

Temperature Dependent Emission of Hexarhenium(III) Clusters $[Re_6(\mu_3-S)_8X_6]^{4-}$ (X = Cl⁻, Br⁻, and l⁻): Analysis by Four Excited Triplet-State Sublevels

Noboru Kitamura,* Yuichi Ueda, Shoji Ishizaka, Konatsu Yamada, Masanori Aniya, and Yoichi Sasaki

Division of Chemistry, Graduate School of Science, Hokkaido University, 060-0810 Sapporo, Japan

Received May 26, 2005

Temperature (*T*) dependences of the emission spectra and lifetimes of hexarhenium(III) clusters, $[Re_6(\mu_3-S)_8X_6]^{4-}$ (X = Cl⁻, Br⁻, and l⁻), in the crystalline phase were studied in detail. An increase in *T* from 30 to 70 K resulted in a red-shift of the emission spectrum of the cluster, while an increase in *T* above 70 K gave rise to a gradual blue-shift of the spectrum. On the other hand, the emission lifetime of the cluster decreased sharply from 30–40 to 13–20 μ s on going from 30 to 60 K, while that decreased gradually above 60 K: 5–6 μ s at 290 K. Such emission behaviors of $[Re_6(\mu_3-S)_8X_6]^{4-}$ were observed irrespective of X. The results were then analyzed by assuming the contributions of the emissions from the lowest-energy excited triplet-state sublevels. The present study demonstrated that the characteristic *T* dependent emission spectra and lifetimes of $[Re_6(\mu_3-S)_8X_6]^{4-}$ were explained reasonably by a single context of the contributions of the emissions from *four* excited triplet-state sublevels.

Introduction

In 1999, three research groups including us,¹ Batail,² and Nocera³ reported independently that herarhenium(III) clusters, $[\text{Re}_6(\mu_3-\text{S})_8\text{X}_6]^{4-}$ where $\text{X} = \text{Cl}^-$, Br^- , or I^- (Chart 1), show room-temperature emission both in solution and in crystalline phases. Typically, $[\text{Re}_6\text{S}_8\text{Cl}_6]^{4-}$ in CH₃CN exhibits emission in the wavelength (λ) region of 600–1000 nm ($\lambda_{\text{max}} = 770$ nm) with the quantum yield and lifetime of 0.039 and 6.3 μ s, respectively.¹ Prior to these reports, Arratia-Pérez and Hernándes-Acevedo predicted theoretically that the clusters might show luminescence.^{4,5} In addition to $[\text{Re}_6(\mu_3-\text{S})_8\text{X}_6]^{4-}$, various $[\text{Re}_6(\mu_3-\text{E})_8\text{L}_6]^2$ (E = S, Se, or Te: L = CN^- , NCS⁻, PEt₃, CH₃CN, pyridine derivatives, 4,4'-bipyridine, or other σ -donor ligand) have shown to be also luminescent at room temperature,^{1,3,6-11} and theoretical studies on the spectroscopic and physical properties of the

* Corresponding author. E-mail: kitamura@sci.hokudai.ac.jp.

clusters have been reported.^{12–14} Besides the room-temperature emission, we also reported that the emission spectra and lifetimes of $[\text{Re}_6\text{S}_8\text{Cl}_6]^{4-}$ and $[\text{Re}_6\text{S}_8(\text{NCS})_6]^{4-}$ both in solution (propylene carbonate or butyronitrile) and in crystalline phases depended significantly on temperature (*T*), and suggested that the results would be explained in terms of the contributions of the emissions from the lowest-energy excited triple-state sublevels.⁸ However, since the *T* range studied was limited above 80 K, we failed to conduct detailed analysis of the *T* dependence of the emission. On the other hand, Gray et al. reported recently the *T* dependences of the emission spectra and lifetimes of several $[\text{Re}_6\text{E}_8\text{L}_6]^z$ in the crystalline phase, and analyzed the results by assuming participation of high-energy vibrational levels of the emitting

10.1021/ic050855i CCC: \$30.25 © 2005 American Chemical Society Published on Web 08/04/2005

Chart 1. Structure of Hexarhenium(III) Cluster, $[\text{Re}_6(\mu_3-S)_8X_6]^{4-}$

Yoshimura, T.; Ishizaka, S.; Umakoshi, K.; Sasaki, Y.; Kim, H.-B.; Kitamura, N. Chem. Lett. 1999, 697.

⁽²⁾ Guilbaud, C.; Deluzet, A.; Domercq, B.; Molinié, P.; Coulon, C.; Boubekeur, K.; Batail, P. Chem. Commun. 1999, 1867.

⁽³⁾ Gray, T. G.; Rudzinski, C. M.; Nocera, D. G.; Holm, R. H. *Inorg. Chem.* **1999**, *38*, 5932.

⁽⁴⁾ Arratia-Pérez, R.; Hernández-Acevedo, L. J. Chem. Phys. 1999, 110, 2529.

⁽⁵⁾ Arratia-Pérez, R.; Hernández-Acevedo, L. J. Chem. Phys. 1999, 111, 168.

state.¹⁰ However, our experiments on the T dependence of [Re₆S₈Cl₆]⁴⁻ emission showed an unusual spectral red-shift with an increase in T in the range of 30-70 K, which could not be explained by simple thermal distributions between the emitting vibrational levels. The T dependent emission of a transition metal complex at low temperature (1.2-300)K) has been often discussed in terms of the contributions of the emissions from the lowest-energy excited triplet-state sublevels: ϕ_n .^{15–19} In practice, the *T* dependent emission of $[Mo_6(\mu_3-Cl)_8Cl_6]^{2-} = [Mo_6Cl_{14}]^{2-}$, possessing an isoelectronic structure with that of $[Re_6S_8X_6]^{4-}$, has been explained by participation of three excited triplet-state sublevels: ϕ_n , $n = 1 - 3.^{17-19}$ To clarify the emission characteristics of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$, therefore, we reinvestigated T dependences of the emission characteristics in the T range of 30-290 K. In the present paper, we show that the characteristic T dependent emission spectra and lifetimes of $[Re_6S_8X_6]^{4-}$ (X = Cl⁻, Br⁻, and I⁻) are explained by a single context of the contributions of the emissions from *four* lowest-energy excited triplet-state sublevels: ϕ_n , n = 1-4.

Experimental Section

 $[\text{Re}_6\text{S}_8\text{X}_6]^{4-} (\text{X} = \text{Cl}^-, \text{Br}^-, \text{ and } \text{I}^-) \text{ as } n\text{-Bu}_4\text{N}^+ \text{ salts were} prepared and purified according to the literature.}^{20} \text{ Anal. Calcd for } \text{C}_{64}\text{H}_{144}\text{N}_4\text{Re}_6\text{S}_8\text{X}_6. \text{ X} = \text{Cl}^{-:} \text{ C}, 30.07; \text{ H}, 5.68; \text{ N}, 2.19; \text{ S}, 10.03; \\ \text{Cl}, 8.32. \text{ Found: } \text{C}, 29.79; \text{ H}, 5.47; \text{ N}, 2.44; \text{ S}, 10.11; \text{ Cl}, 8.24. \text{ X} = \text{Br}^{-:} \text{ C}, 27.23; \text{ H}, 5.14; \text{ N}, 1.98; \text{ S}, 9.09; \text{Br}, 16.98. \text{ Found: } \text{C}, 26.92; \text{ H}, 5.00; \text{ N}, 1.93; \text{ S}, 9.01; \text{ Br}, 16.81. \text{ X} = \text{I}^{-:} \text{ C}, 24.76; \text{ H}, 4.67; \text{ N}, 1.80; \text{ S}, 8.26; \text{ I}, 24.52. \text{ Found: } \text{ C}, 24.34; \text{ H}, 4.47; \text{ N}, 1.92; \\ \text{S}, 8.36; \text{ I}, 24.80.$

Sample solids were placed between two nonfluorescent glass plates, and the temperature (± 0.1 K) was controlled by using a liquid-He cryostat system (Oxford Instruments, OptistatCF). A pulsed Nd³⁺:YAG laser (Continuum, Surelite-II, 355 nm, fwhm ~ 6 ns) was used as an exciting light source. Emission spectra were recorded on a red-sensitive multichannel photodetector (Hamamatsu Photonics, PMA-11), and emission lifetimes were measured by

- (6) Yoshimura, T.; Ishizaka, S.; Sasaki, Y.; Kim, H.-B.; Kitamura, N.; Naumov, N. G.; Sokolov, M. N.; Fedorov, V. E. *Chem. Lett.* 1999, 1121.
- (7) Yoshimura, T.; Umakoshi, K.; Sasaki, Y.; Ishizaka, S.; Kim, H.-B.; Kitamura, N. *Inorg. Chem.* **2000**, *39*, 1765.
- (8) Yoshimura, T.; Chen, Z.-N.; Itasaka, A.; Abe, M.; Sasaki, Y.; Ishizaka, S.; Kitamura, N.; Yarovoi, S. S.; Solodovnikov, S. F.; Fedorov, V. E. *Inorg. Chem.* **2003**, *42*, 4857.
- (9) Gabriel, J.-C. P.; Boubekeur, K.; Uriel, S.; Batail, P. Chem. Rev. 2001, 101, 2037.
- (10) Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Holm, R. H.; Nocera, D. G. J. Am. Chem. Soc. 2003, 125, 4755.
- (11) Gray, T. G.; Rudzinski, C. M.; Meyer, E. E.; Nocera, D. G. J. Phys. Chem. A 2004, 108, 3238.
- (12) Honda, H.; Noro, T.; Tanaka, K.; Miyoshi, E. J. Chem. Phys. 2001, 114, 10791.
- (13) Alvarez-Thon, L.; Arratia-Pérez, R.; Hernández-Acevedo, L. J. Chem. Phys. 2001, 115, 726.
- (14) Arratia-Pérez, R.; Hernández-Acevedo, L. J. Chem. Phys. 2003, 118, 7425.
- (15) Hager, G. D.; Crosby, G. A. J. Am. Chem. Soc. 1975, 97, 7031.
 (16) Hager, G. D.; Watts, R. J.; Crosby, G. A. J. Am. Chem. Soc. 1975,
- (10) Hager, G. D.; watts, K. J.; Crosby, G. A. J. Am. Chem. Soc. 1975, 97, 7037.
- (17) Saito, Y.; Tanaka, H. K.; Sasaki, Y.; Azumi, T. J. Phys. Chem. 1985, 89, 4413.
- (18) Azumi, T.; Saito, Y. J. Phys. Chem. 1988, 92, 1715.
- (19) Miki, H.; Ikeyama, T.; Sasaki, Y.; Azumi, T. J. Phys. Chem. 1992, 96, 3236.
- (20) Long, J. R.; McCarty, L. S.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 4603.

Figure 1. Temperature dependence of the emission spectrum of $[\text{Re}_{6}S_8X_6]^{4-}$ in the crystalline phase: (a) $X = \text{Cl}^-$, (b) $X = \text{Br}^-$, and (c) $X = \text{I}^-$. The color scheme for the observed temperatures for all three panels is given in panel a. Excitation wavelength was 355 nm.

using a streak camera (Hamamatsu Photonics, C4334) or photomultiplier (Hamamatsu Photonics, R928F) equipped with a monochromator (Javin-Yvon, HR-300).

Results and Discussion

Figure 1 shows T dependences of the emission spectra of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ in the crystalline phase. As a typical example, the emission intensity of $[Re_6S_8Cl_6]^{4-}$ (Figure 1a) decreased with an increase in T from 30 to 290 K and this accompanied a blue-shift and broadening of the spectrum. Such an overall T dependence of the spectrum (λ_{max} , band shape, and intensity) observed was analogous to that reported by Gray et al.¹⁰ The data in Figure 1a indicated, however, that an increase in T from 30 to 70 K resulted in a red-shift of the spectrum, while the spectrum was shifted gradually to the blue above 70 K. The red-shift at 30 < T < 70 K and subsequent blue-shift of the spectrum above 70 K is not fortuitous, since results analogous with those of $[Re_6S_8Cl_6]^{4-}$ have been also confirmed for both [Re₆S₈Br₆]⁴⁻ and [Re₆S₈I₆]⁴⁻ as seen in Figure 1b and Figure 1c, respectively. Furthermore, a similar T dependent emission shift has been reported for $[Mo_6Cl_{14}]^{2-}$ as well.¹⁷⁻¹⁹ In the *T* range of 30–290 K, on the other hand, the emission showed a single-exponential decay irrespective of T²¹ as a typical example of the data for $[\text{Re}_6\text{S}_8\text{Cl}_6]^{4-}$ is shown in Figure 2. The emission lifetime (τ) of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ increased gradually with a decrease in T from 290 K (5–6 μ s) to ~60 K (13–20 μ s), while τ showed a sharp increase below 60 K (30–40 μ s at 30 K) as the data

⁽²¹⁾ At 3.5 < T < 20 K, the emission showed non-single-exponential decay, since each excited triplet-state sublevel emits independently: spin alignment. Therefore, single-exponential decays of the emission at T > 30 K indicate that the excited triplet-state sublevels are in a thermal Boltzmann equilibrium.

Figure 2. Temperature dependence of the emission decay profile of $[\text{Re}_6\text{S}_8\text{Cl}_6]^{4-}$ in the crystalline phase: 30 (a), 50 (b), 70 (c), 120 (d), 170 (e), 230 (f), and 290 K (g). Excited at 355 nm; the emission was monitored at the maximum wavelength at a given *T*.

Figure 3. Temperature dependence of the emission lifetime of $[\text{Re}_{6}S_8X_6]^{4-}$ in the crystalline phase: (a) $X = \text{Cl}^-$, (b) $X = \text{Br}^-$, and (c) $X = \text{I}^-$. The solid curve in each panel shows the best fit by eq 3.

are summarized in Figure 3. All of these experimental observations should be explained by a single context.

We analyzed the data in Figure 1 by an idea analogous with that reported for the *T* dependent emission of $[Mo_6Cl_{14}]^{2-.17-19}$ We assume here that the results in Figure 1 are essentially due to the contributions from ϕ_n . Since thermal Boltzmann populations from the lowest-energy excited triplet-state sublevel (ϕ_1) to the upper-lying sublevels (ϕ_n) are neglected at 30 K, the emission spectrum observed at 30 K reflects that of ϕ_1 . An increase in *T* gives rise to thermal populations from ϕ_n so that the emissions from ϕ_n contribute to the observed spectrum at T > 30 K. To analyze the data, we introduce the following assumptions: (a) The emitting ϕ_n levels are in a thermal Boltzmann equilibrium at T > 30 K.²¹ (b) The emission spectral band

Figure 4. Simulation of the observed emission spectrum (black) of $[\text{Re}_6\text{S}_8\text{Cl}_6]^{4-}$ at a given *T* by eq 1. Separated emission spectra of the tripletstate sublevels are shown by green (ϕ_1) , blue (ϕ_2) , light blue (ϕ_3) , and orange (ϕ_4) . The total simulated spectrum at a given *T* is shown by red in each panel.

shape of each ϕ_n is independent of *T* and the band shapes are identical with one another, but the maximum energy differs between ϕ_n . In the case of the *T* dependent emission of $[Mo_6Cl_{14}]^{2-}$, these assumptions have been shown to be valid enough.¹⁹ Therefore, we follow such assumptions in the present data analysis. The observed spectrum at a given *T* (I(v,T)) was then analyzed as the Boltzmann factor weighted sum of the emission spectra from *four* ϕ_n (level energy: $\phi_1 < \phi_2 < \phi_3 < \phi_4$) on the basis of eq 1,

$$I(\nu,T) = k_{\rm r}^{1} F(\nu) + k_{\rm r}^{2} \exp(-\Delta E_{12}/kT) F(\nu + \Delta \nu_{2}) + k_{\rm r}^{3} \exp(-\Delta E_{13}/kT) F(\nu + \Delta \nu_{3}) + k_{\rm r}^{4} \exp(-\Delta E_{14}/kT) F(\nu + \Delta \nu_{4}) + k_{\rm r}^{2} \exp(-\Delta E_{14}/kT) F(\nu + \Delta \nu_{4}/kT) F(\nu + \Delta \nu_{4}/kT)$$

where k_r^n is the radiative rate constant of ϕ_n relative to that of ϕ_1 (i.e., $k_r^1 = 1.0$). $F(\nu)$ represents the spectral Gaussian function of ϕ_1 at 30 K: assumption (b). Δv_n (n = 2-4) is the spectral shift of each sublevel measured from the maximum energy of ϕ_1 (= ν), and ΔE_{1n} is the energy difference between ϕ_1 and ϕ_n . A typical example of spectral separations of the observed emission at several T by eq 1 is shown in Figure 4. The observed spectrum at a given T (> 30K) was best fitted by the sum of those of two to four ϕ_n . It is worth emphasizing that, although the T dependent emission of [Mo₆Cl₁₄]²⁻ has been explained by the contribution of the emission from three excited triplet-state sublevels as described above, $^{17-19}$ that of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ cannot be accounted for by assuming three sublevels, but is fitted almost satisfactorily by the emissions from four excited triplet-state sublevels irrespective of X: ϕ_n , n = 1-4.

Figure 5. Temperature dependence of the relative emission intensity of each excited triplet-state sublevel of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$: (a) $X = \text{Cl}^-$, (b) $X = \text{Br}^-$, and (c) $X = \text{I}^-$. The color scheme is depicted in panel a.

Such an analysis of the data in Figure 1 can also afford the *T* dependence of the relative emission intensity of each ϕ_n ($I(T)_{rel}^n$) as the results are summarized in Figure 5. $I(T)_{rel}^n$ can be expressed by eq 2:¹⁵

$$I(T)_{\rm rel}^n = k_{\rm r}^n \exp(-\Delta E_{1n}/kT) / [k_{\rm r}^1 + \sum k_{\rm r}^n \exp(-\Delta E_{1n}/kT)]$$
(2)

Fittings of the $I(T)_{rel}^n$ data by eq 2 with ΔE_{1n} and k_r^n being variable parameters were almost satisfactory as shown by the solid curves in Figure 5, though the fitting of the data for ϕ_2 was not necessarily good enough. Nonetheless, overall *T* dependence of the emission intensity of each ϕ_n is explained very well by eq 2. The results in Figure 5 demonstrate that the emission from ϕ_1 explains very well the spectrum at 30 K (for [Re₆S₈Cl₆]⁴⁻, see also top panel in Figure 4), while its contribution to the overall spectrum decreases with an increase in *T* and this accompanies the increase in the contributions of the emissions from ϕ_2 to ϕ_4 . For [Re₆S₈Cl₆]⁴⁻ at 290 K, as an example, the emission from ϕ_3 to the total emission spectrum is dominant (~40%), while those from the other three sublevels are marginal (~20%): Figure 5a.

Analysis of the $I(\nu,T)$ and $I((T)_{rel}^n$ data by eqs 1 and 2, respectively, affords the common parameters of ΔE_{1n} and k_r^n . On the basis of the evaluated ΔE_{1n} values, furthermore, the *T* dependence of τ can be simulated by eq 3,^{17,18}

$$\tau = \left[\sum g_i \exp(-\Delta E_{1n}/kT)\right] / \left[\left\{\sum g_i \exp(-\Delta E_{1n}/kT)\right\} / \tau_n\right]$$
(3)

where g_i is the spin multiplicity of the state concerned. The solid curves in Figure 3 show the simulations of the *T*

dependent emission lifetimes of three $[Re_6S_8X_6]^{4-}$ by eq 3 and ΔE_{1n} , which reproduces very well the experimental results irrespective of X. Therefore, the T dependencies of the observed emission spectrum (λ_{max} , band shape, and intensity) and lifetime of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ (X = Cl⁻, Br⁻, or I⁻) in the T range of 30–290 K can be interpreted satisfactorily by a single context: contributions of the emissions from *four* ϕ_n . The ΔE_{1n} , k_r^n , and τ_n values evaluated for $[\text{Re}_6\text{S}_8\text{X}_6]^{4-1}$ are summarized in Figure 6. Note that the parameters reported here are approximate values, since fittings of the present data by eq 1, 2, or 3 should be refined further; this is in progress in this laboratory together with analysis of the T dependent emission data of other $[Re_6E_8L_6]^z$ clusters. On the basis of the present parameters, nevertheless, the following discussions could be made for the excited triplet state of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$.

The *T* dependence of the $[Mo_6Cl_{14}]^{2-}$ emission has been shown to be explained by the contributions of the emissions from three ϕ_n with ΔE_{12} and ΔE_{13} being 67 and 680 cm⁻¹, respectively, as the sublevel energy diagram is included in Figure 6.^{17–19} It is worth noting that the presence of four ϕ_n has been predicted theoretically for both $[Re_6S_8X_6]^{4-}$ and $[Mo_6Cl_{14}]^{2-}$ (i.e., double group representation of T_{2u} , A_{1u} , E_u , and T_{1u} for both clusters),^{17–19,22} although the A_{1u} state of $[Mo_6Cl_{14}]^{2-}$ has not been observed experimentally, probably due to location of the state in close proximity to the strongly emitting T_{1u} sublevel.¹⁹ Since the present data for the three $[Re_6S_8X_6]^{4-}$ clusters can be explained exclusively by ϕ_n (n = 1-4), it is concluded that the presence of four emitting excited triplet-state sublevels is a common feature of $[Re_6S_8X_6]^{4-}$.

At the present stage of the investigation on $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$, we have not identified the double group representation of each ϕ_n . However, we suppose that the sequence of the sublevel energy of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ would be similar to that of $[\text{Mo}_6\text{Cl}_{14}]^{2-}$, owing to an isoelectronic structure of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ with that of $[\text{Mo}_6\text{Cl}_{14}]^{2-}$. Since the ΔE_{1n} values observed for $[\text{Re}_6\text{S}_8\text{Cl}_6]^{4-}$ (80–690 cm⁻¹, Figure 6a) are comparable to those of $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ (67–680 cm⁻¹, Figure 6d), this might also support the above discussion, while the energy level of the A_{1u} state is unclear.

Finally, it is worth discussing the origin of the curious *T* dependent emission spectral shifts of $[\text{Re}_6\text{S}_8X_6]^{4-}$: red-shift (30–70 K) and subsequent blue-shift of the spectrum (>70 K) with an increase in *T* (Figure 1). It is clear that the behaviors cannot be explained by ΔE_{1n} alone (i.e., the sublevel energy = $\phi_1 < \phi_2 < \phi_3 < \phi_4$). On the other hand, the emission maximum energy of each sublevel increases with the sequence of $\phi_2 < \phi_1 < \phi_3 < \phi_4$ for all $[\text{Re}_6\text{S}_8X_6]^{4-}$ studied (see Figure 4 for example). Since the relative contribution of the emission from each ϕ_n to the total spectrum varies with *T*, the sequence of the emission maximum energy of each ϕ_n mentioned above and, thus, $\Delta \nu_n$ in eq 1 is the primary reason for the *T* dependent emission spectral shift. The $\Delta \nu_n$ value is determined by ΔE_{1n} and the energy of the Franck–Condon ground state relevant to the

⁽²²⁾ Tanaka, K. Private communication.

Figure 6. Schematic illustrations of the excited triplet-state sublevel energies and the spectral shifts for $[\text{Re}_{6}\text{S}_8\text{X}_6]^{4-}$ (a-c) and $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ (d). The upper and lower levels connected by the arrow represent the initial and final levels of the transition, respectively, and the value represents the emission maximum energy of each ϕ_n . For $\Delta E'$, see the main text. The data for $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ observed in the crystalline phase were compiled from ref 19.

transition from each ϕ_n . On the basis of ΔE_{1n} and Δv_n , therefore, one can estimate the energy differences between the Franck–Condon ground states for the four emission transitions ($\Delta E'$), as shown schematically in Figure 6. Since $\Delta E'$ is determined mainly by the vibrational frequency and/or vibrational distortion between the excited-state sublevel and the relevant Franck–Condon ground state for nonradiative decay of [Re₆S₈X₆]^{4–}, the curious *T* dependent emission shift observed in the present study could be explained in terms of such parameters, similar to the results on [Mo₆Cl₁₄]^{2–,19}

Conclusions

The present study demonstrated that the characteristic *T* dependent emission spectra and lifetimes of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ (X = Cl⁻, Br⁻, and I⁻) could be explained reasonably by a single context of participation of the four emitting excited triplet-state sublevels: ϕ_n . Although the presence of four ϕ_n has been predicted theoretically for both $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ and $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$, experimental proof of the presence of four ϕ_n for $[\text{Mo}_6\text{Cl}_{14}]^{2-}$ has not been shown yet. Therefore, this is the first demonstration for the presence of the four emitting

Temperature Dependent Emission of $[Re_6(\mu_3-S)_8X_6]^{4-}$

excited triplet-state sublevels of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$, isoelectronic to $[\text{Mo}_6\text{Cl}_{14}]^{2-}$. Finally, it is worth pointing out, furthermore, that the nonradiative decay rate constants (k_{nr}) of $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ or $[\text{Re}_6\text{E}_8\text{L}_6]^z$ have been discussed in terms of the energy gap law by us^{6,8} and Gray et al.:^{3,10} linear relationship between ln k_{nr} and emission maximum energy (E^{em}). However, the present study demonstrated clearly that the roomtemperature emission from $[\text{Re}_6\text{S}_8\text{X}_6]^{4-}$ is composed of those from four ϕ_n . Since each ϕ_n possesses a different radiative rate constant (i.e., k_r^n), k_{nr} should be also different between ϕ_n . Therefore, the relationship between ln k_{nr} and E^{em}

warranted and should be reconsidered with respect to the contributions of the photophysical properties of each ϕ_n to the room-temperature emission.

Acknowledgment. The authors are indebted to Prof. Emeritus K. Tanaka at this institution for valuable discussions and comments. Y.S. also is thankful for a Grant-in-Aid for Scientific Research (No. 15350029) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government for partial support of the research.

IC050855I