

Temperature Dependent Emission of Hexarhenium(III) Clusters $[Re_6(\mu_3-S)_8X_6]^{4-}$ (X = Cl⁻, Br⁻, and I⁻): Analysis by Four Excited **Triplet-State Sublevels**

Noboru Kitamura,* Yuichi Ueda, Shoji Ishizaka, Konatsu Yamada, Masanori Aniya, and Yoichi Sasaki

Division of Chemistry, Graduate School of Science, Hokkaido University, 060-0810 Sapporo, Japan

Received May 26, 2005

Temperature (*T*) dependences of the emission spectra and lifetimes of hexarhenium(III) clusters, $[{\rm Re}_6(\mu_3\text{-}S)_8\chi_6]^{4-}$ $(X = Cl^{-}, Br^{-}, and I^{-})$, in the crystalline phase were studied in detail. An increase in T from 30 to 70 K resulted in a red-shift of the emission spectrum of the cluster, while an increase in τ above 70 K gave rise to a gradual blue-shift of the spectrum. On the other hand, the emission lifetime of the cluster decreased sharply from 30−40 to 13−20 *µ*s on going from 30 to 60 K, while that decreased gradually above 60 K: 5−6 *µ*s at 290 K. Such emission behaviors of [Re₆(μ_3 -S)₈X₆]^{4–} were observed irrespective of X. The results were then analyzed by assuming the contributions of the emissions from the lowest-energy excited triplet-state sublevels. The present study demonstrated that the characteristic *T* dependent emission spectra and lifetimes of [Re₆(µ₃-S)₈X₆]^{4–} were explained reasonably by a single context of the contributions of the emissions from four excited triplet-state sublevels.

Introduction

In 1999, three research groups including us,¹ Batail,² and Nocera³ reported independently that herarhenium(III) clusters, $[Re_6(\mu_3-S)_8X_6]^{4-}$ where $X = Cl^-$, Br⁻, or I⁻ (Chart 1), show room-temperature emission both in solution and in crystalline phases. Typically, $[Re_6S_8Cl_6]^{4-}$ in CH₃CN exhibits emission in the wavelength (*λ*) region of 600-1000 nm (*λ*max $= 770$ nm) with the quantum yield and lifetime of 0.039 and $6.3 \mu s$, respectively.¹ Prior to these reports, Arratia-Pérez and Hernándes-Acevedo predicted theoretically that the clusters might show luminescence.^{4,5} In addition to $[Re₆(\mu₃ S_{8}X_{6}$ ⁴⁻, various $[Re_{6}(\mu_{3}-E)_{8}L_{6}]^{z}$ (E = S, Se, or Te: L = CN⁻, NCS⁻, PEt₃, CH₃CN, pyridine derivatives, 4,4'bipyridine, or other *σ*-donor ligand) have shown to be also luminescent at room temperature,^{1,3,6-11} and theoretical studies on the spectroscopic and physical properties of the

* Corresponding author. E-mail: kitamura@sci.hokudai.ac.jp.

clusters have been reported.¹²⁻¹⁴ Besides the room-temperature emission, we also reported that the emission spectra and lifetimes of $[Re_6S_8Cl_6]^{4-}$ and $[Re_6S_8(NCS)_6]^{4-}$ both in solution (propylene carbonate or butyronitrile) and in crystalline phases depended significantly on temperature (*T*), and suggested that the results would be explained in terms of the contributions of the emissions from the lowest-energy excited triple-state sublevels.8 However, since the *T* range studied was limited above 80 K, we failed to conduct detailed analysis of the *T* dependence of the emission. On the other hand, Gray et al. reported recently the *T* dependences of the emission spectra and lifetimes of several $[Re_6E_8L_6]^z$ in the crystalline phase, and analyzed the results by assuming participation of high-energy vibrational levels of the emitting

6308 Inorganic Chemistry, Vol. 44, No. 18, 2005 10.1021/ic050855i CCC: \$30.25 © 2005 American Chemical Society Published on Web 08/04/2005

⁽¹⁾ Yoshimura, T.; Ishizaka, S.; Umakoshi, K.; Sasaki, Y.; Kim, H.-B.; Kitamura, N. *Chem. Lett*. **1999**, 697.

⁽²⁾ Guilbaud, C.; Deluzet, A.; Domercq, B.; Molinié, P.; Coulon, C.; Boubekeur, K.; Batail, P. *Chem. Commun.* **1999**, 1867.

⁽³⁾ Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. *Inorg. Chem*. **1999**, *38*, 5932.

⁽⁴⁾ Arratia-Pe´rez, R.; Herna´ndez-Acevedo, L. *J. Chem. Phys.* **1999**, *110*, 2529.

⁽⁵⁾ Arratia-Pe´rez, R.; Herna´ndez-Acevedo, L. *J. Chem. Phys.* **1999**, *111*, 168.

state.10 However, our experiments on the *T* dependence of $[Re_6S_8Cl_6]^{4-}$ emission showed an unusual spectral red-shift with an increase in T in the range of $30-70$ K, which could not be explained by simple thermal distributions between the emitting vibrational levels. The *T* dependent emission of a transition metal complex at low temperature $(1.2-300)$ K) has been often discussed in terms of the contributions of the emissions from the lowest-energy excited triplet-state sublevels: ϕ_n ¹⁵⁻¹⁹ In practice, the *T* dependent emission of $[Mo_{6}(\mu_{3}-Cl)_{8}Cl_{6}]^{2-} = [Mo_{6}Cl_{14}]^{2-}$, possessing an isoelectronic structure with that of $[Re_6S_8X_6]^{4-}$, has been explained by participation of three excited triplet-state sublevels: ϕ_n , $n = 1-3$.¹⁷⁻¹⁹ To clarify the emission characteristics of $[Re_6S_8X_6]^{4-}$, therefore, we reinvestigated *T* dependences of the emission characteristics in the *^T* range of 30-290 K. In the present paper, we show that the characteristic *T* dependent emission spectra and lifetimes of $[Re_6S_8X_6]^{4-} (X = Cl^-, Br^-,$
and I^-) are explained by a single context of the contributions and I^-) are explained by a single context of the contributions of the emissions from *four* lowest-energy excited triplet-state sublevels: ϕ_n , $n = 1-4$.

Experimental Section

 $[Re_6S_8X_6]^{4-}$ (X = Cl⁻, Br⁻, and I⁻) as *n*-Bu₄N⁺ salts were prepared and purified according to the literature.²⁰ Anal. Calcd for $C_{64}H_{144}N_4Re_6S_8X_6$. $X = CI^-$: C, 30.07; H, 5.68; N, 2.19; S, 10.03; Cl, 8.32. Found: C, 29.79; H, 5.47; N, 2.44; S, 10.11; Cl, 8.24. X $=$ Br⁻: C, 27.23; H, 5.14; N, 1.98; S, 9.09; Br, 16.98. Found: C, 26.92; H, 5.00; N, 1.93; S, 9.01; Br, 16.81. $X = I^-$: C, 24.76; H, 4.67; N, 1.80; S, 8.26; I, 24.52. Found: C, 24.34; H, 4.47; N, 1.92; S, 8.36; I, 24.80.

Sample solids were placed between two nonfluorescent glass plates, and the temperature $(\pm 0.1 \text{ K})$ was controlled by using a liquid-He cryostat system (Oxford Instruments, OptistatCF). A pulsed Nd3+:YAG laser (Continuum, Surelite-II, 355 nm, fwhm ∼6 ns) was used as an exciting light source. Emission spectra were recorded on a red-sensitive multichannel photodetector (Hamamatsu Photonics, PMA-11), and emission lifetimes were measured by

- (6) Yoshimura, T.; Ishizaka, S.; Sasaki, Y.; Kim, H.-B.; Kitamura, N.; Naumov, N. G.; Sokolov, M. N.; Fedorov, V. E. *Chem. Lett*. **1999**, 1121.
- (7) Yoshimura, T.; Umakoshi, K.; Sasaki, Y.; Ishizaka, S.; Kim, H.-B.; Kitamura, N. *Inorg. Chem*. **2000**, *39*, 1765.
- (8) Yoshimura, T.; Chen, Z.-N.; Itasaka, A.; Abe, M.; Sasaki, Y.; Ishizaka, S.; Kitamura, N.; Yarovoi, S. S.; Solodovnikov, S. F.; Fedorov, V. E. *Inorg. Chem*. **2003**, *42*, 4857.
- (9) Gabriel, J.-C. P.; Boubekeur, K.; Uriel, S.; Batail, P. *Chem. Re*V. **²⁰⁰¹**, *101*, 2037.
- (10) Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Holm, R. H.; Nocera, D. G. *J. Am. Chem. Soc*. **2003**, *125*, 4755.
- (11) Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Nocera, D. G. *J. Phys. Chem. A* **2004**, *108*, 3238.
- (12) Honda, H.; Noro, T.; Tanaka, K.; Miyoshi, E. *J. Chem. Phys*. **2001**, *114*, 10791.
- (13) Alvarez-Thon, L.; Arratia-Pérez, R.; Hernández-Acevedo, L. *J. Chem. Phys*. **2001**, *115*, 726.
- (14) Arratia-Pe´rez, R.; Herna´ndez-Acevedo, L. *J. Chem. Phys*. **2003**, *118*, 7425.
- (15) Hager, G. D.; Crosby, G. A. *J. Am. Chem. Soc*. **1975**, *97*, 7031.
- (16) Hager, G. D.; Watts, R. J.; Crosby, G. A. *J. Am. Chem. Soc*. **1975**, *97*, 7037.
- (17) Saito, Y.; Tanaka, H. K.; Sasaki, Y.; Azumi, T. *J. Phys. Chem*. **1985**, *89*, 4413.
- (18) Azumi, T.; Saito, Y. *J. Phys. Chem*. **1988**, *92*, 1715.
- (19) Miki, H.; Ikeyama, T.; Sasaki, Y.; Azumi, T. *J. Phys. Chem.* **1992**, *96*, 3236.
- (20) Long, J. R.; McCarty, L. S.; Holm, R. H. *J. Am. Chem. Soc*. **1996**, *118*, 4603.

Figure 1. Temperature dependence of the emission spectrum of $[Re_6S_8X_6]^{4-}$ in the crystalline phase: (a) $X = Cl^-$, (b) $X = Br^-$, and (c) $X = I^-$. The color scheme for the observed temperatures for all three panels is given in panel a. Excitation wavelength was 355 nm.

using a streak camera (Hamamatsu Photonics, C4334) or photomultiplier (Hamamatsu Photonics, R928F) equipped with a monochromator (Javin-Yvon, HR-300).

Results and Discussion

Figure 1 shows *T* dependences of the emission spectra of $[Re_6S_8X_6]^{4-}$ in the crystalline phase. As a typical example, the emission intensity of $[Re_6S_8Cl_6]^{4-}$ (Figure 1a) decreased with an increase in *T* from 30 to 290 K and this accompanied a blue-shift and broadening of the spectrum. Such an overall *T* dependence of the spectrum (*λ*max, band shape, and intensity) observed was analogous to that reported by Gray et al.10 The data in Figure 1a indicated, however, that an increase in *T* from 30 to 70 K resulted in a red-shift of the spectrum, while the spectrum was shifted gradually to the blue above 70 K. The red-shift at $30 < T < 70$ K and subsequent blue-shift of the spectrum above 70 K is not fortuitous, since results analogous with those of $[Re_6S_8Cl_6]^{4-}$ have been also confirmed for both $[{\rm Re}_6 {\rm S}_8 {\rm Br}_6]^{4-}$ and $[{\rm Re}_6 {\rm S}_8 {\rm I}_6]^{4-}$ as seen in Figure 1b and Figure 1c, respectively. Furthermore, a similar *T* dependent emission shift has been reported for $[Mo_6Cl_{14}]^{2-}$ as well.¹⁷⁻¹⁹ In the *T* range of 30-290 K, on the other hand, the emission showed a single-exponential decay irrespective of $T₁²¹$ as a typical example of the data for $[Re_6S_8Cl_6]^{4-}$ is shown in Figure 2. The emission lifetime (τ) of $[Re_6S_8X_6]^{4-}$ increased gradually with a decrease in T from 290 K (5-6 μ s) to ~60 K (13-20 μ s), while τ showed a sharp increase below 60 K (30 $-40 \mu s$ at 30 K) as the data

⁽²¹⁾ At $3.5 \le T \le 20$ K, the emission showed non-single-exponential decay, since each excited triplet-state sublevel emits independently: spin alignment. Therefore, single-exponential decays of the emission at *T* > 30 K indicate that the excited triplet-state sublevels are in a thermal Boltzmann equilibrium.

Figure 2. Temperature dependence of the emission decay profile of $[Re_6S_8Cl_6]^{4-}$ in the crystalline phase: 30 (a), 50 (b), 70 (c), 120 (d), 170 (e), 230 (f), and 290 K (g). Excited at 355 nm; the emission was monitored at the maximum wavelength at a given *T*.

Figure 3. Temperature dependence of the emission lifetime of $[Re_6S_8X_6]^{4-}$ in the crystalline phase: (a) $X = Cl^-$, (b) $X = Br^-$, and (c) $X = I^-$. The solid curve in each panel shows the best fit by eq 3.

are summarized in Figure 3. All of these experimental observations should be explained by a single context.

We analyzed the data in Figure 1 by an idea analogous with that reported for the *T* dependent emission of $[Mo_6Cl_{14}]^{2-17-19}$ We assume here that the results in Figure 1 are essentially due to the contributions from ϕ_n . Since thermal Boltzmann populations from the lowest-energy excited triplet-state sublevel (ϕ_1) to the upper-lying sublevels (ϕ_n) are neglected at 30 K, the emission spectrum observed at 30 K reflects that of ϕ_1 . An increase in *T* gives rise to thermal populations from ϕ_1 to ϕ_n , so that the emissions from ϕ_n contribute to the observed spectrum at $T \geq 30$ K. To analyze the data, we introduce the following assumptions: (a) The emitting ϕ_n levels are in a thermal Boltzmann equilibrium at $T > 30$ K.²¹ (b) The emission spectral band

Figure 4. Simulation of the observed emission spectrum (black) of $[Re_6S_8Cl_6]^{4-}$ at a given *T* by eq 1. Separated emission spectra of the tripletstate sublevels are shown by green (ϕ_1) , blue (ϕ_2) , light blue (ϕ_3) , and orange (ϕ_4) . The total simulated spectrum at a given *T* is shown by red in each panel.

shape of each ϕ_n is independent of *T* and the band shapes are identical with one another, but the maximum energy differs between ϕ_n . In the case of the *T* dependent emission of $[Mo_6Cl_{14}]^2$, these assumptions have been shown to be valid enough.¹⁹ Therefore, we follow such assumptions in the present data analysis. The observed spectrum at a given $T (I(v,T))$ was then analyzed as the Boltzmann factor weighted sum of the emission spectra from *four* ϕ_n (level energy: $\phi_1 < \phi_2 < \phi_3 < \phi_4$) on the basis of eq 1,

$$
I(\nu, T) = k_{\rm r}^{1} F(\nu) + k_{\rm r}^{2} \exp(-\Delta E_{12}/kT) F(\nu + \Delta \nu_{2}) +
$$

$$
k_{\rm r}^{3} \exp(-\Delta E_{13}/kT) F(\nu + \Delta \nu_{3}) + k_{\rm r}^{4} \exp(-\Delta E_{14}/kT) F(\nu + \Delta \nu_{4})
$$
 (1)

where $k_{\rm r}^{\prime\prime}$ is the radiative rate constant of ϕ_n relative to that of ϕ_1 (i.e., $k_1^1 = 1.0$). $F(v)$ represents the spectral Gaussian function of ϕ_2 at 30 K; assumption (b) Δv ($n = 2-4$) is function of ϕ_1 at 30 K: assumption (b). Δv_n (*n* = 2-4) is the spectral shift of each sublevel measured from the maximum energy of ϕ_1 (=v), and ΔE_{1n} is the energy difference between ϕ_1 and ϕ_n . A typical example of spectral separations of the observed emission at several *T* by eq 1 is shown in Figure 4. The observed spectrum at a given T ($>$ 30) K) was best fitted by the sum of those of two to four ϕ_n . It is worth emphasizing that, although the *T* dependent emission of $[Mo_6Cl₁₄]²⁻$ has been explained by the contribution of the emission from *three* excited triplet-state sublevels as described above,¹⁷⁻¹⁹ that of $[{\rm Re}_6S_8X_6]^{4-}$ cannot be accounted for by assuming three sublevels, but is fitted almost satisfactorily by the emissions from *four* excited triplet-state sublevels irrespective of X: ϕ_n , $n = 1-4$.

Figure 5. Temperature dependence of the relative emission intensity of each excited triplet-state sublevel of $[Re_6S_8X_6]^{4-}$: (a) $X = Cl^-$, (b) $X =$ Br⁻, and (c) $X = I^-$. The color scheme is depicted in panel a.

Such an analysis of the data in Figure 1 can also afford the *T* dependence of the relative emission intensity of each ϕ ^{*n*} (*I*(*T*)^{*n*}_{rel}) as the results are summarized in Figure 5. $I(T)_{rel}^n$ can be expressed by eq 2:¹⁵

$$
I(T)_{\text{rel}}^n = k_{\text{r}}^n \exp(-\Delta E_{1n}/k) / [k_{\text{r}}^1 + \sum k_{\text{r}}^n \exp(-\Delta E_{1n}/k) \quad (2)
$$

Fittings of the *I*(*T*)_{rel} data by eq 2 with ΔE_{1n} and $k_{\rm r}^{n}$ being variable parameters were almost satisfactory as shown by the solid curves in Figure 5, though the fitting of the data for *φ*² was not necessarily good enough. Nonetheless, overall *T* dependence of the emission intensity of each ϕ_n is explained very well by eq 2. The results in Figure 5 demonstrate that the emission from ϕ_1 explains very well the spectrum at 30 K (for $[Re_6S_8Cl_6]^{4-}$, see also top panel in Figure 4), while its contribution to the overall spectrum decreases with an increase in *T* and this accompanies the increase in the contributions of the emissions from ϕ_2 to ϕ_4 . For $[Re_6S_8Cl_6]^{4-}$ at 290 K, as an example, the emission from *φ*³ to the total emission spectrum is dominant (∼40%), while those from the other three sublevels are marginal (\sim 20%): Figure 5a.

Analysis of the $I(v,T)$ and $I((T)_{rel}^n)$ data by eqs 1 and 2, respectively, affords the common parameters of ∆*E*¹*ⁿ* and $k_{\rm r}^n$. On the basis of the evaluated ΔE_{1n} values, furthermore, the *T* dependence of τ can be simulated by eq 3,^{17,18}

$$
\tau = [\sum g_i \exp(-\Delta E_{1n}/kT)]/[\sum g_i \exp(-\Delta E_{1n}/kT)]/\tau_n]
$$
 (3)

where g_i is the spin multiplicity of the state concerned. The solid curves in Figure 3 show the simulations of the *T*

dependent emission lifetimes of three $[Re_6S_8X_6]^{4-}$ by eq 3 and ∆*E*¹*n*, which reproduces very well the experimental results irrespective of X. Therefore, the *T* dependencies of the observed emission spectrum (*λ*max, band shape, and intensity) and lifetime of $[Re_6S_8X_6]^{4-}$ (X = Cl⁻, Br⁻, or I⁻) in the *^T* range of 30-290 K can be interpreted satisfactorily by a single context: contributions of the emissions from *four* ϕ_n . The ΔE_{1n} , k_1^n , and τ_n values evaluated for $[Re_6S_8X_6]^{4-1}$ are summarized in Figure 6. Note that the parameters reported here are approximate values, since fittings of the present data by eq 1, 2, or 3 should be refined further; this is in progress in this laboratory together with analysis of the *T* dependent emission data of other $[Re_6E_8L_6]^z$ clusters. On the basis of the present parameters, nevertheless, the following discussions could be made for the excited triplet state of $[{\rm Re}_6S_8X_6]^{4-}$.

The *T* dependence of the $[Mo_6Cl_{14}]^{2-}$ emission has been shown to be explained by the contributions of the emissions from three ϕ_n with ΔE_{12} and ΔE_{13} being 67 and 680 cm⁻¹, respectively, as the sublevel energy diagram is included in Figure 6.¹⁷⁻¹⁹ It is worth noting that the presence of four ϕ_n has been predicted theoretically for both $[Re_6S_8X_6]^{4-}$ and $[Mo_6Cl_{14}]^2$ ⁻ (i.e., double group representation of T_{2u}, A_{1u}, E_{u} , and T_{1u} for both clusters), $17-19,22$ although the A_{1u} state of $[Mo_6Cl_{14}]^2$ has not been observed experimentally, probably due to location of the state in close proximity to the strongly emitting T_{1u} sublevel.¹⁹ Since the present data for the three $[{\rm Re}_6S_8X_6]^{4-}$ clusters can be explained exclusively by ϕ_n ($n = 1-4$), it is concluded that the presence of four emitting excited triplet-state sublevels is a common feature of $[{\rm Re}_6S_8X_6]^{4-}$.

At the present stage of the investigation on $[Re_6S_8X_6]^{4-}$, we have not identified the double group representation of each ϕ_n . However, we suppose that the sequence of the sublevel energy of $[Re_6S_8X_6]^{4-}$ would be similar to that of $[Mo₆Cl₁₄]²$, owing to an isoelectronic structure of $[Re₆S₈X₆]⁴$ with that of $[Mo_6Cl_{14}]^{2-}$. Since the ΔE_{1n} values observed for $[Re_6S_8Cl_6]^{4-}$ (80–690 cm⁻¹, Figure 6a) are comparable
to those of $[Mo_6Cl_6]^{2-}$ (67–680 cm⁻¹ Figure 6d), this might to those of $[Mo_6Cl_{14}]^2$ ⁻ $(67-680 \text{ cm}^{-1})$, Figure 6d), this might
also support the above discussion, while the energy level of also support the above discussion, while the energy level of the A_{1u} state is unclear.

Finally, it is worth discussing the origin of the curious *T* dependent emission spectral shifts of $[Re_6S_8X_6]^{4-}$: red-shift $(30-70)$ K) and subsequent blue-shift of the spectrum (>70) K) with an increase in *T* (Figure 1). It is clear that the behaviors cannot be explained by ∆*E*¹*ⁿ* alone (i.e., the sublevel energy $= \phi_1 < \phi_2 < \phi_3 < \phi_4$). On the other hand, the emission maximum energy of each sublevel increases with the sequence of $\phi_2 < \phi_1 < \phi_3 < \phi_4$ for all $[{\rm Re}_6S_8X_6]^{4-}$ studied (see Figure 4 for example). Since the relative contribution of the emission from each ϕ_n to the total spectrum varies with *T*, the sequence of the emission maximum energy of each ϕ_n mentioned above and, thus, Δv_n in eq 1 is the primary reason for the *T* dependent emission spectral shift. The Δv_n value is determined by ΔE_{1n} and the energy of the Franck-Condon ground state relevant to the

⁽²²⁾ Tanaka, K. Private communication.

Figure 6. Schematic illustrations of the excited triplet-state sublevel energies and the spectral shifts for $[Re_6S_8X_6]^{4-}$ (a-c) and $[Mo_6Cl_{14}]^{2-}$ (d). The upper and lower levels connected by the arrow represent the initial and final levels of the transition, respectively, and the value represents the emission maximum energy of each ϕ_n . For $\Delta E'$, see the main text. The data for $[Mo_6Cl₁₄]²$ observed in the crystalline phase were compiled from ref 19.

transition from each ϕ_n . On the basis of ΔE_{1n} and Δv_n , therefore, one can estimate the energy differences between the Franck-Condon ground states for the four emission transitions (∆*E*′), as shown schematically in Figure 6. Since ∆*E*′ is determined mainly by the vibrational frequency and/or vibrational distortion between the excited-state sublevel and the relevant Franck-Condon ground state for nonradiative decay of $[Re_6S_8X_6]^{4-}$, the curious *T* dependent emission shift observed in the present study could be explained in terms of such parameters, similar to the results on $[Mo_6Cl_{14}]^{2-19}$

Conclusions

The present study demonstrated that the characteristic *T* dependent emission spectra and lifetimes of $[Re_6S_8X_6]^{4-}$ (X $= Cl^{-}$, Br⁻, and I⁻) could be explained reasonably by a single context of participation of the four emitting excited tripletstate sublevels: ϕ_n . Although the presence of four ϕ_n has been predicted theoretically for both $[Mo_6Cl₁₄]²⁻$ and $[Re_6S_8X_6]^{4-}$, experimental proof of the presence of four ϕ_n for $[Mo_6Cl_{14}]^{2-}$ has not been shown yet. Therefore, this is the first demonstration for the presence of the four emitting

Temperature Dependent Emission of [Re6(µ3-S)8X6]4-

excited triplet-state sublevels of $[Re_6S_8X_6]^{4-}$, isoelectronic to $[Mo_6Cl₁₄]²$. Finally, it is worth pointing out, furthermore, that the nonradiative decay rate constants (k_{nr}) of $[Re_6S_8X_6]^{4-}$ or $[Re_6E_8L_6]^z$ have been discussed in terms of the energy gap law by $us^{6,8}$ and Gray et al.:^{3,10} linear relationship between ln *k*nr and emission maximum energy (*E*em). However, the present study demonstrated clearly that the roomtemperature emission from $[Re_6S_8X_6]^{4-}$ is composed of those from four ϕ_n . Since each ϕ_n possesses a different radiative rate constant (i.e., $k_{\rm r}^{n}$), $k_{\rm nr}$ should be also different between ϕ_n . Therefore, the relationship between ln k_{nr} and E^{em} estimated from room-temperature emission might not be

warranted and should be reconsidered with respect to the contributions of the photophysical properties of each ϕ_n to the room-temperature emission.

Acknowledgment. The authors are indebted to Prof. Emeritus K. Tanaka at this institution for valuable discussions and comments. Y.S. also is thankful for a Grant-in-Aid for Scientific Research (No. 15350029) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government for partial support of the research. IC050855I