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A monomeric hydroxide of gallium, LGa(Me)OH, containing terminal
hydroxide and methyl groups was prepared by the hydrolysis of
LGa(Me)Cl in the presence of N-heterocyclic carbene and water
[L ) HC{(CMe)(2,6-i-Pr2C6H3N)}2] in high yield and in a pure
form. LGa(Me)OH was used as a synthon to assemble the first
hetero-bimetallic compound with a Ga−O−Zr core, [(LGaMe)-
(Cp2ZrMe)](µ-O).

The controlled hydrolysis of compounds of group 13
metals has been a topic of wide interest for a long time,
particularly of those of aluminum alkyls and aryls.1 The
major interest has been the partial hydrolysis product of
trimethylaluminum, viz., methylalumoxane (MAO), an ex-
tremely potent cocatalyst in the polymerization of ethylene
and propylene.2 Presently, a wide range of terminal to
bridging and monomeric to oligomeric hydroxides of alu-
minum have been synthesized and structurally character-
ized.1,3 However, only a few hydroxides of gallium contain-
ing terminal -OH groups have been reported.3 In 1994,
Atwood et al. reported the preparation of the first gallium
dihydroxide stabilized by a bulky pincer-type ligand from
the corresponding dihydride and water.4 Monohydroxides of
gallium reported previously include hydroxygallium phtha-

locyanine,5 (2,6-Mes2C6H3)2GaOH;6 others contain hydroxy-
bridged [2,6-Mes2C6H3GaMe(µ-OH)]26 and [Ga(OH)(SO4)-
(terpy)(H2O)]‚H2O.7 Our long-standing interest in the synthesis
of group 13 hydroxides,1d,e,8 containing terminal-OH
groups, resulted in a series of compounds: LAl(OH)2,9a,10a

LGa(OH)2,9b LAl(Me)OH,11 and [LAlOH]2(µ-O)10b [L ) HC-
{(CMe)(2,6-i-Pr2C6H3N)}2]. A key factor in this successful
assembly has been the choice of an appropriate ligand
environment around the metal atom and a synthetic strategy
that allows product formation in a rational and predictable
manner.12 Recently, we have shown that the use of N-
heterocyclic carbene as a HCl scavenger has proven to be a
versatile method in hydrolysis and ammonolysis reactions.9

The isolation of LAl(Me)OH prompted us to look for a
similar gallium derivative. Another driving force was the
compound [(LAlMe)(Cp2ZrMe)](µ-O), which was a very
good catalyst for the polymerization of ethylene.11aMoreover,
LAl(Me)OH has been utilized to prepare a series of
aluminum lanthanide hetero-bimetallic complexes.11c

A methylgallium hydroxide, MeGa(OH)Pz2BMe2

[Pz2BMe2 ) bis(pyrazolyl)dimethylboron], was isolated by
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Rettig and co-workers as a byproduct of the reaction between
Na[Me2BPz2] and Me2GaCl‚OEt2. The formation of MeGa-
(OH)Pz2BMe2 probably resulted from an accidental use of
wet solvent.13 Therefore, it was of interest to prepare a
molecule with similar functionalities with a much simpler
procedure that rationally allows the assembly of such
molecules. Herein we report on the high yield synthesis of
a monomeric terminal hydroxide of gallium, LGa(Me)OH
(2), and its reaction with Cp2ZrMe2 to prepare the hetero-
bimetallic compound [(LGaMe)(Cp2ZrMe)](µ-O) (3).

The hydrolysis of LGa(Me)Cl (1) with a stoichiometric
amount of water in the presence of 1,3-di-tert-butylimidazol-
2-ylidene as a hydrogen chloride acceptor results in the
formation of 2 in good yield (Scheme 1). The 1,3-di-tert-
butylimidazolium chloride formed can easily be separated
because of its insolubility inn-hexane and affords2 in pure
form. Moreover, upon reduction witht-BuOK, 1,3-di-tert-
butylimidazol-2-ylidene was regenerated and recycled. Com-
pound2 is a rare example of a monohydroxide of gallium
with a methyl group as a substituent on gallium.

The OH groups are one of the most important functional
groups for the immobilization of catalytically active metal
complexes and also for solid acid catalysts. Because of the
stability of the Ga-O bond, the proton of the GaO-H moiety
in 2 can be anticipated to be Bro¨nsted acidic. Therefore, the
reaction of2 with Cp2ZrMe2 in toluene leads to methane
evolution and the formation of3. Compound3 represents
the first example of a X-ray-characterized molecule with a
Ga-O-Zr core (Scheme 2).

Compounds2 and3 have been unambiguously character-
ized by means of spectroscopic, spectrometric, and crystal-
lographic techniques. Both2 and3 are colorless crystalline
solids and are thermally quite stable. Compound2 melts at
200 °C, while 3 melts with decomposition at 318°C. The
electrospray ionization (EI) mass spectrum of2 revealed that
the most intense peak appears atm/z 503 and corresponds
to the loss of one methyl group from the molecular ion.

Similarly, a peak atm/z 739 in3 is due to [M+ - Me]. The
IR spectrum of2 shows a sharp band at 3676 cm-1, which
can be attributed to the GaO-H stretch. The1H NMR
spectrum of2 shows two resonances (δ +0.08 and-0.57),
which can be attributed to the protons of OH and GaMe
groups, respectively. In much the same way, resonances (δ
-0.12 and-0.32) for 3 correspond to ZrMe and GaMe,
respectively. The other resonances for2 and3 are charac-
teristic of theâ-diketiminate ligand L.

Single crystals of2 and 3 suitable for X-ray structural
analysis were obtained from theirn-hexane and toluene
solutions, respectively. The molecular structures of2 and3
are shown in Figures 1 and 2. Compounds2 and3 crystallize
in the monoclinic space groupsP21/c andP21/n, respectively.

The X-ray crystal structure reveals2 as a monomeric
gallium hydroxide (Figure 1). The Ga center exhibits a
distorted tetrahedral geometry with two nitrogen atoms of
theâ-diketiminate ligand, one Me group, and an OH group.
The small N-Ga-N angle 95.6(1)° is the result of the
formation of the C3N2Ga six-membered ring. The Ga-OH

(13) Rettig, S. J.; Sandercock, M.; Storr, A.; Trotter, J.Can. J. Chem. 1990,
68, 59-63.

Scheme 1. Preparation ofâ-Diketiminate Methylgallium Hydroxide2

Scheme 2. Preparation of the Hetero-bimetallic Gallium Zirconium
Oxide Compound3

Figure 1. Molecular structure of2. The hydrogen atoms of the C-H
bonds are omitted for clarity. Selected bond lengths (Å) and angles (deg):
Ga(1)-O(1) 1.831(1), Ga(1)-N(1) 1.957(1), Ga(1)-N(2) 1.953(1),
Ga(1)-C(30) 1.949(2); O(1)-Ga(1)-N(1) 102.8(1), O(1)-Ga(1)-N(2)
105.4(1), N(1)-Ga(1)-N(2) 95.6(1), O(1)-Ga(1)-C(30) 119.5(1),
N(1)-Ga(1)-C(30) 116.0(1), N(2)-Ga(1)-C(30) 114.3(1).

Figure 2. Molecular structure of3. The hydrogen atoms of the C-H bonds
are omitted for clarity. Selected bond lengths (Å) and angles (deg):
Ga(1)-O(1) 1.815(1), Ga(1)-N(1) 1.975(2), Ga(1)-N(2) 1.967(2),
Ga(1)-C(30) 1.971(2), Zr(1)-O(1) 1.926(1), Zr(1)-C(41) 2.301(3); O(1)-
Ga(1)-N(1) 109.0(1), O(1)-Ga(1)-N(2) 109.8(1), N(1)-Ga(1)-N(2) 96.1-
(1), O(1)-Ga(1)-C(30) 116.2(1), N(1)-Ga(1)-C(30) 112.3(1), N(2)-
Ga(1)-C(30) 111.7(1), Ga(1)-O(1)-Zr(1) 146.7(1), O(1)-Zr(1)-C(41)
102.0(1).
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bond length [1.831(1) Å] in2 is considerably shorter than
that found in hydroxyl(methyl)gallium bis(pyrazolyl)di-
methylboron13 (2.033(5) Å) and in [(2,6-Mes2C6H3Ga(Me)-
(µ-OH)]2 (average 1.914 Å)6 but slightly longer than that
observed in (2,6-Mes2C6H3)2GaOH [1.783(2) Å].6 The
Ga-Me distance 1.949(2) Å in2 is comparable to 1.957(8)
Å observed in hydroxyl(methyl)gallium bis(pyrazolyl)di-
methylboron and in [(2,6-Mes2C6H3Ga(Me)(µ-OH)]2 (aver-
age 1.947 Å).13

The molecular structure of3 is shown in Figure 2. The
Ga atom exhibits a highly distorted tetrahedral geometry with
two nitrogen atoms of theâ-diketiminate ligand, one Me
group, and oneµ-O unit. The coordination sphere of Zr is
completed by two Cp ligands and one Me group. The Me
groups in3 are bent out of the Ga-O-Zr plane in a trans

manner. The Ga-(µ-O) bond length [1.815(1) Å] in3 is
slightly shorter than the Ga-O distance in2 [1.831(1) Å]
and is shorter in other Ga-(µ-O) derivatives, for example,
1.910 Å in (MesGaO)9 8 and 1.898 Å in (Mes2GaOLi)2‚
4THF.1e The Ga-O-Zr angle [146.7(1)°] lies between the
Ga-O-Ga angle [91.9(1)° in (Mes2GaOLi)2‚4THF1e and
100.6(2)° in [(t-BuO)2GaH]214] and the Zr-O-Zr angle
[174.1(3)° in [Cp2Zr(Me)]2(µ-O)].15 The Zr-(µ-O) bond
length [1.926(1) Å] is slightly shorter than those exhibited
by compounds [(Cp2ZrCl)2(µ-O)] [1.945(3) Å],16 [(Cp2-
ZrMe)]2(µ-O) [1.948(1) Å],15 and [{(Cp2Zr)(µ-O)3]
[1.959(3) Å]17 but significantly shorter than the Zr-(µ-O)
or Zr-(µ-OH) bond lengths observed in the clusters [(Cp*Zr)6-
(µ4-O)(µ-O)4(µ-OH)8]‚2C7H8 (∼2.106 Å)18 and [{(Cp*ZrCl)-
(µ-OH)}3(µ3-OH)(µ3-O)]‚2THF [2.160(2) Å].19-23 The Zr-
Me bond length [2.301(3) Å] in3 is longer than that found
in (Cp2ZrMe)2(µ-O) [2.276(9) Å].15
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