

New Metal Iodates: Syntheses, Structures, and Characterizations of Noncentrosymmetric La(IO₃)₃ and NaYI₄O₁₂ and Centrosymmetric β -Cs₂I₄O₁₁ and Rb₂I₆O₁₅(OH)₂·H₂O

Kang Min Ok and P. Shiv Halasyamani*

Department of Chemistry and Center for Materials Chemistry, 136 Fleming Building, University of Houston, Houston, Texas 77204-5003

Received August 5, 2005

Four new metal iodates, β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂·H₂O, La(IO₃)₃, and NaYI₄O₁₂, have been synthesized hydrothermally, and the structures were determined by single-crystal X-ray diffraction techniques. All of the reported materials contain I⁵⁺ cations that are in asymmetric coordination environments attributable to their stereoactive lone pair. Second-order nonlinear optical measurements on noncentrosymmetric La(IO₃)₃ and NaYI₄O₁₂, using 1064-nm radiation, indicate that both materials have second-harmonic-generating properties with efficiencies of approximately 400 × SiO₂. Converse piezoelectric measurements revealed *d*₃₃ values of 5 and 138 pm V⁻¹ for La(IO₃)₃ and NaYI₄O₁₂, respectively. Infrared and Raman spectroscopy and thermogravimetric analyses are also presented for all of the reported materials. Crystal data: β -Cs₂I₄O₁₁, monoclinic, space group *P*2₁/*n* (No. 14), with *a* = 12.7662-(14) Å, *b* = 7.4598(8) Å, *c* = 14.4044(16) Å, *β* = 106.993(2)°, *V* = 1311.9(2) Å³, and *Z* = 4; Rb₂I₆O₁₅(OH)₂·H₂O, triclinic, space group *P*1̄ (No. 2), with *a* = 7.0652(17) Å, *b* = 7.5066(18) Å, *c* = 18.262(4) Å, *α* = 79.679(4)°, *β* = 85.185(4)°, *γ* = 70.684(4)°, *V* = 898.9(4) Å³, and *Z* = 2; La(IO₃)₃, monoclinic, space group *Cc* (No. 9), with *a* = 12.526(2) Å, *b* = 7.0939(9) Å, *c* = 27.823(4) Å, *β* = 101.975(4)°, *V* = 2418.4(6) Å³, and *Z* = 4; NaYI₄O₁₂, monoclinic, space group *Cc* (No. 9), with *a* = 31.235(3) Å, *b* = 5.5679(5) Å, *c* = 12.5451(12) Å, *β* = 91.120(3)°, *V* = 2181.3(4) Å³, and *Z* = 4.

Introduction

Oxide materials containing cations in asymmetric coordination environments are of current interest owing to their technologically important properties such as second-harmonic generation (SHG), piezoelectricity, ferroelectricity, and pyroelectricity.^{1–4} In addition to having asymmetrically coordinated cations, materials exhibiting these properties must also be crystallographically noncentrosymmetric (NCS). A number of strategies have been suggested to increase the incidence of acentricity in any new material.^{5–10} We have

- (2) Cady, W. G. Piezoelectricity; an Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals; Dover: New York, 1964.
- (3) Lang, S. B. Sourcebook of Pyroelectricity; Gordon & Breach Science: London, 1974.
- (4) Galy, J.; Meunier, G. J. Solid State Chem. 1975, 13, 142.
- (5) Bruce, D.; Wilkinson, A. P.; While, M. G.; Bertrand, J. A. J. Solid State Chem. 1996, 125, 228.

10.1021/ic051340u CCC: \$30.25 © 2005 American Chemical Society Published on Web 11/01/2005

focused on utilizing cations that are asymmetric coordination environments attributable to second-order Jahn–Teller distortions.^{11–15} Specifically, we have synthesized new acentric materials that contain d⁰ transition metals (Ti⁴⁺, Nb⁵⁺, W⁶⁺, etc.) and/or cations with lone pairs (Se⁴⁺, Te⁴⁺, I⁵⁺, etc.). Not only do these materials exhibit second-order nonlinear optical behavior, i.e., SHG or frequency doubling, but some of the materials are also ferroelectric.¹⁶ It should

- (6) Kepert, C. J.; Prior, T. J.; Rosseinsky, M. J. J. Am. Chem. Soc. 2000, 122, 5158.
- (7) Maggard, P. A.; Stern, C. L.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2001, 123, 7742.
- (8) Welk, M. E.; Norquist, A. J.; Arnold, F. P.; Stern, C. L.; Poeppelmeier, K. R. Inorg. Chem. 2002, 41, 5119.
- (9) Evans, O. R.; Lin, W. Acc. Chem. Res. 2002, 35, 511.
- (10) Hwu, S.-J.; Ulutagay-Kartin, M.; Clayhold, J. A.; Mackay, R.; Wardojo, T. A.; O'Connor, C. J.; Kraweic, M. J. Am. Chem. Soc. 2002, 124, 12404.
- (11) Bader, R. F. W. Mol. Phys. 1960, 3, 137.
- (12) Bader, R. F. W. Can. J. Chem. 1962, 40, 1164.
- (13) Pearson, R. G. J. Am. Chem. Soc. 1969, 91, 4947.
- (14) Pearson, R. G. J. Mol. Struct.: THEOCHEM 1983, 103, 25.
- (15) Wheeler, R. A.; Whangbo, M.-H.; Hughbanks, T.; Hoffmann, R.; Burdett, J. K.; Albright, T. A. J. Am. Chem. Soc. **1986**, 108, 2222.

Inorganic Chemistry, Vol. 44, No. 25, 2005 9353

^{*} To whom correspondence should be addressed. E-mail: psh@uh.edu. Phone: 713-743-3278. Fax: 713-743-0796.

Jona, F.; Shirane, G. Ferroelectric Crystals; Pergamon Press: Oxford, U.K., 1962.

Table 1. Crystallographic Data for β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂·H₂O, La(IO₃)₃, and NaYI₄O₁₂

formula	β -Cs ₂ I ₄ O ₁₁	$Rb_2I_6O_{15}(OH)_2 \cdot H_2O$	La(IO ₃) ₃	NaYI ₄ O ₁₂
fw	949.42	1224.38	1990.83	1623.00
space group	$P2_1/n$ (No. 14)	$P\overline{1}$ (No. 2)	<i>Cc</i> (No. 9)	<i>Cc</i> (No. 9)
<i>a</i> (Å)	12.7662(14)	7.0652(17)	12.526(2)	31.235(3)
b (Å)	7.4598(8)	7.5066(18)	7.0939(9)	5.5679(5)
c (Å)	14.4044(16)	18.262(4)	27.823(4)	12.5451(12)
α (deg)	90	79.679(4)	90	90
β (deg)	106.993(2)	85.185(4)	101.975(4)	91.120(3)
γ (deg)	90	70.684(4)	90	90
$V(Å^3)$	1311.9(2)	898.9(4)	2418.4(6)	2181.3(4)
Z	4	2	4	4
<i>T</i> (°C)	293.0(2)	293.0(2)	293.0(2)	293.0(2)
λ (Å)	0.71073	0.71073	0.71073	0.71073
ρ_{calcd} (g cm ⁻³)	4.807	4.509	5.468	4.942
μ (mm ⁻¹)	15.013	15.833	16.812	16.77
$R(F)^a$	0.0293	0.0493	0.0333	0.0527
$R_{\rm w}(F_{\rm o}^2)^b$	0.0728	0.1362	0.0861	0.1424

$${}^{a}R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}R_{w}(F_{o}^{2}) = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}.$$

be noted that the symmetry requirements for ferroelectricity are more restrictive compared with SHG because the former must be not only acentric but also polar. In this paper, we expand our acentric characterization techniques to include converse piezoelectric measurements. Although the phenomena are completely different, piezoelectricity and secondorder nonlinear optical behavior are described mathematically by the same tensor, d_{ijk} .¹⁷ In this paper, we report on the synthesis and structure of four new iodates, β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂·H₂O, La(IO₃)₃, and NaYI₄O₁₂. The latter two are NCS and have been characterized by SHG and converse piezoelectric measurements.

Experimental Section

Reagents. Cs₂CO₃ (Aldrich, 99+%), RbOH (Aldrich, 99%), Na₂-CO₃ (Alfa Aesar, 99.5%), La₂O₃ (Aldrich, 99.9%), Y₂O₃ (Aldrich, 99.99+%), and HIO₃ (Aldrich, 99.5+%) were used as received. Syntheses. For β -Cs₂I₄O₁₁, 0.652 g (2.00 × 10⁻³ mol) of Cs₂-CO₃ and 5.000 g (2.84 \times 10⁻² mol) of HIO₃ were combined with 5 mL of H₂O. For Rb₂I₆O₁₅(OH)₂·H₂O, 10 mL of a 0.85 M RbOH solution and 5.000 g (2.84 \times 10⁻² mol) of HIO₃ were combined. For La(IO₃)₃, 0.326 g (1.00 \times 10⁻³ mol) of La₂O₃ and 5.000 g $(2.84 \times 10^{-2} \text{ mol})$ of HIO₃ were combined with 10 mL of H₂O. For NaYI₄O₁₂, 0.212 g (2.00×10^{-3} mol) of Na₂CO₃, 0.226 g (1.00 $\times 10^{-3}$ mol) of Y₂O₃, and 4.000 g (2.27 $\times 10^{-2}$ mol) of HIO₃ were combined with 10 mL of H₂O. Each solution was placed in a 23-mL Teflon-lined autoclave that was subsequently sealed. The autoclaves were gradually heated to 220 °C, held for 4 days, and cooled slowly to room temperature at a rate of 6 $^{\circ}$ C h⁻¹. The products were recovered by filtration and washed with water and ethanol. Pure colorless crystals, the only product from each reaction, of β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂·H₂O, La(IO₃)₃, and NaYI₄O₁₂ were obtained in 91%, 62%, 83%, and 79% yields, respectively, based on the corresponding alkali carbonate or lanthanide oxide.

Single-Crystal X-ray Diffraction. For β -Cs₂I₄O₁₁, a colorless block (0.16 × 0.26 × 0.28 mm³), for Rb₂I₆O₁₅(OH)₂·H₂O, a colorless plate (0.04 × 0.16 × 0.30 mm³), for La(IO₃)₃, a colorless rhomboid block (0.10 × 0.12 × 0.14 mm³), and for NaYI₄O₁₂, a colorless plate (0.02 × 0.20 × 0.22 mm³) were used for single-crystal data analyses. All of the data were collected using a Siemens

SMART diffractometer equipped with a 1K CCD area detector using graphite monochromated Mo Ka radiation. A hemisphere of data was collected using a narrow-frame method with scan widths of 0.30° in ω and an exposure time of 25 s frame⁻¹. The first 50 frames were remeasured at the end of the data collection to monitor instrument and crystal stability. The maximum correction applied to the intensities was <1%. The data were integrated using the Siemens SAINT program,¹⁸ with the intensities corrected for Lorentz, polarization, air absorption and absorption attributable to the variation in the path length through the detector faceplate. Ψ scans were used for the absorption correction on the hemisphere of data. The data were solved and refined using SHELXS-97 and SHELXL-97, respectively.^{19,20} All of the metal atoms were refined with anisotropic thermal parameters and converged for $I > 2\sigma(I)$. All calculations were performed using the WinGX-98 crystallographic software package.²¹ Relevant crystallographic data are listed in Table 1, and selected bond distances are given in Table 2.

Powder X-ray Diffraction. Powder X-ray diffraction was used to confirm the phase purity for each sample. The X-ray powder diffraction data were collected on a Scintag XDS2000 diffractometer at room temperature (Cu K α radiation, $\theta - \theta$ mode, flat-plate geometry) equipped with a Peltier germanium solid-state detector in the 2θ range 5–60° with a step size of 0.02° and a step time of 1 s.

Infrared (IR) and Raman Spectroscopy. IR spectra were recorded on a Matteson FTIR 5000 spectrometer in the 400–4000- cm^{-1} range, with the sample pressed between two KBr pellets. Raman spectra were recorded at room temperature on a Digilab FTS 7000 spectrometer equipped with a germanium detector with the powder sample placed in separate capillary tubes. Excitation was provided by a Nd:YAG laser at a wavelength of 1064 nm, and the output laser power was 500 mW. The spectral resolution was ~4 cm⁻¹, and 100 scans were collected for each sample.

Thermogravimetric Analysis (TGA). TGA was carried out on a TGA 2950 thermogravimetric analyzer (TA instruments). The sample was contained within a platinum crucible and heated in air at a rate of 10 °C min⁻¹ to 800 °C.

Second-Order Nonlinear Optical and Converse Piezoelectric Measurements. Powder SHG measurements on polycrystalline La-

⁽¹⁶⁾ Chi, E. O.; Gandini, A.; Ok, K. M.; Zhang, L.; Halasyamani, P. S. *Chem. Mater.* 2004, 16, 3616.

⁽¹⁷⁾ Nye, J. F. *Physical Properties of Crystals*; Oxford University Press: Oxford, U.K., 1957.

⁽¹⁸⁾ SAINT, Program for Area Detector Absorption Correction, version 4.05; Siemens Analytical X-ray Instruments: Madison, WI, 1995.

⁽¹⁹⁾ Sheldrick, G. M. SHELXS-97–A program for automatic solution of crystal structures; University of Göttingen: Göttingen, Germany, 1997.

⁽²⁰⁾ Sheldrick, G. M. SHELXL-97-A program for crystal structure refinement; University of Göttingen: Göttingen, Germany, 1997.

⁽²¹⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

Table 2. Selected Bond Distances (Å) for β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂·H₂O, La(IO₃)₃, and NaYI₄O₁₂

β -Cs ₂ I ₄ O ₁₁		$Rb_2I_6O_{15}(OH)_2{\boldsymbol{\cdot}}H_2O$		La(IO ₃) ₃		NaYI ₄ O ₁₂	
I(1)-O(1)	1.791(4)	I(1)-O(1)	2.323(8)	I(1)-O(1)	1.814(13)	I(1)-O(1)	1.818(16)
I(1) - O(2)	2.106(4)	I(1) - O(2)	1.802(8)	I(1) - O(2)	1.828(12)	I(1) - O(2)	1.829(16)
I(1) - O(3)	2.125(4)	I(1) - O(3)	1.800(9)	I(1) - O(3)	1.781(13)	I(1) - O(3)	2,452(16)
I(1) - O(4)	1.790(4)	I(1) - O(4)	1.923(9)	I(2) - O(4)	1.814(11)	I(1) - O(4)	1.839(17)
I(2) - O(3)	1.927(4)	I(2) - O(5)	1.796(8)	I(2) - O(5)	1.795(11)	I(2) - O(5)	1.820(15)
I(2) - O(3)	2.481(4)	I(2) - O(6)	1.869(8)	I(2) - O(6)	1.830(12)	I(2) - O(6)	1.811(16)
I(2) - O(6)	1.799(4)	I(2) - O(7)	2.428(8)	I(3) - O(7)	1.781(13)	I(2) - O(7)	1.797(15)
I(2) - O(7)	1.798(4)	I(2) - O(8)	1.815(8)	I(3) - O(8)	1.791(12)	I(2) - O(8)	2.420(16)
I(3) - O(2)	1.938(4)	I(3) - O(6)	2.102(8)	I(3) - O(9)	1.816(12)	I(3) - O(9)	1.830(16)
I(3) - O(2)	2.441(4)	I(3) - O(9)	1.762(8)	I(4) - O(10)	1.811(12)	I(3) - O(10)	1.811(16)
I(3) - O(9)	1.785(4)	I(3) - O(10)	2.211(8)	I(4) - O(11)	1.799(11)	I(3) - O(11)	1.788(15)
I(3) - O(10)	1.784(4)	I(3) - O(11)	1.795(8)	I(4) - O(12)	1.784(13)	I(4) - O(12)	1.838(16)
I(4) - O(5)	1.808(4)	I(4) - O(7)	1.804(8)	I(5) - O(13)	1.814(12)	I(4) - O(13)	1.803(14)
I(4) - O(8)	1.816(4)	I(4) - O(10)	1.862(8)	I(5) - O(14)	1.773(13)	I(4) - O(14)	1.802(17)
I(4) - O(11)	1.809(5)	I(4) - O(12)	1.788(8)	I(5) - O(15)	1.821(13)	I(5) - O(8)	1.827(14)
		I(5) - O(1)	1.828(8)	I(6) - O(16)	1.807(11)	I(5) - O(15)	1.805(16)
		I(5) - O(13)	1.813(8)	I(6) - O(17)	1.846(11)	I(5) - O(16)	1.800(14)
		I(5) - O(14)	1.796(9)	I(6) - O(18)	1.786(13)	I(6) - O(3)	1.811(14)
		I(6) - O(15)	1.900(8)	I(7) - O(19)	1.835(11)	I(6) - O(17)	1.841(17)
		I(6) - O(16)	1.793(8)	I(7) - O(20)	1.844(11)	I(6) - O(18)	1.836(16)
		I(6) - O(17)	1.793(8)	I(7) - O(21)	1.820(12)	I(7) - O(19)	1.798(17)
				I(8) - O(22)	1.810(11)	I(7) - O(20)	1.833(15)
				I(8) - O(23)	1.826(11)	I(7) - O(21)	1.827(17)
				I(8) - O(24)	1.801(11)	I(8) - O(22)	1.836(14)
				1(0) - O(25)	1 777(11)	1(9) - O(22)	1 820(14)

I(9)-O(26)

I(9)-O(27)

(IO₃)₃ and NaYI₄O₁₂ were performed on a modified Kurtz-NLO system²² using 1064-nm radiation. A detailed description of the equipment and the methodology used has been published.^{23,24} No index-matching fluid was used in any of the experiments. Powders with particle size 45–63 µm were used for comparing SHG intensities. Converse piezoelectric measurements were performed using a Radiant Technologies RT66A piezoelectric test system with a TREK (model 609E-6) high-voltage amplifier, Precision materials analyzer, Precision high-voltage interface, and MTI 2000 fotonic sensor. Polycrystalline La(IO₃)₃ and NaYI₄O₁₂ were pressed into 12-mm-diameter and ~0.8-mm-thick pellets. A conducting silver paste was applied to both sides of the pellet surfaces for electrodes. A maximum voltage of 700 V was applied to the samples.

Results and Discussion

Structures. β -**Cs**₂**I**₄**O**₁₁. β -Cs₂I₄**O**₁₁ has a pseudo-threedimensional crystal structure consisting of asymmetric IO₃ and IO₄ groups separated by Cs⁺ cations (see Figure 1). In connectivity terms, the structure may be written as $\{3[IO_{2/3}O_{2/1}]^{1/3}-[IO_{3/1}]^{1-}\}^{2-}$, with the charge balance maintained by the two Cs⁺ cations. Three of the I⁵⁺ cations are linked to four O atoms in a "seesaw" environment with bond distances ranging from 1.784(4) to 2.481(4) Å. These bond distances are consistent with those of previously reported iodates.^{25–29} The IO₄ groups form two-dimensional hexagonal tungsten oxide-like layers consisting of six-membered rings,

- (22) Kurtz, S. K.; Perry, T. T. J. Appl. Phys. 1968, 39, 3798.
- (23) Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S. J. Solid State Chem. 2001, 161, 57.
- (24) Porter, Y.; Ok, K. M.; Bhuvanesh, N. S. P.; Halasyamani, P. S. Chem. Mater. 2001, 13, 1910.
- (25) Alcock, N. W. Acta Crystallogr., Sect. B 1972, 28, 2783.
- (26) Coquet, E.; Crettez, J. M.; Pannetier, J.; Bouillot, J.; Damien, J. C. Acta Crystallogr., Sect. B 1983, 39, 408.
- (27) Lucas, B. W. Acta Crystallogr., Sect. C 1984, 40, 1989.
- (28) Svensson, C.; Stahl, K. J. Solid State Chem. 1988, 77, 112.
- (29) Stahl, K.; Szafranski, M. Acta Chem. Scand. 1992, 46, 1146.

with the IO₄ polyhedra alternating orientation as one proceeds around the ring such that the layers result in a centrosymmetric environment similar to that of α -Cs₂I₄O₁₁ (see Figures 1 and 2).³⁰ In addition, there are three very long I–O contacts

I(8) - O(24)

1.831(11)

1.835(12)

1.808(17)

Figure 1. Ball-and-stick representation of β -Cs₂I₄O₁₁ in the *ac* plane. The dashed lines indicate long I–O interactions, giving the structure a pseudo-three-dimensional topology.

ranging from 2.583(5) to 2.644(5) Å, which have been drawn as dashed lines in Figure 1. These long contacts effectively link the IO₄ layers through the IO₃ group and give β -Cs₂I₄O₁₁ a pseudo-three-dimensional topology. The three-coordinate I⁵⁺ cations are in a distorted trigonal-pyramidal environment, with I–O bond distances ranging from 1.808(4) to 1.816(4) Å. The IO₃ groups, therefore, serve as *interlayer* linkers. Each Cs⁺ is in a 9-fold coordination environment, with Cs–O contacts ranging from 3.145(5) to 3.544(5) Å. Bond-valence calculations^{31,32} resulted in values of 0.83 for Cs⁺ and 4.98– 5.11 for I⁵⁺.

 ⁽³⁰⁾ Ok, K. M.; Halasyamani, P. S. Angew. Chem., Int. Ed. 2004, 43, 5489.
(31) Brown, I. D.; Altermatt, D. Acta Crystallogr., Sect. B 1985, 41, 244.

Figure 2. Ball-and-stick representation of β -Cs₂I₄O₁₁ in the *ab* plane, indicating one layer of the structure. Note how six-membered rings are formed by IO₄ polyhedra.

Figure 3. Ball-and-stick representation of $Rb_2I_6O_{15}(OH)_2$ ·H₂O in the *bc* plane. Note that the structure consists of the free IO₂(OH) polyhedra, $[I_2O_5(OH)]^-$ dimers, iodate chains, Rb^+ cations, and H₂O molecules.

 $Rb_2I_6O_{15}(OH)_2 \cdot H_2O$. $Rb_2I_6O_{15}(OH)_2 \cdot H_2O$ exhibits a onedimensional crystal structure that consists of $IO_2(OH)$ polyhedra, $[I_2O_5(OH)]^-$ dimers, and IO_3 and IO_4 polyhedra. The IO_3 and IO_4 polyhedra form chains that run along the [100] direction (see Figures 3 and 4). The iodate chains are also separated by Rb⁺ cations and H₂O molecules. With free $IO_2(OH)$ polyhedra and $[I_2O_5(OH)]^-$ dimers, the oxygen atoms, O(4) and O(15) from each group, are OH groups. To identify the positions of H⁺, the hydrogen bonds in the structure were analyzed. We observe that strong hydrogen bonds occur from O(4) and O(15) to the terminal oxygen atoms of adjacent chains [O(4)...O(13) 2.592(4) Å; O(15). ••O(8) 2.614(6) Å]. Moreover, bond-valence calculations on these terminal oxygen sites gave very similar values of 1.30 and 1.43 for O(4) and O(15), respectively, which are also consistent with our model. In addition, the IR spectrum confirms the presence of I-OH groups (see spectroscopic studies). Additionally, the terminal oxygen atom O(17) is also involved in hydrogen bonds with the water molecule

Figure 4. Ball-and-stick representation of $Rb_2I_6O_{15}(OH)_2$ ·H₂O in the *ac* plane. The iodate chains are running along the *a* axis, resulting in a one-dimensional structure.

Figure 5. Ball-and-stick representation of $La(IO_3)_3$ in the *ac* plane. Note that the lanthanum trimers are inter- and intraconnected by asymmetric IO_3 polyhedra to form a three-dimensional crystal structure.

[O(17)···O(w1) 2.808(6) Å]. In connectivity terms, the structure can be formulated as $\{2[IO_{2/2}O_{2/1}]^{-} [IO_{2/2}O_{1/1}]^{+} [IO_{2/1}O_{1/2}]^{0} [IO_{2/1}OH]^{0} [IO_{2/1}O_{1/2}OH]^{-}\}^{2-}$, with the charge balance maintained by the two Rb⁺ cations. The I⁵⁺ cations are linked to three and four oxygen atoms in a distorted trigonal-pyramidal and seesaw environment, respectively, with I–O bond distances ranging from 1.762(8) to 2.428(8) Å. Bond-valence calculations^{31,32} resulted in values 1.08–1.15 and 4.85–5.17 for Rb⁺ and I⁵⁺, respectively.

La(**IO**₃)₃. La(IO₃)₃ exhibits a three-dimensional crystal structure that consists of LaO₉ polyhedra that are connected by asymmetric IO₃ groups (see Figure 5). The three unique La³⁺ are bonded to nine oxygen atoms in a tricapped trigonal-prismatic environment, with bond distances ranging from 2.416(13) to 2.834(12) Å. The I⁵⁺ cations are linked to three oxygen atoms in a distorted trigonal-pyramidal environment, with I–O bond distances ranging from 1.773(13) to 1.846-(11) Å. Structurally, La(IO₃)₃ is composed of edge-shared LaO₉ polyhedra along the [001] direction to form trimers.

⁽³²⁾ Brese, N. E.; O'Keeffe, M. Acta Crystallogr., Sect. B 1991, 47, 192.

Figure 6. Ball-and-stick representation of $NaYI_4O_{12}$ in the *ac* plane. YO₈ polyhedra are linked by asymmetric IO₃ and IO₄ polyhedra to form a twodimensional crystal structure. Note that a net moment is observed by IO₃ polyhedra pointing in the *c* direction, resulting in a NCS environment.

These lanthanum trimers are inter- and intraconnected by asymmetric IO₃ groups to form a three-dimensional framework structure (see Figure 5). In connectivity terms, the structure may be written as a neutral three-dimensional framework of $\{2[LaO_{7/2}O_{2/3}]^{5.333-}$ [LaO_{6/2}O_{4/3}]^{5.667-} $3[IO_{2/2}O_{1/1}]^+$ $4[IO_{2/2}O_{1/3}]^{2.333+}$ $2[IO_{3/2}]^{2+}$ ⁰. Bond-valence calculations^{31,32} resulted in values of 3.08–3.21 for La³⁺ and 4.75–5.25 for I⁵⁺.

NaYI4O12. NaYI4O12 exhibits a two-dimensional layered structure, with YO₈ polyhedra linked to asymmetric IO₃ and IO_4 polyhedra (see Figure 6). Each Y^{3+} cation is bonded to eight oxygen atoms in a square antiprismatic environment, with bond distances ranging from 2.274(14) to 2.587(16) Å. All of the eight oxygen atoms are further bonded to I⁵⁺ cations. The I⁵⁺ cations are linked to either three or four oxygen atoms, resulting in a highly distorted trigonalpyramidal or seesaw environment owing to the nonbonded electron pair. The distances for the I-O bonds range from 1.788(15) to 2.452(16) Å. In connectivity terms, the structure may be written as $\{2[YO_{8/2}]^{5-} 3[IO_{2/1}O_{1/2}]^0 3[IO_{3/2}]^{2+}$ $2[IO_{4/2}]^+$ ²⁻, with the charge balance retained by two Na⁺ cations. The connectivity of the yttrium and iodine polyhedra within each layer generates eight-membered-ring channels along the [010] direction (see Figure 6). Na⁺ cations reside in the channels. Bond-valence calculations^{31,32} resulted in values of 0.99-1.02 for Na⁺, 3.03-3.10 for Y³⁺, and 4.82-5.39 for I⁵⁺.

IR and Raman Spectroscopy. The IR and Raman spectra of β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂•H₂O, La(IO₃)₃, and NaYI₄O₁₂ iodate compounds reveal I–O vibrations in the regions of ca. 600–840 and 310–540 cm⁻¹. With Rb₂I₆O₁₅(OH)₂•H₂O, the broad stretches centered at 3446 and 1633 cm⁻¹ can be assigned to stretching and bending modes of water molecules, respectively, and the vibrations at 3167 and 1162 cm⁻¹ are attributed to the framework –OH groups. The IR and Raman vibrations and assignments are listed in Table 3. The

Table 3. IR and Raman Vibrations (cm⁻¹) for β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂·H₂O, La(IO₃)₃, and NaYI₄O₁₂

β-Cs ₂	$_{2}I_{4}O_{11}$	R	b ₂ I ₆ O ₁₅	(OH) ₂ •H	20	La(I	O ₃) ₃	NaY	I ₄ O ₁₂
$\nu_{\rm I-O}$	$\delta_{\mathrm{I-O}}$	v_{I-O}	$\delta_{\mathrm{I-O}}$	$\nu_{\rm O-H}$	$\delta_{\rm O-H}$	v_{I-O}	$\delta_{\mathrm{I-O}}$	$v_{\rm I-O}$	$\delta_{\mathrm{I-O}}$
IR (cm^{-1})									
831	502	819	526	3446	1633	835	518	840	520
818	450	808	501	3167	1162	823	501	821	503
801	431	773	455			802	458	798	476
781	423	757	435			777	449	765	457
767	412	738	416			761	437	740	445
742		721	408			738		719	420
693		671				721		701	
674		640				711		688	
		613				682		667	
		601				669		655	
						617		617	
								607	
				Raman	(cm^{-1})				
813	524	817	389			825	450	817	524
802	486	794	362			814	401	802	474
775	432	763	347			796	387	775	439
756	374	752	331			770		759	401
732		732	316			755		740	370
		717				746		721	
		636				725		709	
		613				711			
		601				683			
						634			

assignments are consistent with those previously reported.^{33–35}

TGA. The thermal behavior of β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂. H₂O, La(IO₃)₃, and NaYI₄O₁₂ was investigated using TGA. None of the materials reported in this paper is stable at higher temperatures. In each case, decompositions through thermal disproportionation occurred between 280 and 510 °C, indicating volatilization. For β -Cs₂I₄O₁₁, 1 equiv of I₂ and 3.5 equiv of O₂ are lost at approximately 400 °C. Calcd (exptl): 38.53% (38.52%). Another 1 equiv of I_2 is lost at around 550 °C, Calcd (exptl): 21.74% (21.19%). Finally, the remaining I₂, O₂, and Cs₂O begin to volatilize around 630 °C. Rb₂I₆O₁₅(OH)₂•H₂O revealed a weight loss of 4.06% between room temperature and ca. 190 °C, which is consistent with the loss of free water molecules and framework -OH groups. Calcd: 4.19%. A total of 2 mol of I₂ and 2 mol of O₂ are lost at approximately 380 °C. Calcd (exptl): 49.00% (47.63%). A total of 0.5 mol of I₂ and 1.5 mol of O₂ are subsequently lost at approximately 480 °C. Calcd (exptl): 29.30% (28.94%). The remainder of I₂, O₂, and Rb₂O volatilize completely around 660 °C. With La- $(IO_3)_3$ (molecular formula: La₃I₉O₂₇), 1.5 equiv of I₂ is lost at approximately 280 °C. Calcd (exptl): 19.12% (19.16%). Above 280 °C, 3 equiv of I₂ and 11.25 mol of O₂ are lost at around 530 °C, leaving 1.5 mol of La2O3 at 800 °C. Calcd (exptl): 69.65% (69.98%). NaYI₄O₁₂ (molecular formula: Na₂Y₂I₈O₂₄) shows a weight loss at 410 °C that is attributed to the loss of 1.5 mol of I₂ and 1.5 mol of O₂. Calcd (exptl): 26.41% (26.24%). The remaining 2.5 mol of I₂, 9 equiv of O₂, and 1 mol of Na₂O begin to volatilize around 520 °C,

⁽³³⁾ Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Wells, D. M.; Albrecht-Schmitt, T. E. Chem. Mater. 2002, 14, 2741.

⁽³⁴⁾ Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Albrecht-Schmitt, T. E. J. Am. Chem. Soc. 2002, 124, 1951.

⁽³⁵⁾ Shehee, T. C.; Sykora, R. E.; Ok, K. M.; Halasyamani, P. S.; Albrecht-Schmitt, T. E. *Inorg. Chem.* **2003**, *42*, 457.

leaving 1 mol of Y_2O_3 at 800 °C. Calcd (exptl): 81.09% (82.93%). The TGA curves for all four materials have been deposited as Supporting Information.

Acentric Properties. SHG. Powder SHG measurements, using 1064-nm radiation, indicated that both $La(IO_3)_3$ and NaYI₄O₁₂ have SHG efficiencies of $400 \times \alpha$ -SiO₂. The SHG efficiencies are on the order of BaTiO₃ and are comparable to other NCS iodates such as HIO₃ (300 $\times \alpha$ -SiO₂),²² LiIO₃ $(300 \times \alpha$ -SiO₂),²² NdMoO₂(IO₃)₄(OH) (350 × \alpha-SiO₂),³⁵ AMoO₃(IO₃) (A = Rb or Cs, 400 × α -SiO₂),³⁴ and α -Cs₂I₄O₁₁ (300 × α -SiO₂).³⁰ By sieving La(IO₃)₃ and NaYI₄O₁₂ into various particle sizes, ranging from 20 to 150 μ m, and measuring the SHG as a function of the particle size, we were able to determine the type 1 phase-matching capabilities of the materials. We determined that La(IO₃)₃ is phase-matchable, whereas NaYI4O12 is not (see the Supporting Information). As previously shown, once the SHG efficiency has been measured and the phase-matching behavior determined, the average NLO susceptibility, $\langle d_{\text{eff}} \rangle_{\text{exp}}$, can be estimated. ³⁶ $\langle d_{eff} \rangle_{exp}$ for La(IO₃)₃ and NaYI₄O₁₂ are 23 and 11 pm V^{-1} , respectively. It should be noted that the differences in $\langle d_{\rm eff} \rangle_{\rm exp}$ are attributable to the phase-matching capabilities of the materials. In addition, using a model developed earlier and a β (I⁵⁺-O) of 140 × 10⁻⁴⁰ m⁴ V⁻¹, we were able to calculate $\langle d_{\rm eff} \rangle_{\rm calc}$ for each compound. In doing so, we obtained 15 and 25 pm V^{-1} for La(IO₃)₃ and NaYI₄O₁₂, respectively.

Piezoelectric Measurements. Converse piezoelectric measurements were performed on La(IO₃)₃ and NaYI₄O₁₂. Briefly, with the converse piezoelectric measurement, a voltage is applied to the sample that produces a macroscopic deformation.² A maximum voltage of 700 V was applied to both samples. Exceeding this voltage causes irreversible damage to the sample. With each sample, 20 measurements were performed and an average was taken. Graphs of the piezoelectric data have been deposited as Supporting Information. The piezoelectric charge constant, d_{33} , was calculated from

$$\Delta L = SL_0 \sim Ed_{33}L_0$$

where ΔL is the displacement of the sample, L_0 is the sample thickness (m), *S* is the strain ($\Delta L/L_0$), and *E* is the electric field strength (V m⁻¹). We estimate d_{33} values of 5 and 138 pm V⁻¹ for La(IO₃)₃ and NaYI₄O₁₂, respectively. These values are consistent with other iodates such as LiIO₃ ($d_{33} = 92 \text{ pm V}^{-1}$), KIO₃ ($d_{33} = 39 \text{ pm V}^{-1}$), and 3La(IO₃)• HIO₃•7H₂O ($d_{33} = 19 \text{ pm V}^{-1}$).³⁷⁻³⁹

Structure–Property Relationships. To better understand structure–property relationships as well as the asymmetric coordination environment of I^{5+} , we calculated the local dipole moment for all of the reported iodates. This approach

(38) Abrahams, S. C.; Bernstein, J. L. J. Chem. Phys. 1978, 69, 2505.

Table 4.	Calculation	of Dipole	Moments	for	IO ₃ ,	IO ₄ ,	and I	O_5
Polyhedra		-						

compound	species	dipole moment (D)
β-Cs ₂ L ₄ O ₁₁	I(1)Q ₄	11.6
p 00214011	$I(2)O_4$	12.9
	$I(3)O_4$	13.2
	$I(4)O_3$	13.3
RholoO15(OH)2•H2O	$I(1)O_4$	12.5
110210013(011)2 1120	$I(2)O_4$	13.8
	$I(3)O_4$	10.0
	$I(4)O_3$	14.4
	$I(5)O_3$	13.7
	$I(6)O_3$	13.8
La(IO ₃) ₃	$I(1)O_3$	12.7
2(103)3	$I(2)O_3$	15.1
	$I(3)O_3$	14.2
	$I(4)O_3$	15.3
	$I(5)O_2$	13.8
	$I(6)O_2$	13.2
	$I(7)O_2$	14.4
	$I(8)O_2$	14.9
	$I(9)O_{2}$	13.6
NaYL(Q12	$I(1)O_4$	13.0
110114012	$I(2)O_4$	14.2
	$I(3)O_2$	13.6
	$I(4)O_2$	13.3
	$I(5)O_2$	13.8
	$I(6)O_2$	12.9
	$I(7)O_3$	13.9
	$I(8)O_3$	14.2
$\alpha - Cs_2 I_4 O_{11}^{30}$	$I(1)O_5$	7.0
0. 0.2-4 0 11	$I(2)O_3$	9.0
$D(I_2 \Omega_2)^{43}$	$IO_2 \times 2$ (average)	12.2
- (-3 - 8)	IO ₄	9.5
$H(IO_2)(I_2O_5)^{44}$	$IO_2 \times 2$ (average)	12.0
(IQ4	10.4
$Ba(MoO_2)_6(IO_4)_2O_4(H_2O)^{45}$	IQ4	11.1
I2O5 ⁴⁶	$IO_4 \times 2$ (average)	9.5
IOF ₃ ⁴⁷	IOF3	11.3
$KIO_2F_2^{48}$	IO ₂ F ₂	9.3
$(IOF_2)(IO_2F_4)^{49}$	IO ₃ F ₂	6.0
$(NO)(HF_2)(IF_5)^{50}$	IF ₅	10.2
$(NO)(NO_3)(IF_5)^{51}$	IF5	12.0
CsIOF ₄ ⁵²	IOF ₄	6.9
IO ₃ polyhedra	IO ₃ (average)	13.4
24 examples^a	(range)	9.0-15.3
IX ₄ polyhedra	IX ₄ (average)	11.5
15 examples ^a	(range)	8.8-14.2
IO ₅ polyhedra	IX ₅ (average)	8.4
5 examples ^a	(range)	6.0-12.0
*	e .	

^a In the Supporting Information

has been described earlier with respect to metal oxyfluoride octahedra.^{40,41} We recently reported the dipole moments for $Te^{4+}O_3$ and $Te^{4+}O_4$ polyhedra.⁴² We found that the average

- (40) Maggard, P. A.; Nault, T. S.; Stern, C. L.; Poeppelmeier, K. R. J. Solid State Chem. 2003, 175, 25.
- (41) Izumi, H. K.; Kirsch, J. E.; Stern, C. L.; Poeppelmeier, K. R. Inorg. Chem. 2005, 44, 884.
- (42) Ok, K. M.; Halasyamani, P. S. Inorg. Chem. 2005, 44, 3919.
- (43) Stahl, K.; Svensson, C.; Szafranski, M. J. Solid State Chem. 1993, 102, 408.
- (44) Feikema, Y. D.; Vos, A. Acta Crystallogr. **1966**, 20, 769.
- (45) Sykora, R. E.; Wells, D. M.; Albrecht-Schmitt, T. E. Inorg. Chem. 2002, 41, 2697.
- (46) Fjellvag, H.; Kjekshus, A. Acta Chem. Scand. 1994, 48, 815.
- (47) Edwards, A. J.; Taylor, P. J. Fluorine Chem. 1974, 4, 173.
- (48) Abrahams, S. C.; Bernstein, J. L. J. Chem. Phys. 1976, 64, 3254.
- (49) Gillespie, R. J.; Krasznai, J. P.; Slim, D. R. J. Chem. Soc., Dalton Trans. 1980, 481.
- (50) Mahjoub, A. R.; Leopold, D.; Seppelt, K. Eur. J. Solid State Inorg. Chem. 1992, 29, 635.
- (51) Zhang, X.; Seppelt, K. Z. Anorg. Allg. Chem. 1998, 624, 667.
- (52) Ryan, R. R.; Asprey, L. B. Acta Crystallogr., Sect. B 1972, 28, 979.

⁽³⁶⁾ Goodey, J.; Broussard, J.; Halasyamani, P. S. Chem. Mater. 2002, 14, 3174.

⁽³⁷⁾ Hamid, S. A. Phys. Status Solidi A 1977, 43, K29.

⁽³⁹⁾ Landolt, H., Ed. Numerical Values and Functions from the Natural Sciences and Technology (New Series); Group 3: Crystal and Solid State Physics; Springer-Verlag: Berlin, 1979; Vol. 11.

local dipole moment for TeO₃ and TeO₄ polyhedra are similar, 8.6 and 8.7 D (D = debye), respectively. With the iodate polyhedra, the lone pair is given a charge of -2 and is localized 1.23 Å from the I⁵⁺ cation. This I⁵⁺-lone pair distance is based on earlier work by Galy and Meunier.⁴ For comparison, we have also calculated the local dipole moment for other iodates (see Table 4). In fact, an examination of 24 examples of IO₃, 15 of IX₄ (X = O or F), and 5 of IX₅ polyhedra resulted in average dipole moments of 13.4, 11.5, and 8.4 D, respectively. With this local dipole moment information, we can estimate the total dipole moment for each structure. In doing so, we obtain 7.7 D (0.0032 esu cm ${\rm \AA}^{-3})$ and 49.5 D (0.0208 esu cm ${\rm \AA}^{-3})$ for La(IO_3)_3 and NaYI4O12, respectively. The substantially larger dipole moment in NaYI4O12 compared with La(IO3)3 can be attributed to a greater amount of "constructive addition" of the iodate moments. The result of this larger moment is consistent with the measured d_{33} values; i.e., $d_{33}(NaYI_4O_{12})$ = 138 pm V⁻¹, whereas $d_{33}(\text{La}(\text{IO}_3)_3) = 5 \text{ pm V}^{-1}$. Interestingly, the SHG efficiencies are identical, 400 \times α -SiO₂, for both materials. This indicates that other factors, in addition to the constructive addition of dipole moments, are responsible for the SHG efficiency.

Acknowledgment. We thank the Robert A. Welch Foundation for support. This work was also supported by the NSF-Career Program through Grant DMR-0092054. P.S.H. is a Beckman Young Investigator. We also acknowledge Yushin Park and Prof. Rigoberto Advincula for assistance in obtaining the Raman spectra.

Supporting Information Available: X-ray crystallographic files for β -Cs₂I₄O₁₁, Rb₂I₆O₁₅(OH)₂•H₂O, La(IO₃)₃, and NaYI₄O₁₂ in CIF format, calculated and observed X-ray diffraction patterns, TGA diagrams for all of the compounds, phase-matching curves, displacement versus electric field loops for La(IO₃)₃ and NaYI₄O₁₂, IR and Raman spectra, and dipole moment calculations. This material is available free of charge via the Internet at http:// pubs.acs.org.

IC051340U