

Synthesis, Crystal Structure, and Solid-State NMR Spectroscopy of a Salt-Inclusion Stannosilicate: [Na₃F][SnSi₃O₉]

Chen-Hui Liao,[†] Pai-Ching Chang,[†] Hsien-Ming Kao,^{*,†} and Kwang-Hwa Lii^{*,†,‡}

Department of Chemistry, National Central University, Chungli, Taiwan, Republic of China, and Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China

Received August 18, 2005

A salt-inclusion stannosilicate, $[Na_3F][SnSi_3O_9]$, has been synthesized using a flux-growth method and characterized by single-crystal X-ray diffraction. The structure consists of six-membered silicate rings linked via corner sharing by Sn^{IV}O₆ octahedra to form a 3-D framework that delimits two types of channels. The F atoms and Na atoms are located in the structural channels and form a dimer with the anti-Al₂Cl₆(g) structure. This stannosilicate adopts a new structure and is the first metal silicate that contains both Na⁺ and F⁻ ions in the channels. The ¹⁹F and ²⁹Si MAS NMR and ²³Na MQMAS NMR spectra are consistent with the crystallographic results.

Introduction

Recently, a good number of salt-inclusion phosphates, arsenates, and silicates have been synthesized mainly by employing molten-salt methods at high temperatures.¹⁻⁶ Several metal oxalates containing alkali halides have also been synthesized by a hydrothermal method at ca. 150 °C.⁷⁻⁹ These salt-inclusion compounds contain some extraordinary structural features. For example, the structure of K₂Cs₃Cu₃-(P₂O₇)₂Cl₃ consists of 8- and 16-ring channels, in which CsCl and KCl/CsCl salt reside, respectively. The salt can be removed by washing at room temperature to give a microporous compound.¹ In some of these mixed ionic and covalent solids, the incorporated salt sublattices are made of chlorine-centered acentric secondary building units, thus forming noncentrosymmetric phosphate and silicate frameworks.⁴⁻⁶ The metathetic reaction between CdCl₂ and K₂C₂O₄

- (1) Huang, Q.; Ulutagay, M.; Michener, P. A.; Hwu, S.-J. J. Am. Chem. Soc. 1999, 121, 10323.
- (2) Huang, Q.; Hwu, S.-J.; Mo, X. Angew. Chem., Int. Ed. 2001, 40, 1690.
 (3) Hwu, S.-J.; Ulutagay-Kartin, M.; Clayhold, J. A.; Mackay, R.;
- Wardojo, T. A.; O'Connor, C. J.; Krawiec, M. J. Am. Chem. Soc. 2002, 124, 12404.
- (4) Huang, Q.; Hwu, S.-J. Inorg. Chem. 2003, 42, 655.
- (5) Mo, X.; Hwu, S.-J. Inorg. Chem. 2003, 42, 3978.
- (6) Mo, X.; Ferguson, E.; Hwu, S.-J. *Inorg. Chem.* 2005, 44, 3121.
 (7) Vaidhyanathan, R.; Neeraj, S.; Prasad, P. A.; Natarajan, S.; Rao, C.
- N. R. Angew. Chem., Int. Ed. 2000, 39, 3470.
 (8) Vaidhyanathan, R.; Natarajan, S.; Rao, C. N. R. J. Solid State Chem.
- **2002**, *167*, 274.
- (9) Vaidhyanathan, R.; Natarajan, S.; Rao, C. N. R. Mater. Res. Bull. 2003, 38, 477.

10.1021/ic0514086 CCC: \$30.25 © 2005 American Chemical Society Published on Web 10/21/2005

under hydrothermal conditions yields [KCl][Cd₆(C₂O₄)₆]• 2H₂O, containing Cd₆O₂₄ clusters with the Cl⁻ anions in the center. The KCl sublattice forms an ordered 3-D rock-salt structure with a unit cell length double that of the normal state phase.⁷ A series of chromous disilicates (Cr₃Si₂O₇• $^{1}/_{4}$ MX, MX = NaCl, NaBr, KCl, KBr) hosting alkali-metal halides in a framework structure were reported.¹⁰ The alkalimetal cations and halide anions are located in different cages in the structure.

We have been interested in the exploratory synthesis of mixed octahedral-tetrahedral framework oxides and have synthesized a number of new silicates of transition metals,^{11a,b} main-group elements,^{11c-f} and uranium^{11g-i} by high-temperature, high-pressure hydrothermal reactions in gold ampules at 500–600 °C. In an attempt to extend our studies to explore whether we can synthesize new metal silicates by using a flux-growth method, we obtained a salt-inclusion compound, [Na₃F][SnSi₃O₉] (denoted as **1**). This new compound is the first metal silicate that contains both Na⁺ and F⁻ ions in the structural channels. In this paper, we describe the moltensalt synthesis, crystal structure, and solid-state NMR spec-

^{*}To whom correspondence should be addressed. E-mail: liikh@cc.ncu.edu.tw (K.-H.L), hmkao@cc.ncu.edu.tw (H.-M.K). [†] National Central University.

[‡] Academia Sinica.

⁽¹⁰⁾ Schmidt, A.; Glaum, R. Inorg. Chem. 1997, 36, 4883.

^{(11) (}a) Li, C.-Y.; Hsieh, C.-Y.; Lin, H.-M.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2002, 41, 4206. (b) Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2002, 41, 5644. (c) Hung, L.-I.; Wang, S.-L.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2003, 42, 4057. (d) Huang, L.-I.; Wang, S.-L.; Szu, S.-P.; Hsieh, C.-Y.; Kao, H.-M.; Lii, K.-H. Chem. Mater. 2004, 16, 1660. (e) Huang, L.-I.; Wang, S.-L.; Chen, C.-Y.; Chang, B.-C.; Lii, K.-H. Inorg. Chem. 2005, 44, 2992. (f) Lo, F.-R.; Lii, K.-H. J. Solid State Chem. 2005, 178, 1017. (g) Chen, C.-S.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 935. (h) Chen, C.-S.; Chiang, R. K.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 3914. (i) Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208.

troscopy of this interesting salt-inclusion stannosilicate. In particular, the ²³Na multiple quantum magic angle spinning (MQMAS) method has been applied to obtain high-resolution NMR spectra and quadrupolar parameters of distinct Na sites.¹²

Experimental Section

Synthesis. A mixture of 0.5 g of NaF (Merck, >99%), 0.5 g of V_2O_5 (Merck, >99%), 0.1202 g of SiO₂ (Cerac, 99.99%), and 0.0753 g of SnO₂ (Aldrich, 99.9%) (Na/Si/Sn mole ratio of 23.8: 4:1) was placed in a 4-mL platinum crucible, heated to 700 °C, and isothermed for 10 h, followed by slow cooling to 500 °C at 2 °C/h and then furnace cooling to room temperature. The flux was dissolved with hot water, and the solid product was obtained by suction filtration. The reaction produced 0.0905 g of colorless plate crystals. A qualitative energy-dispersive X-ray analysis of several colorless crystals confirmed the presence of Na, Sn, and Si. The bulk product was monophasic, as indicated by powder X-ray diffraction (Figure S1 in the Supporting Information). Compound 1 was the only nonsoluble phase in hot water, and the yield was 41.6%. The sample was used for solid-state NMR study.

Single-Crystal X-ray Diffraction. A suitable crystal of 1 with dimensions $0.05 \times 0.05 \times 0.03 \text{ mm}^3$ was selected for indexing and intensity data collection on a Siemens SMART CCD diffractometer equipped with a normal focus, 3-kW sealed-tube X-ray source. Intensity data were collected at room temperature in 1271 frames with ω scans (width of 0.30° per frame). The number of observed unique reflections $[F_o > 4\sigma(F_o)]$ is 1115 $(2\theta_{max} = 56.54^\circ)$; $R_{\rm int} = 0.0206$). The program SADABS was used for the absorption correction $(T_{\min}/T_{\max} = 0.933/0.985)$.¹³ The structure was solved by direct methods and difference Fourier syntheses. The Na and F atoms sites in the structural tunnels are ordered and fully occupied. The final cycles of least-squares refinement included atomic coordinates and anisotropic thermal parameters for all atoms (number of parameters = 83). The final difference Fourier maps were flat ($\Delta \rho_{\text{max,min}} = 0.45, -0.65 \text{ e/Å}^3$). All calculations were performed using the SHELXTL version 5.1 software package.¹⁴

Solid-State NMR Measurements. ¹⁹F, ²⁹Si, and ²³Na MAS NMR spectra at 293 K were acquired on a Varian Infinityplus-500 NMR spectrometer equipped with a 4-mm Chemagnetics T3 HFX probe. The 1-D ²³Na MAS NMR spectra were obtained with a small flip angle of approximately 15° (0.6 μ s) and with a cycle delay of 2 s. ¹⁹F MAS NMR spectra were acquired with a 90° pulse of 4.5 μ s and a recycle delay of 15 s. A 45° pulse of 3.0 μ s and a recycle delay of 50 s were used to acquire the ²⁹Si NMR spectra. The spinning speed was set to 16 kHz for ¹⁹F and ²³Na NMR. ¹⁹F, ²⁹Si, and ²³Na NMR chemical shifts were externally referenced to CFCl₃, tetramethylsilane (TMS), and a 1 M aqueous NaCl solution at 0 ppm, respectively.

²³Na MQMAS NMR spectra were obtained using a three-pulse sequence with *z* filtering.¹⁵ The length of the first and second hard pulses ($B_1 = 110$ kHz) used to excite the triple-quantum coherences (±3Q) and to transfer them back to zero quantum were 6.50 and 1.75 μ s, respectively. A soft pulse of 11.50 μ s ($B_1 = 22$ kHz) was applied after the *z*-filter period (200 μ s). To produce pure

Table 1. Crystallographic Data for [Na₃F][SnSi₃O₉]

chemical formula	FO9Na3Si3Sn
a/Å	10.539(1)
b/Å	13.953(2)
c/Å	6.5171(7)
β /deg	111.576(2)
$V/Å^3$	891.2(3)
Ζ	4
formula weight	434.93
space group	C2/m (No. 12)
T, °C	23
λ(Mo Kα), Å	0.71073
$D_{\text{calc}}, \text{g/cm}^3$	3.241
μ (Mo K α), cm ⁻¹	34.7
$R1^a$	0.0161
wR2 ^b	0.0422

^{*a*} R1 = $\sum ||F_0| - |F_c|| / \sum |F_0|$. ^{*b*} wR2 = $[\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$, $w = 1/[\sigma^2(F_0^2) + (aP)^2 + bP]$, $P = [\max(F_0^2, 0) + 2(F_c)^2]/3$, where a = 0.02 and b = 0.89.

Figure 1. Building units of **1** showing the atom labeling scheme. Thermal ellipsoids are shown at 50% probability.

 Table 2.
 Selected Bond Lengths (Å) for [Na₃F][SnSi₃O₉]

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$N_0(2) = O(5)$ 2.409(2) $N_0(2) = O(5)$ 2.960(2)	Na(2)-O(5) 2.408(2) $Na(2)-O(5)$ 2.860(2)	$\begin{array}{c} Sn(1)-O(1)\\ Sn(1)-O(5)\\ Si(1)-O(2)\\ Si(1)-O(4)\\ Si(2)-O(5)\\ Na(1)-F(1)\\ Na(1)-O(2)\\ Na(2)-O(1) \end{array}$	$\begin{array}{c} 2.032(1) (2 \times) \\ 2.057(2) (2 \times) \\ 1.611(2) \\ 1.645(2) \\ 1.606(2) \\ 2.259(3) \\ 2.836(2) \\ 2.301(2) \end{array}$	$\begin{array}{c} Sn(1)-O(2)\\ Si(1)-O(1)\\ Si(1)-O(3)\\ Si(2)-O(4)\\ (2\times)Na(1)-F(1)\\ Na(1)-O(2)\\ (2\times)Na(2)-F(1)\\ Na(2)-O(4)\\ \end{array}$	2.036(2) (2×) 1.609(2) 1.6181(9) 1.631(2) (2×) 2.193(2) 2.413(2) (2×) 2.113(1) 2.325(2)

absorption-mode line shapes in 2-D spectra, the hypercomplex method was applied for data collection.¹⁶ Typically, 128 data points (312 transients for each point) were acquired in the t_1 dimension in increments of 31 μ s. The MQMAS data were processed with a shearing transformation prior to Fourier transformation with respect to t_1 to obtain a 2-D spectrum with an isotropic frequency component along the F_1 spectral axis and an anisotropic frequency along the F_2 axis. The F_2 slices corresponding to each Na site were then extracted and simulated with the STARS software in order to estimate the quadrupolar parameters.¹⁷

Results and Discussion

Structure. The crystallographic data are given in Table 1 and selected bond lengths and bond angles in Table 2. As shown in Figure 1, the structure of **1** is constructed from the following structural elements: 2 SiO_4 tetrahedra, 1 SnO_6 octahedron, and 1 F and 2 Na atoms. Na(1), F(1), and O(3)

⁽¹²⁾ Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367.

⁽¹³⁾ Sheldrick, G. M. SADABS, Program for Siemens Area Detector Absorption Corrections; University of Göttingen, Göttingen, Germany, 1997.

⁽¹⁴⁾ Sheldrick, G. M. SHELXTL Programs, version 5.1; Bruker AXS GmbH: Karlsruhe, Germany, 1998.

⁽¹⁵⁾ Amoureux, J. P.; Fernandez, C.; Steuernagel, S. J. Magn. Reson., Ser. A 1996, 123, 116.

⁽¹⁶⁾ States, D. J.; Haberkorn, R. A.; Ruben, D. J. J. Magn. Reson. 1982, 48, 286.

⁽¹⁷⁾ Jakobsen, H. J.; Skibstedt, J.; Bildsoe, H.; Nielsen, N. C. J. Magn. Reson. 1989, 85, 173.

Figure 2. Coordination environments of Na and F atoms in **1**. The dashed lines represent the longer Na–O bonds.

lie in mirror planes, SnO₆ and Si(2)O₄ have a local symmetry of C_2 , and all other atoms are at general positions. The observed Si-O bond lengths (1.606-1.645 Å, average 1.620 Å) and O-Si-O bond angles $(106.3-114.0^{\circ})$ are typical values and are within the normal range.¹⁸ Each SiO₄ is bonded to two SiO₄ tetrahedra and two SnO₆ octahedra. All O atoms except O(3) coordinate to Na atoms. The SnO₆ octahedron is quite regular, with the Sn-O bond lengths in the range from 2.032 to 2.057 Å. The bond-valence sum for Sn(1) is 4.15, indicating that the Sn atom is tetravalent.¹⁹ Each SnO₆ octahedron shares its corners with six different SiO₄ tetrahedra. All Na and F sites are fully occupied. The coordination environments of Na and F atoms are shown in Figure 2. Na(1) is bonded to 2 F and 4 O atoms with CN (coordination number) = 4 + 2, with the first number referring to the number of neighboring atoms at shorter distances, and Na(2) is bonded to 1 F and 4 O atoms with CN = 4 + 1. The Na atoms and four-coordinate F atoms form a dimer with the anti-Al₂Cl₆(g) structure. It should be noted that the Na atoms are also bonded to framework O atoms.

The structure of **1** consists of six-membered single rings of corner-sharing SiO₄ tetrahedra in the (20-1) plane linked together via corner sharing by a single SnO₆ octahedron to form a 3-D framework that delimits two types of channels (Figure 3). The first type is along the *a* axis and is formed by stacking the six-membered silicate rings, and the second type is along the *b* and *c* axes and is formed by the edges of 2 SnO₆ octahedra and 4 SiO₄ tetrahedra. The minimum O· ··O distance across the six-membered silicate ring less one O diameter of 2.76 Å is 2.10 Å, which is slightly greater than the diameter for a six-coordinate Na⁺ ion (2.04 Å). Therefore, the window should be large enough for the Na⁺ ion to pass through. In contrast, the second type of window is too narrow to allow the Na⁺ ion to squeeze through at

⁽¹⁸⁾ Liebau, F. Structural Chemistry of Silicates: Structure, Bonding and Classification; Springer-Verlag: Berlin, 1985.

Figure 3. (a) Structure of 1 viewed along the *a* axis. The yellow and green polyhedra represent SnO_6 octahedra and SiO_4 tetrahedra, respectively. Red circles: Na atoms. Blue circles: F atoms. (b) Structure of 1 viewed along the *c* axis.

room temperature. Although the channels along the *a* axis are open enough for ion passage, the Na⁺ ions are tightly bound with F⁻ ions and the framework O atoms, as indicated by approximately isotropic thermal vibrations and the valence sums of 0.96 and 1.06 for Na(1) and Na(2), respectively. The F₂Na₆ unit is located in a cage surrounded by 10 sixmembered rings and several smaller rings (Figure 4).

Several stannosilicates with the general formula A_2 -SnSi₃O₉• nH_2O have been reported. $K_2SnSi_3O_9$ • H_2O (named

Figure 4. F_2Na_6 unit in a cage in the structure of **1**. In this simplified schematic diagram, the tetrahedral Si and octahedral Sn atoms are located at the intersections of the lines, as O bridges are made by corner sharing from the vertexes of the tetrahedron and octahedron.

AV-6)²⁰ adopts the structure of the rare mineral umbite (K₂ZrSi₃O₉·H₂O).²¹ K₂SnSi₃O₉ (AV-11) was synthesized by calcining AV-6 in air at high temperature.22 Both AV-6 and AV-11 contain infinite chains of corner-sharing SiO₄ tetrahedra. However, in the structure of AV-6, the infinite chain has a period of three tetrahedra, while in the structure of AV-11, the chain has a period of six tetrahedra. The sodium stannosilicate Na₂SnSi₃O₉•2H₂O (AV-10) has a new structure.²³ Although both AV-10 and AV-11 contain infinite silicate chains with a period of six tetrahedra, the chains are connected by SnO₆ octahedra in different ways. A sodium chloride stannosilicate, Na_{2.26}SnSi₃O₉Cl_{0.26}·xH₂O (AV-13), was reported, and its 3-D framework structure consists of six-membered [Si₆O₁₈]¹²⁻ rings, which are interconnected by SnO₆ octahedra.²⁴ Each Na⁺ cation in the structural channel is five-coordinated to three framework O atoms, one water molecule, and a fifth ligand, which may be a second water molecule or a chloride anion. All of the stannosilicates in the AV-n family were synthesized under hydrothermal conditions in a Teflon-lined autoclave at 200-230 °C and structurally characterized by powder X-ray diffraction. Recently, we reported a cesium stannosilicate, Cs₂SnSi₃O₉, which was synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction.^{11f} Its structure is closely related to that of AV-10. Compound 1 adopts a new structure and is the first salt-inclusion metal silicate that contains F⁻ ions in the structural channels. This interesting compound also suggests the utility of salt inclusion in the synthesis of new framework silicates.

MAS NMR. The ¹⁹F MAS NMR spectrum of **1** (Figure 5a) shows a sharp resonance at -219 ppm, which corresponds to the single F(4Na) environment in the structure. For comparison, the ¹⁹F MAS NMR spectrum of solid NaF

- (20) Lin, Z.; Rocha, J.; Valente, A. Chem. Commun. 1999, 24, 2489.
- (21) Poojary, D. M.; Bortun, A. I.; Bortun, L. N.; Clearfield, A. Inorg. Chem. 1997, 36, 3072.
- (22) Lin, Z.; Ferreira, A.; Rocha, J. J. Solid State Chem. 2003, 175, 258.
- (23) Ferreira, A.; Lin, Z.; Rocha, J.; Morais, C. M.; Lopes, M.; Fernandez, C. *Inorg. Chem.* **2001**, *40*, 3330.
- (24) Ferreira, A.; Lin, Z.; Soares, M. R.; Rocha, J. Inorg. Chim. Acta 2003, 356, 19.

Figure 5. (a) ¹⁹F and (b) ²⁹Si MAS NMR spectra of **1**, acquired at spinning speeds of 16 and 6 kHz, respectively. Asterisks denote spinning sidebands.

Figure 6. (a) Experimental and (b) simulated 1-D ²³Na MAS NMR spectra of **1**. The simulated total spectrum in (b, solid line) is the sum of A and B subspectra (dashed lines) with a 2:1 intensity ratio. The NMR parameters used for producing A and B subspectra are as follows: $\delta_{iso}(A) = 12.5$ ppm, $C_Q(A) = 3.0$ MHz, $\eta_Q(A) = 0.55$; $\delta_{iso}(B) = 9.0$ ppm, $C_Q(B) = 3.7$ MHz, $\eta_Q(B) = 0.68$.

shows a single peak at -221 ppm. Two resonances at -88 and -94 ppm with an intensity ratio of 1:2 are observed in the ²⁹Si MAS NMR spectrum of **1** (Figure 5b). It has been recognized that the ²⁹Si NMR chemical shift depends on the average value of the four Si-O-T bond angles and shifts upfield with increasing Si-O-T bond angle.²⁵ The average bond angles are 137.6° and 134.9° for Si(1) and Si(2), respectively. The peak at -94 ppm is therefore assigned to

Figure 7. 2-D ²³Na MQMAS spectrum of 1, together with F_1 and F_2 projections, and F_2 slices corresponding to the two crystallographically inequivalent Na sites.

Si(1) and the other peak (-88 ppm) to Si(2). The peak intensities are also consistent with the assignment. The 1-D ²³Na MAS NMR spectrum of **1** (Figure 6a), on the other hand, exhibits broad and complex line shapes characteristic of second-order quadrupolar interactions of the ²³Na nucleus $(I = \frac{3}{2})$. There are two distinct Na sites, as determined by X-ray diffraction. Therefore, the broad and complex line shapes consist of two overlapping signals, which hinder us from deriving the quadrupolar parameters of the Na atoms.

²³Na MQMAS NMR experiments were performed in order to resolve the complex spectrum. As shown in Figure 7, the result reveals two distinct crystallographic sites, consistent with the results from X-ray diffraction. The projection in the F_1 dimension shows a high-resolution ²³Na NMR spectrum with two separate isotropic resonances because the broadening due to second-order quadrupolar interaction has been averaged. Each isotropic peak in the F_1 dimension is related to a subspectrum along the F_2 dimension, from which information about the isotropic chemical shift (δ_{iso}), quadrupole coupling constant ($C_Q = e^2 q Q/h$), and asymmetry

parameter (η_0) can be estimated. However, it should be emphasized that because F_2 subspectra often exhibit lineshape distortion and do not contain quantitative information about peak intensities, they were used only as a starting point and restraints in the simulation of 1-D MAS NMR spectra. Final NMR parameter extraction was achieved by comparing spectral features in experimental and simulated 1-D MAS NMR spectra (parts a and b of Figure 6, respectively). Such a combined analysis of the 2-D MQMAS and 1-D MAS NMR spectra yielded the following parameters for slices A and B (with an intensity ratio of 2:1): $\delta_{iso}(A) = 12.5 \pm 0.2$ ppm, $C_Q(A) = 3.0 \pm 0.1$ MHz, $\eta_Q(A) = 0.55 \pm 0.01$; $\delta_{iso}(B)$ = 9.0 \pm 0.2 ppm, $C_Q(B) = 3.7 \pm 0.1$ MHz, $\eta_Q(B) = 0.68$ \pm 0.01. We found that the experimental spectrum could not be fitted with an A/B intensity ratio of 1:2. Given that the site occupancy of Na(1)/Na(2) is 1:2, as determined from single-crystal X-ray analysis, spectral assignment can be readily achieved on the basis of their relative intensities. Consequently, resonance A in the ²³Na MQMAS spectrum (Figure 7) is therefore assigned to Na(2) and resonance B to Na(1).

In conclusion, we have reported the molten-salt synthesis and structural characterization by single-crystal X-ray diffraction and solid-state NMR spectroscopy of a salt-inclusion stannosilicate. It adopts a new structure and is the first metal silicate that contains both Na⁺ and F⁻ ions in the structural channels. The ¹⁹F and ²⁹Si MAS NMR and ²³Na MQMAS NMR spectra are consistent with the crystallographic results. This work makes an important addition to the structural chemistry of metal silicates and suggests that the saltinclusion method is a promising approach for the synthesis of new silicate structures.

Acknowledgment. We thank the National Science Council for support and F.-L. Liao and Prof. S.-L. Wang at National Tsing Hua University for X-ray data collection.

Supporting Information Available: Crystallographic data for **1** in CIF format and X-ray powder patterns. This material is available free of charge via the Internet at http://pubs.acs.org.

IC0514086

⁽²⁵⁾ MacKenzie, K. J. D.; Smith, M. E. Multinuclear Solid-State NMR of Inorganic Materials; Pergamon: New York, 2002.