Inorg. Chem. 2006, 45, 1399–1404

cis-to-trans Isomerization Promoted by Pyridine as a Crucial Step for the Selective Preparation of *trans*-Pt(SAr)(CI)(PAr'₃)₂

Fumikazu Yamashita, Hitoshi Kuniyasu,* Jun Terao, and Nobuaki Kambe*

Department of Molecular Chemistry & Frontier Research Center, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Received October 14, 2005

The general strategy for the syntheses of *trans*-Pt(SAr)(Cl)(PAr'₃)₂ (1) (Ar = Ph, C₆H₄-2-Me, C₆H₄-3-OMe C₆H₄-2-F, etc.; Ar' = Ph, C₆H₄-4-OMe, C₆H₄-4-Me, and C₆H₄-4-CF₃) by the reaction of *cis*-PtCl₂(PAr'₃)₂ with ArSH has been developed. The mechanistic investigation suggested that isomerization of *cis*-1 into *trans*-1 promoted by the combined use of C₆H₆ as a solvent and pyridine as a base was the key to the successful preparation of 1.

Introduction

Unveiling the reactivity of transition metal complexes having ArS-M (M = Pd or Pt) bonds toward unsaturated compounds is of critical importance for understanding and developing catalytic reactions using the S-X bond (X = typical element or functional group) activations¹ because many of them can involve the insertion of unsaturated organic molecules into S-M bonds. However, clear-cut investigation of the insertion process has been generally hampered by the successive reactions. For instance, we have reported that the reaction of Pd(SAr)₂(PPh₃)(CNAr) with (ArS)₂ (Ar = C_6H_4 -4-Me) produced ArSC=NAr(SAr) and Pd(SAr)₂(PPh₃)_n and that the reaction of $Pt(SAr)(Ph)(PPh_3)_2$ (Ar = C₆H₄-4-Br) with 1-octyne produced $Pt(n-C_6H_{13}CCH)(PPh_3)_2$ and (Z)- $(n-C_6H_{13})(ArS)C=C(H)(Ph).^{2,3}$ In both cases, possible intermediates, thioimidoyl palladium or vinyl platinum, produced by the insertion of ArNC into S-Pd or 1-octyne into S-Pt, were not detected at all. Furthermore, Tanaka et al.

also showed that the reaction of trans-Pd(SPh)(CO₂Me)- $(PCy_3)_2$ with 1-octyne yielded $(Z)-(n-C_6H_{13})(PhS)C=C(H) (CO_2Me)$ ⁴ These results indicated that the C-S or C-C bond-forming reductive eliminations from Pd(II) or Pt(II) were generally much faster than the insertion of unsaturated organic compounds into the S-M (M = Pd, Pt) bonds.⁵ To our knowledge, direct evidence of the insertion of unsaturated compounds into S-Pd or S-Pt bond when a catalytically active substrate was employed has not yet been provided.^{6,7} We have expected that complexes with general formula Pt- $(SAr)(Cl)(PAr'_{3})_{2}$ (1) would be versatile as substrates for scrutinization of the insertion processes because complex 1 would be thermodynamically more stable than the corresponding Pd complexes,8 and the anticipated Pt(II) complexes, formed by the insertion of unsaturated molecules into S-Pt bond, would resist further reactions, such as the C-Cl bond-forming reductive elimination. However, with respect to the syntheses of platinum complexes with general formula

(8) Jones, W. D.; Reynolds, K. A.; Sperry, C. K.; Lachicotte, R. J.; Godleski, S. A.; Valente, R. R. Organometallics 2000, 19, 1661.

^{*} To whom correspondence should be addressed. E-mail: kuni@chem.eng.osaka-u.ac.jp (H.K.); kambe@chem.eng.osaka-u.ac.jp (N.K.).

For reviews, see: (a) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Zürich, 2001; p 217. (b) Ogawa, A. In Main Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, Germany, 2004; p 813. (c) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205. (d) El Ali, B. Alper, H. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Chapter VI.6; p 2333. (e) Ogawa, A. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Chapter VI.6; p 2841. (f) Han, L.; Tanaka, M. Chem. Commun. 1999, 395. (g) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435.

⁽²⁾ Kuniyasu, H.; Sugoh, K.; Su, M. S.; Kurosawa, H. J. Am. Chem. Soc. 1997, 119, 4669.

⁽³⁾ Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108.

^{10.1021/}ic051780I CCC: \$33.50 © 2006 American Chemical Society Published on Web 01/11/2006

⁽⁴⁾ Hua, R.; Takeda, H.; Onozawa, S.-y.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899.

⁽⁵⁾ Beletskaya et al. have been reported on the mechanism of Pd- and Pt-catalyzed addition of diselenide to alkynes. However, no definitive evidence of the formation of vinyl platinum generated by the insertion of alkyne into Se-Pt bond has been provided. (a) Ananikov, V. P.; Beletskaya, I. P.; Aleksandrov, G. G.; Eremenko, I. L. Organometallics 2003, 22, 1414. (b) Ananikov, V. P.; Kabeshov, M. A.; Beletskaya, I. P. Dokl. Chem. 2003, 390, 112.

⁽⁶⁾ We have reported that DMAD, which is generally inactive as a substrate of catalytic S-X activation, inserted into the S-Pd bond of Pd(SAr)₂(DPPE) to produce vinyl palladium. Sugoh, K.; Kuniyasu, H.; Kurosawa, H. *Chem. Lett.* **2002**, 106.

⁽⁷⁾ Koelle et al. have reported that the reaction of [Cp*Ru(SBu-t)]₂ with methyl propiolate formed a binuclear vinyl Ru-complex. Koelle, U.; Rietmann, C.; Tjoe, J.; Wagner, T.; Englert, U. Organometallics 1995, 14, 703.

of 1, only very limited examples of related complexes, such as $Pt(SAr)(Cl)(PPh_3)_2$ (Ar = C₆H₂-2,4,6-*i*-Pr₃),^{9a} Pt(SCF₃)-(Cl)(PPh₃)₂,^{9b} and Pt(SPy)(Cl)(PPh₃),^{9c-9e} have been documented. These publications made us feel that possible dimerization, polymerization, and disproportionation can be significant drawbacks in the preparation and handling 1.10Herein, we wish to report on our discovery that complex 1 is actually quite selectively prepared as a thermodynamically stable complex using pertinent reaction conditions. The key to our success was employment of benzene, as the solvent, and pyridine, which acted not only as a base but also as a cis-to-trans isomerization catalyst.11

Experimental Section

General Comments. ¹H and ³¹P NMR spectra in benzene- d_6 solution were recorded with a JEOL JNM-AL-400 (400 MHz) spectrometer, and their chemical shifts were recorded relative to Me₄Si and 85% (aq) H₃PO₄. IR spectra were measured with a Perkin-Elmer Model 1600 spectrometer. Combustion analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were determined on a Yanaco MICRO melting point apparatus. Preparative TLC was carried out using Wakogel B-5F silica gel using benzene as an eluent. X-ray crystal data for trans-1i were collected with a Rigaku RAXIS-RAPID Imaging Plate diffractometer, and its ORTEP drawing in Figure 1 was shown with 50% probability ellipsoids. The platinum complexes cis-Pt(Cl)₂(PR₃)₂ (cis-2) and trans-Pt(Cl)₂-(PPh₃)₂ (trans-2a) were prepared according to the literature.^{12a-c} The authentic platinum complex *cis*-Pt(SPh)₂(PPh₃)₂ (*cis*-4a) was also synthesized according to the literature,13 and its stereochemistry has been unambiguously identified by X-ray crystallographic analysis. The chemical shift and coupling constant of trans-Pt(SPh)2-(PPh₃)₂ (trans-4a) in ³¹P NMR spectra was determined by using the isomerization of cis-4a to trans-4a. The platinum complex trans-Pt(SC₆H₄-4-OMe)₂(PPh₃)₂ (4b) was prepared according to the literature.^{10b} Thiols (3), pyridine, NEt₃, PPh₃, C₆D₆, C₆H₆, and CD₂-Cl₂ were commercially obtained and employed without any further purification. The ³¹P NMR spectra were measured using standard ¹H-gated decoupled conditions to calculate the yields of **1a** and **4a** shown in Table 2 with $S=P(C_6H_4-4-Me)_3$ as an internal standard. The values may contain ca. 30% errors from the difference in sensitivity to NOE by ¹H irradiation between complexes and the internal standard. (The integrals of trans-1a and trans-4a were both

- (11) For the ability of pyridine for isomerization catalyst, see: (a) Tudor, D. M.; Becker, J. J.; White, S. P.; Gagné, R. M. Organometallics 2000, 19, 4376. (b) Basolo, F.; Chatt, J.; Gray, H. B.; Pearson, R. G.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1974, 1377. (c) Tanaka, H.; Isobe, K.; Kawaguchi, S. Inorg. Chim. Acta 1981, 54, L201. (d) Cattalini, L.; Martelli, M. J. Am. Chem. Soc. 1969, 91, 312. (e) Anderson, G. K.; Cross, R. J. J. Chem. Soc. Rev. 1980, 9, 185.
- (12) Both cis-2a and trans-2a can be selectively prepared in pure form. (a) Cavinato, G.; Toniolo, L. Inorg. Chim. Acta 1981, 52, 39. (b) Jensen, K. A. Z. Anorg. Allegm. Chem. 1936, 229, 225. (c) Rahn, J. A.; Baltusis, L.; Nelson, J. H. Inorg. Chem. 1990, 29, 750.
- (13) Lai, R. D.; Shaver, A. Inorg. Chem. 1981, 20, 477.

Yamashita et al.

1.27 times larger than that of the internal standard under ¹H-coupled conditions where the PD time was set for 70 s, roughly five times longer than the relaxation time T_1 of PPh₃ (ca. 13.5 s).)

Attempted Synthesis of trans-1a (run 1 of Table 2). cis-PtCl₂- $(PPh_3)_2$ (*cis*-2a) (7.9 mg, 0.010 mmol), $S=P(C_6H_4-4-Me)_3$ (3.0 mg, 0.009 mmol as an internal standard), C₆D₆ (0.5 mL), PhSH (3a, 1.2 mg, 0.012 mmol), and Et₃N (5.0 mg, 0.05 mmol) were mixed in a Pyrex NMR tube. Then the reaction was monitored by ³¹P and ¹H NMR spectra. The ³¹P NMR spectrum showed the formation of *cis*-Pt(SPh)(Cl)(PPh₃)₂ (*cis*-**1a**) [δ 21.6 ($J_{P-P} = 17$ Hz, $J_{Pt-P} =$ 2676 Hz), 20.1 ($J_{P-P} = 17$ Hz, $J_{Pt-P} = 3840$ Hz)] and cis-4a [δ 23.8 (s, $J_{Pt-P} = 2880$ Hz)] in 8 and 55% yields, respectively after 1h. Other reactions shown in Table 2 except for run 8 were carried out and the yields of the products were calculated similarly.

Synthesis of trans-1a (run 8 of Table 2): General Procedure for Preparation of 1. *cis*-2a (347 mg, 0.44 mmol), C₆H₆ (20 mL) and pyridine (0.16 mL, 2.0 mmol) were combined in a dry threenecked flask equipped with an additional flask. Then the C_6H_6 (3) mL) solution of PhSH (0.40 mmol) was added dropwise to the solution, and resultant reaction mixture was stirred for a total of 2 h. Then the reaction mixture was filtered; hexane (100 mL) was added into the filtered solution, and the resultant solid was filtered. washed over hexane, and dried under vacuo. It was then purified by PTLC using benzene as an eluent to give the desired trans-1a as a yellow solid (247 mg, 71%).

Other platinum complexes shown in Tables 4 and 5 were prepared and isolated in a similar manner.

trans-Pt(SPh)(Cl)(PPh₃)₂ (1a). Yellow solid. mp: 212-213 °C. ¹H NMR (400 MHz, C_6D_6): δ 7.94–7.88 (m, 12 H), 7.28 (dd, J = 8.0 Hz, J = 1.6 Hz, 2 H), 6.98–6.95 (m, 18 H), 6.67–6.61 (m, 3 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.4 (s, $J_{Pt-P} = 2745$ Hz). IR (KBr): 3054, 1578, 1481, 1469, 1434, 1384, 1311, 1186, 1158, 1096, 1024, 998, 741, 705, 691, 522, 513, 414 cm⁻¹. Anal. Calcd for C₄₂H₃₅ClP₂PtS: C, 58.37; H, 4.08. Found: C, 58.08; H, 4.00.

trans-Pt(SC₆H₄-2-Me)(Cl)(PPh₃)₂ (1b). Yellow solid. mp: 201-202 °C. ¹H NMR (400 MHz, C_6D_6): δ 8.33 (d, J = 7.6 Hz, 1 H), 7.90-7.88 (m, 12 H), 6.97-6.96 (m, 18 H), 6.80 (t, J = 7.2 Hz, 1 H), 6.67 (t, J = 7.2 Hz, 1 H), 6.53 (d, J = 6.8 Hz, 1 H), 1.86 (s, 3 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.5 (s, $J_{Pt-P} = 2751$ Hz). IR (KBr): 3054, 1582, 1480, 1455, 1434, 1186, 1158, 1096, 1060, 1027, 998, 854, 742, 705, 692, 522, 513, 428 cm⁻¹. Anal. Calcd for C₄₃H₃₇ClP₂PtS: C, 58.80; H, 4.25. Found: C, 58.64; H, 4.25.

trans-Pt(SC₆H₄-3-OMe)(Cl)(PPh₃)₂ (1c). Yellow solid. mp: 192-193 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.95-7.90 (m, 12 H), 7.04–6.97 (m, 19 H), 6.75 (m, 1 H), 6.61 (t, *J* = 7.6 Hz, 1 H), 6.40 (d, J = 7.6 Hz, 1 H), 3.26 (s, 3 H). ³¹P NMR (160 MHz, C_6D_6): δ 24.6 (s, $J_{Pt-P} = 2745$ Hz). IR (KBr) 3462, 3048, 2988, 2830, 2354, 1581, 1480, 1467, 1435, 1310, 1276, 1239, 1218, 1183, 1097, 1071, 1046, 998, 857, 743, 706, 692, 540, 522, 513, 500 cm⁻¹. Anal. Calcd for C₄₃H₃₇ClOP₂PtS: C, 57.75; H, 4.17. Found: C, 57.97; H, 4.21.

trans-Pt(SC₆H₄-4-OMe)(Cl)(PPh₃)₂ (1d). Yellow solid. mp: 214-216 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.94-7.91 (m, 12 H), 7.09 (d, J = 8.0 Hz, 2 H), 6.99–6.98 (m, 18 H), 6.31 (d, J =8.4 Hz, 2 H), 3.25 (s, 3 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.6 (s, $J_{\text{Pt-P}} = 2773 \text{ Hz}$). IR (KBr): 3056, 2358, 2340, 1485, 1434, 1280, 1234, 1182, 1096, 1028, 826, 746, 693, 627, 580, 523, 511, 440 cm⁻¹. Anal. Calcd for C₄₃H₃₇ClOP₂PtS: C, 57.75; H, 4.17. Found: C, 57.68; H, 4.12.

trans-Pt(SC₆H₄-2-F)(Cl)(PPh₃)₂ (1e). Yellow solid. mp: 211-212 °C. ¹H NMR (400 MHz, C₆D₆): δ 8.00 (t, J = 8.8 Hz, 1 H), 7.92-7.84 (m, 12 H), 7.00-6.91 (m, 18 H), 6.55-6.51 (m, 1 H), 6.48-6.42 (m, 1 H), 6.29-6.24 (m, 1 H). ³¹P NMR (160 MHz,

^{(9) (}a) Chen, Q.; Boeheim, F.; Dabrowiak, J.; Zubieta, J. Inorg. Chim. Acta 1994, 216, 83. (b) Dixon, K. R.; Moss, K. C.; Smith, M. A. S. J. Chem. Soc., Dalton Trans. 1973, 1528. (c) Narayan, S.; Jain, V. K. Transition Met. Chem. 1999, 24, 409. (d) Nakatsu, Y.; Nakamura, Y.; Matsumoto, K.; Ooi, S. Inorg. Chim. Acta 1992, 196, 81. (e) Umakoshi, K.; Sasaki, Y. Inorg. Chem. 1997, 36, 4296.

^{(10) (}a) Rauchfuss, T. B.; Shu, J. S.; Roundhill, D. M. Inorg. Chem. 1976, 15, 2096. (b) Zanella, R.; Ros, R.; Graziani, M. Inorg. Chem. 1973, 12, 2736. (c) Boschi, T.; Crociani, B.; Toniolo, L.; Belluco, U. Inorg. Chem. 1970, 9, 532. (d) Benefiel, A.; Roundhill, D. M.; Fultz, W. C.; Rheingold, A. L. Inorg. Chem. 1984, 23, 3316.

Selective Preparation of trans-Pt(SAr)(Cl)(PAr'₃)₂

$$\begin{split} & C_6 D_6): \ \delta \ 24.5 \ (s, \ J_{Pt-P} = 2717 \ Hz). \ IR \ (KBr): \ 3054, \ 2350, \ 1957, \\ & 1587, \ 1558, \ 1480, \ 1460, \ 1435, \ 1310, \ 1250, \ 1210, \ 1185, \ 1159, \ 1096, \\ & 1070, \ 1028, \ 998, \ 870, \ 810, \ 742, \ 706, \ 691, \ 618, \ 596, \ 522, \ 513, \ 499, \\ & 458, \ 430 \ cm^{-1}. \ Anal. \ Calcd \ for \ C_{42}H_{34}ClFP_2PtS: \ C, \ 57.18; \ H, \ 3.88. \\ & Found: \ C, \ 58.20; \ H, \ 3.82. \end{split}$$

trans-Pt(SC₆H₄-4-Cl)(Cl)(PPh₃)₂ (1f). Yellow solid. mp: 219–220 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.89–7.84 (m, 12 H), 7.05 (d, J = 8.0 Hz, 2 H), 6.96–6.95 (m, 18 H), 6.61 (d, J = 8.8 Hz, 2 H). ¹³C NMR (CD₂Cl₂, 100 MHz): δ 134.3 (t, J = 6.0 Hz), 130.3 (s), 129.9 (s), 128.8 (t, J = 28.4 Hz), 127.7 (s), 127.2 (t, J = 5.5 Hz), 126.6 (s), 125.8 (s). ³¹P NMR (160 MHz, C₆D₆): δ 24.3 (s, $J_{Pt-P} = 2718$ Hz). IR (KBr): 3422, 3049, 2356, 1618, 1570, 1480, 1468, 1434, 1306, 1184, 1092, 1028, 1008, 998, 818, 808, 752, 743, 704, 692, 540, 523, 512, 488, 418 cm⁻¹. Anal. Calcd for C₄₂H₃₄Cl₂P₂PtS: C, 56.13; H, 3.81. Found: C, 55.85; H, 3.81.

trans-Pt(SC₆H₄-3-Cl)(Cl)(PPh₃)₂ (1 g). Yellow solid. mp: 217–218 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.91–7.86 (m, 12 H), 7.38 (m, 1 H), 7.01–6.97 (m, 18 H), 6.89–6.86 (m, 1 H), 6.65–6.62 (m, 1 H), 6.29 (t, J = 8.0 Hz, 1 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.4 (s, J_{P1-P} = 2706 Hz). IR (KBr) 3494, 3056, 2361, 2341, 1652, 1571, 1480, 1450, 1436, 1392, 1308, 1182, 1098, 1074, 1028, 999, 856, 776, 742, 706, 691, 676, 638, 523, 513, 500 cm⁻¹. Anal. Calcd for C₄₂H₃₄Cl₂P₂PtS: C, 56.13; H, 3.81. Found: C, 55.94; H, 3.88.

trans-Pt(SC₆H₄-2-Cl)(Cl)(PPh₃)₂ (1h). Yellow solid. mp: 212–214 °C. ¹H NMR (400 MHz, C₆D₆): δ 8.26 (d, J = 7.6 Hz, 1 H), 7.89–7.87 (m, 12 H), 6.98–6.96 (m, 18 H), 6.71 (d, J = 7.6 Hz, 1 H), 6.61 (t, J = 7.2 Hz, 1 H), 6.41 (t, J = 7.6 Hz, 1 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.5 (s, J_{Pt-P} = 2715 Hz). IR (KBr) 3424, 3050, 1892, 1570, 1480, 1433, 1309, 1273, 1240, 1185, 1158, 1096, 1033, 998, 850, 740, 692, 660, 618, 540, 520, 452, 435, 417 cm⁻¹. Anal. Calcd for C₄₂H₃₄Cl₂P₂PtS: C, 56.13; H, 3.81. Found: C, 55.84; H, 3.75.

trans-Pt(SC₆H₄-4-Br)(Cl)(PPh₃)₂ (1i). Yellow solid. mp: 209–210 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.88–7.83 (m, 12 H), 6.99 (d, J = 8.4 Hz, 2 H), 6.96–6.94 (m, 18 H), 6.74 (d, J = 8.4 Hz, 2 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.3 (s, $J_{Pt-P} = 2714$ Hz). IR (KBr): 3050, 1573, 1480, 1464, 1434, 1382, 1308, 1184, 1097, 1027, 1004, 844, 806, 752, 743, 704, 692, 540, 523, 512, 483, 462, 442 cm⁻¹. Anal. Calcd for C₄₂H₃₄BrClP₂PtS: C, 53.48; H, 3.63. Found: C, 54.04; H, 3.60.

trans-Pt(SC₆H₄-2-*i*-Pr)(Cl)(PPh₃)₂ (1j). Yellow solid. mp: 196– 197 °C. ¹H NMR (400 MHz, C₆D₆): δ 8.47 (d, J = 7.2 Hz, 1 H), 7.92–7.87 (m, 12 H), 6.97–6.96 (m, 18 H), 6.82–6.74 (m, 2 H), 6.70–6.68 (m, 1 H), 2.98 (quint, J = 6.8 Hz, 1 H), 0.99 (d, J = 6.8 Hz, 6 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.5 (s, J_{Pt-P} = 2757 Hz). IR (KBr): 3436, 3048, 2951, 2860, 1580, 1481, 1480, 1461, 1434, 1358, 1310, 1274, 1186, 1158, 1096, 1071, 1051, 1029, 999, 840, 744, 730, 691, 618, 522, 512, 462, 431 cm⁻¹. Anal. Calcd for C₄₅H₄₁ClP₂PtS: C, 59.63; H, 4.56. Found: C, 59.42; H, 4.52.

trans-Pt(SC₆H₄-4-Me)(Cl)[P(C₆H₄-4-Me)₃]₂ (1k). Yellow solid. mp: 215–217 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.94 (q, J = 5.6 Hz, 12 H), 7.30 (d, J = 8.0 Hz, 2 H), 6.88 (d, J = 7.6 Hz, 12 H), 6.54 (d, J = 8.0 Hz, 2 H), 2.04 (s, 3 H), 1.95 (s, 18 H). ³¹P NMR (160 MHz, C₆D₆): δ 23.0 (s, J_{Pt-P} = 2734 Hz). IR (KBr): 3424, 3018, 2918, 2863, 1598, 1560, 1498, 1482, 1448, 1396, 1310, 1189, 1098, 1020, 799, 708, 644, 631, 612, 522, 478 cm⁻¹. Anal. Calcd for C₄₉H₄₉ClP₂PtS: C, 61.15; H, 5.13. Found: C, 60.98; H, 5.10.

trans-Pt(SC₆H₄-4-Me)(Cl)[P(C₆H₄-4-OMe)₃]₂ (1l). Yellow solid. mp: 105–107 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.99–7.95 (m, 12 H), 7.42 (d, *J* = 8.0 Hz, 2 H), 6.68 (d, *J* = 8.0 Hz, 12 H), 6.57 (d, *J* = 7.6 Hz, 2 H), 3.17 (s, 18 H), 2.02 (s, 3 H). ³¹P NMR (160 MHz, C₆D₆): δ 21.1 (s, *J*_{Pt-P} = 2708 Hz). IR (KBr): 2930, 2835,

 Table 1. Crystallographic Data for trans-1i

formula	C43H36BrCl3P2PtS
fw	1028.12
$T(^{\circ}C)$	23.0
λ (Å)	0.71069
space group	$P\overline{1}$ (No. 2)
a (Å)	11.6513(5)
<i>b</i> (Å)	12.5267(8)
<i>c</i> (Å)	14.5392(8)
α (deg)	76.714(2)
β (deg)	88.574(2)
γ (deg)	79.061(3)
$V(Å^3)$	2027.3(2)
Z	2
D_{calcd} (g/cm ³)	1.684
$\mu ({\rm cm}^{-1})$	47.94
R indices $[I > 2\sigma(I)]^a$	
R1	0.0403
wR2	0.114

^{*a*} R1 = $\sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|$; wR2 = $[\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2}]^{1/2}$.

1594, 1570, 1500, 1483, 1460, 1440, 1404, 1289, 1253, 1180, 1100, 1029, 825, 800, 719, 648, 536, 507, 452, 433, cm⁻¹. Anal. Calcd for $C_{49}H_{49}ClO_6P_2PtS$: C, 55.60; H, 4.67. Found: C, 56.03; H, 4.68.

trans-Pt(SC₆H₄-4-Me)(Cl)[P(C₆H₄-4-CF₃)₃]₂ (1m). Yellow solid. mp: 214–215 °C. ¹H NMR (400 MHz, C₆D₆): δ 7.65–7.60 (m, 12 H), 7.23 (d, *J* = 8.0 Hz, 12 H), 6.80 (d, *J* = 8.4 Hz, 2 H), 6.42 (d, *J* = 8.4 Hz, 2 H), 1.99 (s, 3 H). ³¹P NMR (160 MHz, C₆D₆): δ 24.0 (s, *J*_{Pt-P} = 2837 Hz). IR (KBr) 1610, 1486, 1398, 1325, 1170, 1129, 1063, 1017, 831, 808, 706, 599, 527, 444, 417 cm⁻¹. Anal. Calcd for C₄₉H₃₁ClF₁₈P₂PtS: C, 45.75; H, 2.43. Found: C, 45.82; H, 2.54.

X-ray Crystallography. The crystal was mounted on a glass capillary. Data collection was performed on a Rigaku RAXIS– RAPID Imaging Plate diffractometer (Mo K α , $\lambda = 0.71069$ Å) with graphite-monochromated Mo K α radiation. The structure was solved by heavy-atom Patterson methods, expanded using Fourier techniques, and refined with full-matrix least-squares. All non-hydrogen atoms and hydrogen atoms were refined anisotropically and isotropically, respectively. All calculations were performed by using the teXsan crystallographic software program package. A summary of the fundamental crystal data and experimental parameters for the structure determination of complex trans-**1i** is given in Table 1.

Synthesis of the Mixture of *cis*-1a and *cis*-4a. *cis*-PtCl₂(PPh₃)₂ (158 mg, 0.2 mmol), C_6H_6 (20 mL), and 5 N NaOH(aq) (0.12 mL) were added to a dry three-necked flask equipped with an additional flask. Then the C_6H_6 (2 mL) solution of PhSH (0.0224 g 0.2 mmol) was added gradually, and the resultant reaction mixture was stirred for a total of 30 min. Then the reaction mixture was filtered; hexane (100 mL) was added to the filtered solution, and the resultant solid was filtered, washed over methanol, ether, and hexane, and dried in vacuo to yield a solid (35 mg) containing *cis*-1a and *cis*-4a in a ratio of 36/64.

Reaction of *cis***-1a-Containing 4a with Bases (Table 3).** *cis***-1a**-containing **4a** (4.0 mg, 0.0016 mmol of *cis***-1a** and 0.0028 mmol of *cis***-4a**), $S=P(C_6H_4-4-Me)_3$ (1.7 mg, 0.0051 mmol as an internal standard), C_6D_6 (0.5 mL), and pyridine (0.9 mg, 0.010 mmol) were mixed in a Pyrex NMR tube. The ³¹P NMR spectrum taken after 20 min showed complete isomerization of *cis***-1a** to *trans***-1a**. The reactions using other additives shown in Table 2 were carried out and monitored by NMR spectroscopy in a similar manner.

Synthesis of Authentic *cis*-**4a.** *cis*-PtCl₂(PPh₃)₂ (316 mg, 0.40 mmol) and toluene (25 mL) were added in a dry three-necked flask equipped with an additional flask. Then the ether (8 mL) solution of PhSH (97 mg, 0.88 mmol) and NEt₃ (178 mg, 1.76 mmol) was

Table 2. Reaction of **2a** with **3a** in the Presence of Base^a

PtCl ₂	(PPh ₃) ₂	+ PhSH	Se → PtCl(SPh)(PPh ₃) ₂	+ Pt(SPh) ₂ (PPh ₃) ₂
2	2a	3a	1a	4a
run	2a	base	1a (%) ^b (cis/trans)	4a $(\%)^b$ (cis/trans)
1	cis	Et ₃ N	8 (100/0)	55 (100/0)
2	trans	Et ₃ N	13 (0/100)	38 (76/24)
3^c	cis	Et ₃ N	7 (0/100)	44 (100/0)
4^d	cis	KOH	30 (93/7)	38 (100/0)
5^d	cis	NaOH	34 (94/6)	36 (100/0)
6	cis	pyridine	93 (0/100)	6 (0/100)
7	trans	pyridine	93 (0/100)	7 (0/100)
8^e	cis	pyridine	$71^{f}(0/100)$	_
9^g	cis	pyridine	81 (34/66)	8 (100/0)

^{*a*} Unless otherwise noted, **2a** (0.010 mmol), **3a** (0.012 mmol), $S=P(C_6H_4-$ 4-Me)₃ (internal standard) and base (0.05 mmol) in C₆D₆ (0.5 mL) at 25 °C for 1 h. ^b Yields were tentatively determined from ³¹P{¹H} NMR spectra. ^c PPh₃ (0.05 mmol). ^d Aqueous 5 N. ^e 0.40 mmol scale. ^f Isolated yield.^g In CD₂Cl₂ (0.5 mL).

added gradually, and the resultant reaction mixture was stirred for a total of 6 h. Then the solvent was removed by evaporation, and the yellow residue was dissolved in 20 mL of CH2Cl2. This solution was extracted with 200 mL of water and dried over anhydrous MgSO₄. After the solvent was removed by evaporation, the resultant solid was recrystallized from CH2Cl2/ether to give cis-4a as a yellow solid (227 mg, 60%).

Isomerization of cis-4a into trans-4a. 4a (5.1 mg, 0.0054 mmol), $S=P(C_6H_4-4-Me)_3$ (2.6 mg, 0.0077 mmol as an internal standard), and C_6D_6 (0.5 mL) were mixed in a Pyrex NMR tube. The ³¹P NMR spectrum taken after 42 h showed that the ratio of cis-4a/trans-4a was 96/4.

cis-4a. ³¹P NMR (160 MHz, C₆D₆): δ 23.8 (s, $J_{Pt-P} = 2880$ Hz).

trans-4a. ³¹P NMR (160 MHz, C₆D₆): δ 23.4 (s, $J_{Pt-P} = 2823$ Hz).

Solubility of *cis*-2a in C₆D₆. Because of the low solubility of cis-2a, the sample containing cis-2a (6.7 mg, 0.0085 mmol) and $S=P(C_6H_4-4-Me)_3$ (2.7 mg, 0.0080 mmol as an internal standard) in C_6D_6 (0.5 mL) was accumulated for 12 h by ³¹P NMR spectroscopy at 25 °C. Thus, the solubility of cis-2a was calculated to be ca. 1.6×10^{-4} mmol in 0.5 mL of C₆D₆.

Dimerization of 4b into 4b'. 4b (5.0 mg, 0.0050 mmol), S=P(C₆H₄-4-Me)₃ (1.7 mg, 0.0050 mmol as an internal standard), and C_6D_6 (0.5 mL) were combined in a Pyrex NMR tube. The solution was heated at 60 °C, and the reaction was monitored by ³¹P NMR spectra. The spectrum taken after 6 h showed the ratio of 4b/[Pt-(SC₆H₄-4-OMe)₂(PPh₃)]₂ (4b') was 51/49.

4b. ³¹P NMR (160 MHz, C₆D₆): δ 23.3 (s, $J_{Pt-P} = 2889$ Hz). **4b'** (syn/anti mixture). ³¹P NMR (160 MHz, C_6D_6): δ 21.1 (s, $J_{\text{Pt-P}} = 3398 \text{ Hz}$), 19.9 (s, $J_{\text{Pt-P}} = 3367 \text{ Hz}$).

Results and Discussion

First, the reactions of Pt(Cl)₂(PPh₃)₂ (2a) with PhSH (3a) (1.2 equiv) in the presence of some bases (5 equiv) were monitored by ³¹P NMR spectra (Table 2). When the reaction of cis-2 with 3a was carried out using Et₃N as a base in C_6D_6 (0.5 mL), cis-Pt(SPh)(Cl)(PPh_3)₂ (1a) and cis-Pt(SPh)₂-(PPh₃)₂ (4a) were obtained in 8 and 55% (92% based on **3a**) yields, respectively after 1 h (run 1).¹³ Given that the solubility of *cis*-2a is significantly low $(1.6 \times 10^{-4} \text{ mmol})$ in 0.5 mL of C₆D₆ at 25 °C), this result indicated that **3a** dominantly reacted with in situ generated cis-1a, whose Scheme 1. Possible Reaction Routes for the Reaction of 2a with 3a

solubility is much higher than that of cis-2a to produce cis-4a as a major product (through path a and b in Scheme 1). On the other hand, when *trans-2a* was employed instead of *cis*-2a, 13% of *trans*-1a and 38% of 4a (cis/trans = 76/24) were produced (run 2).¹⁴ Among these three complexes, the formation of *trans*-1a and *trans*-4a can be accounted for by the stereoselective substitution of ArS for the Cl atom of trans-2a and trans-1a (through path c and d in Scheme 1). Because *trans*-2a isomerizes into cis-2a in solution¹⁵ and the *trans*-effect of PPh₃ is stronger than that of Cl,¹⁶ the formation of cis-4a through the paths e, a, and then b would become the major route. No yield improvement was achieved in the presence of 5 equiv of PPh_3 (run 3), even though the fact that no formation of cis-1a was confirmed suggested that PPh₃ somewhat catalyzed the isomerization of *cis*-1a to trans-1a (vide infra). While the yields of 1a slightly increased when KOH (aq) and NaOH (aq) were employed as bases, a considerable amount of 4a was produced as a byproduct in both cases (runs 4 and 5). In stark contrast, a dramatic change occurred when pyridine was selected. Both reactions employing cis-2a and trans-2a produced trans-1a highly selectively in 93% yields (runs 6 and 7). This can be reasonably explained by the assumption that the the isomerization of cis-1a into trans-1a (path f in Scheme 1) is facilely promoted by the presence of pyridine. That is, when *cis*-2a was employed as a starting complex, the kinetic product cis-1a generated through path a was converted into *trans*-1a, whose reactivity toward 3a (path d) is significantly lower than that of cis-2a because of the weaker trans-effect of SAr than that of PPh₃ of *cis*-2a.¹⁶ On the other hand, when *trans*-2a was employed, as predicted by the result of the reaction using Et₃N as a base (run 2), *cis*-**2a** can be generated via path e and would react with 3a to produce cis-1a. However, if cis-1a was rapidly isomerized to trans-1a by the effect of pyridine, again, trans-1a is selectively produced. Complex **1a** was isolated in a 71% yield from the preparative scale of the reaction after purification by PTLC (run 8). The choice

⁽¹⁴⁾ *trans*-4a is thermodynamically more stable than *cis*-4a; however, isomerization from cis-4a to trans-4a was very sluggish in C6D6 (cis/ trans = 96/4 from *cis*-**4a** at 25 °C after 42 h).

⁽¹⁵⁾ When trans-2a, whose purity was checked in CDCl₃ with a ³¹P NMR spectrum, was dissolved in C₆D₆, a mixture of 2a with cis/trans = 10/90 was detected in solution. (a) Redfield, D. A.; Nelson, J. H. Inorg. Chem. 1973, 12, 15. (b) Harvey, J. N.; Heslop, K. M.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2003, 278.

^{(16) (}a) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335. (b) Chan, L. T.; Chen, H.-W.; Fackler, J. P., Jr.; Masters, A. F.; Pan, W.-H. Inorg. Chem. 1982, 21, 4291. (c) Tu, T.; Zhou, Y.-G.; Hou, X.-L.; Dai, L.-X.; Dong, X.-C.; Yu, Y.-H.; Sun, J. Organometallics 2003, 22, 1255.

Table 3. cis-to-trans Isomerization of 1a in the Presence of Additives^a

	PPt CI—Pt- SPt 1a <i>cis/trans</i> =	PPh ₃ addit PPh ₃ solve	ive → 1a ent	
run	solvent	additive	time	cis/trans
1	C ₆ D ₆	pyridine	20 min	0/100
2	C_6D_6	none	1 h	100/0
3	C_6D_6	NEt ₃	1 h	100/0
4	C_6D_6	PPh ₃	20 min	57/43
5	CD_2Cl_2	pyridine	20 min	90/10

^{*a*} cis-1a (0.0016 mmol containing 0.0028 mmol of cis-4a) and additive (0.01 mmol) in solvent (0.5 mL).

Table 4. Syntheses of 1 with Various Functional Groups^a

	PPh ₃ CI-Pt-PPh	pyridi n ₃ + ArSH ——	ne P → ArS-P	Ph ₃ t—Cl
	Cl <i>cis-</i> 2a	3	P tran	Ph ₃ 25- 1
run	3	Ar	1	yield $(\%)^b$
1	3b	C ₆ H ₄ -2-Me	1b	55
2	3c	C ₆ H ₄ -3-OMe	1c	88
3	3d	C ₆ H ₄ -4-OMe	1d	49
4	3e	C_6H_4 -2-F	1e	59
5^c	3f	C ₆ H ₄ -4-Cl	1f	66
6	3 g	C ₆ H ₄ -3-Cl	1g	87
7^d	3h	C_6H_4 -2-Cl	1h	58
8	3i	C ₆ H ₄ -4-Br	1i	80
9	3j	C ₆ H ₄ -2- <i>i</i> -Pr	1j	57

^{*a*} *cis*-**2a** (0.40 mmol), **3** (0.42 mmol), and pyridine (2.0 mmol) in C₆H₆ (20 mL) at 25 °C for 2 h. ^{*b*} Isolated yield after PTLC. ^{*c*} A mixture of *trans*-**1f**/*trans*-**4f** = 98/2 was obtained as a crude reaction mixture. ^{*d*} A mixture of *trans*-**1h**/*cis*-**2a**/*trans*-**4h** = 92/4/4 was obtained as a crude mixture.

of solvent is also crucial for the selective formation of *trans*-**1a**. The reaction of *cis*-**2a** with **3a** using pyridine as a base performed in CD₂Cl₂ yielded a mixture of **1a** (81%, cis/trans = 34/66) and *cis*-**4a** (8%) (run 9).

The *cis*-**1a**-containing *cis*-**4a** prepared by reprecipitation from the reaction mixture using NaOH as a base (run 5 in Table 2) was subjected to a solution of pyridine (run 1 in Table 3) to obtain more conclusive evidence for the cis-totrans isomerization by pyridine. As expected, complete isomerization into trans-1a was confirmed after 20 min at 25 °C. On the other hand, in the absence of base or in the presence of Et₃N, no isomerization took place after 1 h (runs 2 and 3). It must be noted that PPh₃, which is generally considered to be a good catalyst for the cis-to-trans isomerization of transition-metal complexes showed much inferior activity (cis/trans = 57/43, run 4). Furthermore, in accordance with the data of run 9 in Table 2, the isomerization was very sluggish in CD₂Cl₂ even in the presence of pyridine (run 5). Although the role of pyridine in C_6D_6 was not cleared at the moment, pyridine, which is much less bulky than PPh₃ and shows stronger affinity for the Pt(II) complex than NEt₃, would coordinate to vacant coordination site of cis-1 and facilitate the isomerization.^{11a}

The generality of the present method for the syntheses of **1** by the reactions of *cis*-**2** with **3** is shown in Tables 4 and 5. *trans*-**1** platinum complexes with various substituents such as Me, OMe, F, Cl, Br, and *i*-Pr in Ar were all successfully

Table 5. Syntheses of 1 with Various Phosphine Ligands^a

	PR3 CI-Pt-PR3 CI	۲ + ArSH –	oyridine I → ArS-I r.t. 2 h	PR ₃ Pt-Cl PR ₃
	cis-2	AI – μ-ΙΝΕC ₆ Π ₄	tra	ne_ 1
		JK		
run	<i>cis</i> - 2	PR ₃	trans-1	yield $(\%)^b$
1	2b	P(C ₆ H ₄ -4-Me) ₃	1k	53
2^c	2c	P(C ₆ H ₄ -4-OMe) ₃	11	37
3	2d	$P(C_6H_4-4-CF_3)_3$	1m	80
4	2e	PMePh ₂	1n	35^{d}
5	2f	P(OEt) ₃	10	e

^{*a*} *cis*-**2** (0.40 mmol), **3k** (0.42 mmol), and pyridine (2.0 mmol) in C₆H₆ (20 mL) at 25 °C for 2 h. ^{*b*} Isolated yield after PTLC. ^{*c*} A mixture of *trans*-**1**/*cis*-**2c**/*trans*-**4**] = 87/4/9 was obtained as a crude reaction mixture. ^{*d*} NMR yield. ^{*e*} Complicated mixture.

Figure 1. Molecular structure of *trans*-1i (thermal ellipsoids set at 50% probability). Solvent molecule (CH₂Cl₂) omitted for clarity.

isolated in moderate to good yields (runs 1–9; 49–88% in Table 4) using the present protocol. Crystals of **1i** (Ar = C₆H₄-4-Br) suitable for X-ray crystallographic analyses were obtained from a CH₂Cl₂/hexane solution, and its ORTEP diagram is shown in Figure 1. The present method was also applicable to platinum complexes with moieties other than PPh₃. The corresponding **1** complexes with P(C₆H₄-4-Me)₃, P(C₆H₄-4-OMe)₃, and P(C₆H₄-4-CF₃)₃ as ligands were also synthesized and successfully isolated in 53, 37, and 80% yields, respectively (runs 1–3 in Table 5). The reaction using *cis*-PtCl₂(PMePh₂)₂ (*cis*-**2e**) formed the desired product *trans*-Pt(SAr)(Cl)(PMePh₂)₂ (*trans*-**1n**), albeit in a low yield (run 4), while the reaction of *cis*-Pt(Cl)₂[P(OEt)₃]₂ (*cis*-**2f**) with **3k** gave a complicated mixture (run 5).

Although the vulnerability of complex 1 to disproportionation and polymerization^{8,10} was implicated in the papers dealing with the preparation of platinum complexes with an S-Pt-Cl fragment,⁹ all 1 complexes prepared by the present methodology were actually quite stable in C_6D_6 solution even at 60 °C for 6 h. On the other hand, dithiolate complex *trans*-Pt(SC₆H₄-4-OMe)₂(PPh₃)₂ (**4b**) was converted into a mixture of **4b** and its dimeric form, [Pt(SC₆H₄-4-OMe)₂(PPh₃)]₂ (**4b**'), in a ratio of 51/49 under the same conditions. This fact can be rationalized by assuming that the high electronegativity of the *trans*-Cl ligand made a significant contribution toward preventing dimerization and polymerization by decreasing the basicity of the lone pairs on SAr group.⁸

Conclusion

In conclusion, the general synthetic procedure of *trans*-Pt(SAr)(Cl)(PAr'₃)₂ has been established by taking advantage of pyridine as a cis-to-trans isomerization catalyst. This study also indicated that the participation of pyridine not only as a base but also as an isomerization catalyst must be taken into consideration when thinking about the reaction mechanisms of some catalytic reactions such as Heck and

Sonogashira reactions.¹⁷ The utility of **1** for the examination of the insertion of unsaturated molecules into the S-Pt bond is now under investigation.

Acknowledgment. We thank the Instrumental Analysis Center, Faculty of Engineering, Osaka University, for elemental analysis.

Supporting Information Available: X-ray crystallographic data file (CIF) for *trans*-**1i**, ¹H and ³¹P NMR spectra of *trans*-**1e**, *trans*-**1i**, and *trans*-**1l**, and ³¹P NMR spectra of crude reaction mixtures of run 5 and run 7 in Table 4 and run 2 in Table 5. This material is available free of charge via the Internet at http://pubs.acs.org.

IC051780L

^{(17) (}a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.
(b) Klingelhöfer, S.; Heitz, W.; Greiner, A.; Oestreich, S.; Förster, S.; Antonietti, M. J. Am. Chem. Soc. 1997, 119, 10116. (c) Sonogashira, K. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Chapter III.2.8.1, p 493.