 500	-21.5	9680		
$d_{x^2-y^2}$	-18.0	13 700	-21.9	12 900		
$d_{x'z'}$	-18.7	19 400	-22.6	18 600		
$d_{y'z'}$	-19.0	21 800	-22.8	20 200		

 $^{\it a}$ Orbital energies of the α MOs obtained from the broken-symmetry calculations using ADF.

Cu sites have dominantly the d_z^2 ground state forming either σ or pseudo- σ antibonding MOs with the O 2p orbitals. In the quartet ground state ($S_{tot} = \frac{3}{2}$ in Figure 5), the degenerate $\beta 124^y$ and $\beta 125^x$ have considerable in-plane O 2p_y and 2p_x character (20% each, Table 3), respectively, reflecting strong oxo σ bonds with the metal d_z^2 orbitals. The nondegenerate $\beta 123^z$ contains the out-of-plane O 2p_z (22%, Table 3) that forms pseudo- σ bonds with all three metal d_z^2 orbitals as a consequence of the oxo being out of the Cu₃ plane by ~0.5 Å. The pseudo- σ bonds in the *a* MO (= β LUMO) lead to its destabilization. Consequently, the energy gap between the *a* and *e* (= β LUMO+1) acceptor MOs is reduced, and the resulting energy gap of 2450 cm⁻¹ (Figure 5, left) is small

enough for the ferromagnetic contribution to dominate over the antiferromagnetic contribution, leading to a quartet ground state (see below). Note also that the symmetries of β 124 and β 125 MOs (Figures 6 and 7) suggest that the d_{xz} excited-state orbitals should have π -type bonds with the inplane oxo p orbitals. These bonds would provide effective ground-to-excited superexchange interactions that lead to higher-order exchange interactions, in particular, anisotropic exchange, which yields a ZFS of -5.0 cm^{-1} in the ⁴A ground state of μ_3 O (see below).

The contours of the unoccupied β -spin acceptor MOs of the protonated μ_3 OH model in the high-spin quartet state are presented in Figure 8; their orbital energies and % MO compositions are listed in Table 3. The energy gap between the $a (= \beta LUMO)$ and the e MOs $(= \beta LUMO+1)$ is similar to that of μ_3O [2450 cm⁻¹ (μ_3O) vs 2100 cm⁻¹ (μ_3OH)], and as a consequence, the ground state of μ_3OH is also a ferromagnetic quartet state (Table 2). However, a considerable reduction of both the σ and pseudo- σ interactions between Cu–O bonds is found: in the $\beta 124^{y}/\beta 125^{x} e$ MOs, the in-plane O 2p_y/2p_x characters are reduced by half (from 20 to 11% each; Table 3), and in the $\beta 123^{z} a$ MO, the outof-plane O 2p_z character is essentially eliminated (from 22

Figure 8. Contours of β -spin LUMO and LUMO+1 (β 124 and β 125 degenerate) obtained from DFT calculations on the μ_3 OH model in the high-spin state $S_{\text{tot}} = \frac{3}{2}$. (Inset) Side view of β 123.

to 1%; Table 3). Moreover, the magnitude of the calculated ferromagnetic *J* for μ_3 OH is considerably reduced as compared to that of μ_3 O (Table 2). This decrease in *J* is due to the reduction of the ferromagnetic contribution; the decreased oxo characters in the *a* and *e* MOs represent the reduction of the spin density overlap between the orthogonal magnetic orbitals.²² Alternatively, the antiferromagnetic contribution remains virtually unaffected since the energy gap between the β LUMO and β LUMO+1 is similar to that of μ_3 O, as both of these MOs are shifted in energy by a similar amount from decreased Cu–O interactions due to protonation.

Note that because of the decrease in the Cu–O interactions in μ_3 OH (between the Cu d_{z^2} and the O $p_{x,y,z}$ orbitals), the energy gap between the d_{z^2} ground state and the rest of the d manifold is reduced relative to that of the μ_3 O model (Table 5). This is experimentally observed in absorption and MCD spectra in which the d–d transition energies are lower for μ_3 OH.²³ The effect of protonation is also reflected in the large stabilization of the O-based donor MOs, which are lowered in orbital energy by 10 800 cm⁻¹ (Op_x/Op_y) and 27 300 cm⁻¹ (Op_z) relative to the LUMOs, resulting in the large increase in energy of the associated charge-transfer transitions.²³

Finally, the effect of the position of the oxo ligand relative to the Cu₃ plane on the superexchange interaction was evaluated by varying the oxo-to-Cu₃ plane distance.²⁴ Table 6 lists the resulting structural parameters, orbital energies of the β LUMO and β LUMO+1 of the high-spin state, *J* values, and the % MO compositions of the magnetic orbitals obtained from the broken-symmetry calculations. The most conspicuous feature found in these calculations is that the *J*'s vary significantly from -100 to +285 cm⁻¹ and that the antiferromagnetic ground state is favored when the distance of the oxo ligand out of the Cu₃ plane, *R*(O-Cu₃ plane), is smaller than 0.3 Å, while the ferromagnetic ground state is favored when *R*(O-Cu₃ plane) is larger than 0.3 Å (Figure 9a).²⁵ This variation in *J* is not related to either the CuCu/Cu–O distances or the Cu–O–Cu bridging angles, as these parameters do not significantly change over the different R(O–Cu₃ plane) values.

In particular, the Cu–O–Cu bridging angles, typically used as a criterion for assessing the magnetic properties of dimeric Cu^{II} complexes, appear to play less of a role for μ_3 O, as the angles obtained of 108.6°-120.0° (Table 6a) are in the range that would generally favor a large antiferromagnetic interaction in dimeric CuII complexes; the Cu-O-Cu angles of ~112° in the μ_3 O crystal structure correspond to a strongly antiferromagnetic J of ~ -500 cm^{-1.26} This difference between dimers and the μ_3 -oxo trimers is related to the fact that the antiferromagnetic contribution in Cu^{II} dimers depends on the bonding interactions between the Cu d and the in-plane OH p orbitals in the singly occupied MO (SOMO) and SOMO+1; the OH p_y and p_x orbitals (perpendicular and parallel to the Cu-Cu direction, respectively) each form two Cu-O bonds in the SOMO and SOMO+1. The dependence of J on the Cu–O–Cu angle for the Cu^{II} dimers is, thus, a consequence of the difference in the in-plane $d-p_v-d$ and $d-p_x-d$ overlaps. However, for the μ_3 O trimer, the high-spin SOMO and the degenerate SOMO+1 (β LUMO and β LUMO+1; Figure 6) involve the out-of-plane O p_z orbital and the in-plane O $p_{x,y}$ orbitals, respectively, and therefore, the two-dimensional Cu-O-Cu angle is not sufficient for assessing exchange interactions in μ_3 O.

In contrast to the effect of protonation described above, the ferromagnetic contribution, which is largely dependent on the contribution of orthogonal magnetic orbitals to a single center (i.e., oxo), is expected to be unaffected, as the oxo characters in the magnetic orbitals remain relatively invariant at different $R(O-Cu_3$ plane) distances (Table 6c). Alternatively, the energy gap ($E_{\beta LUMO} - E_{\beta LUMO+1}$) becomes large when J becomes small. This reciprocal nature of J and $E_{\beta LUMO+1} - E_{\beta LUMO}$ has been recognized by Hay et al.²⁷ According to their model, J has a linear relationship with the SOMO-SOMO+1 energy gap squared, assuming the ferromagnetic contribution remains constant.²⁷

The calculated *J*'s and the corresponding $(E_{\beta LUMO+1} - E_{\beta LUMO})^2$ are plotted in Figure 9b, in which a linear fit is obtained with a ferromagnetic contribution of +335 cm⁻¹ and an antiferromagnetic contribution of $-(E_{\beta LUMO+1} - E_{\beta LUMO})^2/85 900 \text{ cm}^{-1}$. The denominator in the latter term $(85 900 \text{ cm}^{-1} \sim 10.5 \text{ eV})$ is reasonable, as this energy is the energy of the metal-to-metal charge transfer (MMCT) state, which is related to the Coulomb repulsion energy of the paired electrons in the MMCT state and has been estimated

⁽²²⁾ Kahn, O.; Galy, J.; Journaux, Y.; Jaud, J.; Morgenstern-Badarau, I. J. Am. Chem. Soc. 1982, 104, 2165–2176.

⁽²³⁾ Yoon, J.; Mirica, L. M.; Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 2005, in press.

⁽²⁴⁾ The geometry optimizations [using uB3LYP/LanL2Dz in the highspin ($S_{tot} = 3/2$) state; Gaussian 98] were performed on the μ_3 O model at six different oxo-to-Cu₃ plane distances. $C_{3\nu}$ symmetry was imposed on these optimizations, which showed no significant deviation in geometry from the C_3 symmetry optimized structure [compare Table 1 and $R(O-Cu_3$ plane) = 0.504 Å in Table 6a].

⁽²⁵⁾ The difference in the calculated J values in Table 2 (+246.4 cm⁻¹) and those in Table 6 [+184.0 cm⁻¹; $R(O-Cu_3 \text{ plane}) = 0.504 \text{ Å}]$ originates from the different functionals and basis sets used, not likely from the two geometry optimizations, as the two geometries are very similar.

^{(26) (}a) Kahn, O. *Molecular Magnetism*; VCH: New York, 1993. (b) Crawford, V. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, D. J.; Hatfield, W. E. *Inorg. Chem.* **1976**, *15*, 2107–2110. (c) Tandon, S. S.; Thompson, L. K.; Manuel, M. E.; Bridson, J. N. *Inorg. Chem.* **1994**, *33*, 5555–5570.

⁽²⁷⁾ Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884–4899.

Table 6. (a) Structural Parameters, (b) Orbital Energies and the Isotropic Exchange Constant *J*'s, and (c) Compositions of the Magnetic Orbitals Localized at a Single Cu Site in μ_3 O at Different Oxo-to-Cu₃ Plane Distances^{*a*}

$R(O-Cu_3 plane)$	0.0	0.1	0.2	0.3	0.504^{b}	0.7			
(a) Structural Parameters ^{<i>c,d</i>}									
R(Cu-Cu)	3.33	3.33	3.33	3.32	3.30	3.27			
R(Cu-O)	1.92	1.93	1.93	1.94	1.97	2.01			
$R(Cu-N_{ax})$	2.14	2.14	2.15	2.16	2.18	2.20			
$R(Cu-N_B)$	2.35	2.39	2.26	2.24	2.21	2.20			
$R(Cu-N_{s1,s2})$	2.23	2.24	2.24	2.24	2.24	2.23			
A(Cu-O-Cu)	120.0	197.7	118.9	117.7	113.7	108.6			
(b) Energies ^{d}									
$E_{\beta \text{LUMO}+1}$ (eV)	-14.64	-14.55	-14.56	-14.60	-14.72	-14.87			
$E_{\beta LUMO}$ (eV)	-15.33	-15.33	-15.30	-15.24	-15.15	-15.11			
$E_{\beta \text{LUMO}+1} - E_{\beta \text{LUMO}} \text{ (cm}^{-1}\text{)}$	5570	6290	5970	5160	3470	1940			
$J(\mathrm{cm}^{-1})$	-55.2	-100.1	-51.2	+28.8	+184.0	+285.4			
(c) Compositions of the Magnetic Orbitals ^{e} (%)									
$Cu_2 (d_{z^2})^f$	62.0	61.9	61.6	61.4	60.9	60.2			
$O\left(p_z + p_{x,y}\right)$	13.1	13.2	13.8	14.4	15.6	16.9			

^{*a*} uB3LYP/LanL2Dz (Gaussian 98) results are presented. Each structure was optimized in $C_{3\nu}$ symmetry at the high-spin quartet ($S_{tot} = \frac{3}{2}$) state. Distances are in Å, and angles are in degrees. ^{*b*} *R*(O-Cu₃ plane) obtained when it was not fixed. ^{*c*} See Figure 1 for atomic labels. ^{*d*} *β*LUMO and *β*LUMO+1 refer to the unoccupied *β*108 and *β*109/*β*110 MOs of the high-spin calculations, respectively. ^{*e*} αLUMO (α110) of the broken-symmetry ($M_S = \frac{1}{2}$) calculation. ^{*f*} Compositions of the other two Cu centers in the trimer (Cu₁ and Cu₃) are less than 1%.

Figure 9. (a) Plot of the isotropic coupling constant *J*'s at different oxoto-Cu₃ plane distances, $R(O-Cu_3 \text{ plane})$ and (b) the linear correlation between these *J*'s and the corresponding $(E_{\beta \text{LUMO}+1} - E_{\beta \text{LUMO}})^2$ energy gap, as obtained from DFT calculations. Refer to Table 6 for more details.

to be in the range of $5-10 \text{ eV.}^{28,29}$ Thus, change in the exchange coupling interaction when the oxo ligand is moved into the Cu₃ plane is dominantly dependent on the change in the antiferromagnetic contribution that is determined by the energy gap between β LUMO and β LUMO+1. When the oxo ligand is moved out of the Cu₃ plane, the pseudo- σ

overlap between Cu d_{z^2} and the out-of-plane oxo p_z orbitals increases. Consequently, the antibonding β LUMO (the *a* MO; Figure 6) is destabilized and its energy gap with β LUMO+1 (the *e* MO; Figure 6) is decreased and, thus, reduces the antiferromagnetic contribution relative to the ferromagnetic contribution. This results in the experimentally determined *J* of +54.5 cm⁻¹ for the μ_3 O complex in which the *R*(O-Cu₃ plane) is ~0.5 Å. Conversely, moving the oxo ligand into the Cu₃ plane [*R*(O-Cu₃ plane) < 0.3 Å] results in an antiferromagnetically coupled system due to loss of the pseudo- σ interactions in the β LUMO that leads to its decreased destabilization and increased (E_{β LUMO+1} - E_{\betaLUMO) energy gap.

Discussion

In this study, experimental and computational perturbations on the μ_3 O structure, protonation of the oxo ligand, and variation of the oxo-to-Cu3 plane distance have been performed to evaluate the behavior of the μ_3 -oxo bridging ligand in the exchange coupling of the three Cu^{II} centers in the μ_3 O complex. DFT analysis has shown that the difference in the magnitude of J between μ_3 O and its protonated form, μ_3 OH, arises from the large decrease in the Cu^{II}-oxo bonding interactions upon protonation. Consequently, the ferromagnetic contribution to the exchange coupling is reduced, which reflects the decrease in the spin density contributions from the orthogonal magnetic orbitals of the three metal centers to the bridging ligand. However, the $(E_{\beta LUMO+1} - E_{\beta LUMO})$ energy gap, and hence, the antiferromagnetic contribution, shows little change upon protonation as both orbitals are stabilized in energy by the reduced Cu-O bonding interactions. Alternatively, upon moving the oxo ligand close to the Cu₃ plane, the antiferromagnetic contribution is greatly increased and dominates over the relatively constant ferromagnetic contribution. This is a consequence of the reduction of the pseudo- σ bonding interactions between the Cu d_{z^2} and the out-of-plane oxo p_z orbitals, which increases the β LUMO and β LUMO+1 energy splitting. With

 ^{(28) (}a) Anderson, P. W. *Phys. Rev.* **1959**, *115*, 2–13. (b) Anderson, P. W. In *Magnetism*; Rado, G. T., Suhl, H., Eds.; Academic Press: New York, 1963; Vol. 1, pp 25–83.

⁽²⁹⁾ Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I. J. Am. Chem. Soc. 1988, 110, 250–268.

Properties of a µ₃-Oxo-Bridged Trinuclear Cu(II) Complex

the decrease of the $d_z^2-p_z$ interactions, the ground state of μ_3O becomes an antiferromagnetic ²E state when the oxoto-Cu₃ plane distance is less than ~0.3 Å. Note that the trinuclear Cu cluster site in the MCOs is less rigid than the bowl-shaped macrocyclic ligand of μ_3O . Therefore, if the trinuclear Cu cluster site in the NI of the MCOs has a μ_3 oxo-bridged structure, the central oxo ligand would likely be positioned close to the Cu₃ plane (from QM/MM geometry optimization of NI),³⁰ resulting in a spin-frustrated doublet ground state, as observed experimentally.²

The orbitally degenerate ²E ground state of an antiferromagnetically coupled μ_3 O would zero-field split by the firstorder antisymmetric exchange.³¹ This exchange can be related to the large ZFS in the ferromagnetic ⁴A ground state of μ_3 O that has been experimentally determined here from VT EPR. The ZFS of the ⁴A state is governed by the anisotropic exchange (*D*), which derives from second-order SOC combined with ground-to-excited-state exchange coupling.³¹ Importantly, the anisotropic exchange shares the same physical origin as the antisymmetric exchange (*G*). For a pair of metal centers, these exchange terms are expressed as

$$G_{12} = 2i\lambda \left[\frac{\langle e_1 | L_1 | g_1 \rangle}{\Delta_1} (-2J_{g_1g_2}^{e_1g_2}) - \frac{\langle e_2 | L_2 | g_2 \rangle}{\Delta_2} (-2J_{g_1g_2}^{g_1e_2}) \right] (3)$$
$$D_{12} = \lambda^2 \left[\frac{\langle e_1 | L_1 | g_1 \rangle^2}{\Delta_1^2} (-2J_{e_1g_2}^{e_1g_2}) + \frac{\langle e_2 | L_2 | g_2 \rangle^2}{\Delta_2^2} (-2J_{g_1e_2}^{g_1e_2}) \right] (4)$$

where λ is the SOC parameter; $|g_i\rangle$ and $|e_i\rangle$ are the ground and excited states at the *i*th metal center; Δ_i is the energy difference between $|g_i\rangle$ and $|e_i\rangle$; L_i is the orbital angular momentum operator that couples $|g_i\rangle$ and $|e_i\rangle$; and $J_{g_1g_2}^{e_1g_2}$, $J_{g_1g_2}^{g_1e_2}$, $J_{e_1g_2}^{e_1g_2}$, and $J_{g_1e_2}^{g_1e_2}$ are superexchange integrals³² in which $J_{g_1g_2}^{e_1g_2}$ involves the transfer of one electron in the ground state of metal 1 to the ground state of metal 2 and the second electron from the ground state of metal 2 to the excited state of metal 1, while $J_{e_1g_2}^{e_1g_2}$ involves the transfer of both electrons between the excited state of metal 1 and the ground state of metal 2. Thus, both the antisymmetric and anisotropic exchanges are derived from (1) local SOC and (2) superex-

- (30) Rulíšek, L.; Solomon, E. I.; Ryde, U. Inorg. Chem. 2005, 44, 5612– 5628.
- (31) Matrices obtained upon application of the spin wave functions of an axial C_3 symmetric trimer with $s_1 = s_2 = s_3 = \frac{1}{2}$ to the spin-Hamiltonian describing isotropic, antisymmetric, and anisotropic exchange terms are given in the Supporting Information. It is shown that only the antisymmetric exchange exists in the ²E state, whereas only the anisotropic exchange exists in the ⁴A state.
- (32) These exchange integrals can be explicitly written as

$$J_{g_1g_2}^{e_1g_2} = \langle \phi_g^{-1}(1)\phi_g^{-2}(2)|\hat{H}_{e_x}|\phi_e^{-1}(2)\phi_g^{-2}(1)\rangle$$
(a)

$$J_{g_1g_2}^{g_1g_2} = \langle \phi_g^{-1}(1)\phi_g^{-2}(2)|\hat{H}_{ex}|\phi_g^{-1}(2)\phi_e^{-2}(1)\rangle$$
 (b)

$$J_{e_{1}g_{2}}^{e_{1}g_{2}} = \langle \phi_{e}^{1}(1)\phi_{g}^{2}(2)|\hat{H}_{ex}|\phi_{e}^{1}(2)\phi_{g}^{2}(1)\rangle$$
(c)

$$I_{g_1 e_2}^{g_1 e_2} = \langle \phi_g^{-1}(1) \phi_e^{-2}(2) | \hat{H}_{ex} | \phi_g^{-1}(2) \phi_e^{-2}(1) \rangle \tag{d}$$

Scheme 3. Ground (d_{z^2}) to Excited (d_{xz}) State SOC and Superexchange Pathways in μ_3O

change coupling between the ground state of one center to the excited state of the other center, and vice versa.

In the μ_3 O structure, the d_{z^2} ground state at each metal center can SOC with the d_{xz} excited state via orbital angular momentum operator $L_{y}' \sim L_{z}$ (local y' axis ~ molecular z axis; Figure 1).³³ Further, the ground-to-excited-state superexchange between d_{z^2} and d_{xz} orbitals of different metal centers is facilitated via the in-plane oxo p orbitals as superexchange pathways (Scheme 3). The ZFS of -5.0 cm^{-1} in the ⁴A ground state in μ_3 O, dominated by the anisotropic exchange contribution (the spin-spin dipolar contribution being less than ~ 0.3 cm⁻¹), provides experimental evidence, in magnitude and sign, for the existence of the combined effects of the local SOC and ground-to-excited-state superexchange. Therefore, it is expected that the ²E ground state of the μ_3O structure would also undergo ZFS by the antisymmetric exchange interaction. The ground-to-excited exchange integral $J_{z_1^{2}z_2^{2}}^{xz_1z_2^{2}}$ should be larger than the groundto-ground exchange integral $J_{z_1^{2}z_2^{2}}^{z_1^{2}z_2^{2}}$, as the ground-to-excited antiferromagnetic coupling is further facilitated by the π bond between d_{xz} and the in-plane oxo p orbital which σ -bonds to d_{r^2} on the adjacent Cu centers, as illustrated in Scheme 3. Using the calculated ground-state exchange coupling constant $J_{z_1^{2}z_2^{2}}^{z_1^{2}z_2^{2}}$ of -55.2 cm⁻¹ [= J when R(O-Cu₃ plane) is 0 Å; Table 6] as a lower limit for $J_{z_1^{2}z_2^{2}}^{x_{z_1}z_2^{2}}$, the magnitude of the pairwise antisymmetric exchange parameter $|G_{12}|$ of 42 cm⁻¹ can be estimated.³⁴ Thus, the ²E ground state of μ_3 O with the oxo ligand in the Cu₃ plane would exhibit a ZFS of \sim 70 cm^{-1} (= $\sqrt{3}|G_{12}|$ for the Cu^{II}₃ trimer)⁶ from the antisymmetric exchange.

$$G_{12} = \frac{4i\lambda \langle x'z'_1 | L_{1y'} | z'_1^2 \rangle}{(-2J_{z_1 z_2}^{x_{z_1 z_2}^2})}$$
(e)

since $\langle x'z'_1|L_{1y}|z'_1^2 \rangle = -\langle x'z'_2|L_{2y}|z'_2^2 \rangle$ (see ref 3 for details). Substituting $\langle x'z'_1|L_{1y}|z'_1^2 \rangle = i\sqrt{3}$, $\Delta_1 = 15\,000 \text{ cm}^{-1}$ (from absorption/ MCD; see ref 23), the λ (SOC constant for Cu^{II}) = -830 cm⁻¹, and $J_{z_1^2z_2^2}^{z_1z_2^2} = -55.2 \text{ cm}^{-1}$, $G_{12} = 42.3 \text{ cm}^{-1}$ is obtained. Note that the twocenter G_{12} is a vector component along the $y' \sim$ molecular z axis. The effective sum of the three two-center G_{12} 's in the symmetric trigonal systems equal $\sqrt{3}G_{12} = 73.3 \text{ cm}^{-1}$.

in which the superscripts 1 and 2 refer to the metal centers and 1 and 2 in the parentheses refer to electrons. The exchange Hamiltonian \hat{H}_{ex} includes contributions from both the two-electron Coulomb operator $1/r_{12}$ and the superexchange derived from metal–ligand overlaps.

⁽³³⁾ Each metal pair in μ_3 O has an effective 2-fold rotation axis passing through the midpoint of the pair, with the axis nearly in the Cu₃ plane. The symmetry rules of the **G** vectors allow the nonzero *G* component to be oriented perpendicular to the 2-fold axis. The collection of these components from the three metal pairs results in $G_z \neq 0$ and $(G_x, G_y) \approx 0$. Since $(G_x, G_y) \approx 0$, exchange interactions between other orbital states (via L_x and L_y) would have negligible contributions in the antisymmetric exchange interaction.

⁽³⁴⁾ If only the d_{z^2} ground to d_{xz} excited-state SOC is considered, eq 3 can be written as

A similar ZFS of 65 cm^{-1} has been experimentally determined in the ²E ground state of TrisOH, which results from the combined effects of symmetry lowering and antisymmetric exchange (see the Introduction).³ We have used a spin-Hamiltonian model to show that the antisymmetric exchange SO mixes the two ZFS doublets of the ²E ground state, resulting in low $g_{\rm eff}$ values which shift down to <1.2 in the perpendicular direction (i.e., when the molecular z axis normal to the Cu₃ plane is oriented perpendicular to the magnetic field).^{3,6} This model is appropriate for any antiferromagnetically coupled Cu^{II} trimer with near C_3 symmetry, as it does not take into account the specific orbital superexchange pathways involved. Thus, an antiferromagnetically coupled μ_3 O structure is also expected to produce low g values in the perpendicular direction, as it has efficient ground-to-ground and ground-to-excited-state superexchange pathways for antisymmetric exchange.

Therefore, both the μ_3 -oxo-bridged and the tris- μ_2 -hydroxy-bridged structures would exhibit an unusual $S = \frac{1}{2}$ EPR signal with low *g* values below 2.0. The characteristic EPR signal of NI, which exhibits a low g_{eff} value of ~1.65, can be explained by ~6% SO mixing³⁵ between the ground and the low-lying excited doublet states via antisymmetric exchange among the three Cu^{II} centers in the trinuclear cluster site. The fundamental description of the ground state of the exchange coupled μ_3 -oxo-bridged structure in this study and that of the tris- μ_2 -hydroxy-bridged TrisOH in ref 3 allow detailed insight into the nature of the ground state of the native intermediate. This is important with respect to both the molecular mechanism of O–O bond cleavage and the contribution of the superexchange pathways to the facile rereduction of this fully oxidized intermediate in the turnover of the multicopper oxidases.

Acknowledgment. We thank A. Dey for helpful discussions regarding synthesis of the μ_3 O model. This research was supported by NIH Grant DK31450.

Supporting Information Available: Structure of the macrocyclic ligand; temperature dependence of powder X-band EPR spectra and the Zeeman split energy level diagrams of μ_3 O and μ_3 OH; the molecular coordinates of the truncated models used in the DFT calculations; and the matrix elements of the isotropic, antisymmetric, and anisotropic exchange for a C_3 -symmetric trimer with $s_1 = s_2 = s_3 = \frac{1}{2}$. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0507870

⁽³⁵⁾ The theoretical model used for TrisOH³ included symmetry lowering δ [an equilateral ($J_{12} = J_{23} = J_{31}$ and $\delta = 0$) to isosceles ($J_{12} \neq J_{23}$ = J_{31} and $\delta = J_{12} - J_{23}$) distortion] and antisymmetric exchange factor $G \ (\approx G_z)$, which were varied to match the experimental data (g = 2.15, 1.86, and 1.65 and ZFS = 150 cm^{-1}).² The experimental g value of 2.15 was assumed to be g_{eff} when the molecular z axis (the axis normal to the Cu₃ plane) is aligned with the applied magnetic field, and the g values of 1.86 and 1.65 were assumed to be g_{eff} when the molecular z axis was oriented perpendicular to the applied field. The data were fit by fixing the molecular g_z at 2.15 (= highest g value from experiment) and the molecular $g_{x,y}$ at 2.0; the latter was chosen after several initial trials (small variation from 2.0 had a negligible influence on the fits). δ was varied and G was obtained from the relation $\Delta(ZFS) = \sqrt{\delta^2 + 3G^2} = 150 \text{ cm}^{-1}$, from which $\delta = 132 \pm 8 \text{ cm}^{-1}$ and $G = 41 \pm 8 \text{ cm}^{-1}$ were obtained. Given these values, the coefficient of mixing of the low-lying excited doublet state into the ground doublet state (or of the ground doublet state into the low-lying excited doublet state) is obtained from the expression $(\sqrt{1/2(1-\delta/\Delta)})^2 = 6.2 \ (\pm 2.5) \ \%.$