Inorganic Chemistry

Relative Energies of α and β isomers of Keggin Dodecatungstogaliate

Karthik M. Sundaram,[†] Wade A. Neiwert,[‡] Craig L. Hill,[†] and Ira A. Weinstock^{*,§}

Department of Chemistry, Emory University, Atlanta, Georgia 30322, Department of Chemistry, Bethel University, St. Paul, Minnesota 55112, and Department of Chemistry, City College of The City University of New York, New York, New York 10031

Received October 16, 2005

The relative energies of β Keggin heteropolytungstates, $X^{n+}W_{12}O_{40}^{(8-n)-}$, decrease as X^{n+} is varied within period 3, from P⁵⁺ to Si⁴⁺ to Al³⁺. With heating of α -H₅Ga³⁺W₁₂O₄₀ at 200 °C in water, an equilibrated mixture of α (T_{di} one ¹⁸³W NMR signal) and β (C_{3v} ; three signals; 1:2:1 ratio) isomers is obtained. From $\Delta G_{exp} = -RT \ln K_{\beta \rightarrow \alpha}$, in which (from ⁷¹Ga NMR spectra) $K_{\beta \rightarrow \alpha}$ (= [α]/[β]) = 5.0, β -GaW₁₂O₄₀⁵⁻ is 0.65 kcal mol⁻¹ higher in energy than α -GaW₁₂O₄₀⁵⁻. This finding is evaluated by analysis of the X-ray crystal structure α -K₂Na₃[GaW₁₂O₄₀]•9.3H₂O [trigonal, space group *P*3₂21, *a* = 18.9201(13) Å, *b* = 18.9201(13) Å, *c* = 12.5108(12) Å, *Z* = 3, *T* = 100(2)K], comparison of the Shannon and Prewitt radii and Pauling electronegativities of Al³⁺ and Ga³⁺, and insight from density functional theory calculations, which predicted $E_{\beta} - E_{\alpha} = 0.32$ kcal mol⁻¹.

Until recently, the relative instability of β isomers of Keggin cluster anions was accepted as a general rule. In all documented cases involving fully oxidized Keggin anions in water, effectively complete conversions to α -isomer analogues were observed.¹ In 1999, however, as part of an effort to prepare Keggin tungstoaluminate catalysts for O₂ oxidations in water,² we observed equilibria between β - and α -[Al³⁺W₁₂O₄₀]⁵⁻ (β - and α -1).³⁻⁶ Using ²⁷Al NMR spectroscopy, we found that, at 200 °C, β -1 was only 2.1 kcal mol⁻¹ higher in energy than α -1.³ An X-ray crystal structure of α -1 showed that, as in α -PW₁₂O₄₀³⁻ (heteroatom, X^{*n*+} =

- [§] City College of The City University of New York.
- (1) Tézé, A.; Hervé, G. J. Inorg. Nucl. Chem. 1977, 39, 2151-2154.
- (2) Weinstock, I. A.; Barbuzzi, E. M. G.; Wemple, M. W.; Cowan, J. J.; Reiner, R. S.; Sonnen, D. M.; Heintz, R. A.; Bond, J. S.; Hill, C. L. *Nature* **2001**, *414*, 191–195.
- (3) Weinstock, I. A.; Cowan, J. J.; Barbuzzi, E. M. G.; Zeng, H.; Hill, C. L. J. Am. Chem. Soc. 1999, 121, 4608–4617.
- (4) Cowan, J. J.; Bailey, A. J.; Heintz, R. A.; Do, B. T.; Hardcastle, K. I.; Hill, C. L.; Weinstock, I. A. *Inorg. Chem.* **2001**, *40*, 6666–6675.
 (5) Cowan, J. J.; Hill, C. L.; Reiner, R. S.; Weinstock, I. A. In *Inorganic*
- (5) Cowan, J. J.; Hill, C. L.; Reiner, R. S.; Weinstock, I. A. In *Inorganic Synthesis*; Coucouvanis, D., Ed.; John Wiley & Sons: New York, 2002; Vol. 33, pp 18–26.
- (6) Neiwert, W. A.; Cowan, J. J.; Hardcastle, K. I.; Hill, C. L.; Weinstock, I. A. Inorg. Chem. 2002, 41, 6950–6952.
- **958** Inorganic Chemistry, Vol. 45, No. 3, 2006

P⁵⁺) and α-SiW₁₂O₄₀⁴⁻ (Xⁿ⁺ = Si⁴⁺), the central [X³⁺O₄]⁵⁻ moiety in **1** (X = Al³⁺) resided within a W₁₂O₃₆ shell, whose diameter remained constant as Xⁿ⁺ was varied from P⁵⁺ to Si⁴⁺ to Al³⁺. This lent support to the clathrate structural model⁷ of the Keggin cluster: [XO₄]⁽⁸⁻ⁿ⁾⁻@W₁₂O₃₆. We also observed³ that, as Xⁿ⁺ varied from P⁵⁺ to Si⁴⁺ to Al³⁺, X-µ₄-O bond distances in [Xⁿ⁺O₄]⁽⁸⁻ⁿ⁾⁻ tetrahedra increased and increased polarization of the X–O bonds (away from the less electronegative main-group cations and toward oxygen) shifted electron density toward the fixed-diameter W₁₂O₃₆ shell. We noted a correlation between increase in the relative stabilities of β isomers and this shift in electron density toward the W₁₂O₃₆ shell.

Using the clathrate model,⁷ Poblet and co-workers⁸ subsequently performed density functional theory (DFT) calculations⁹ that evaluated electronic interactions between the encapsulated (XO₄) and shell (W₁₂O₃₆) "fragments". They showed that the unprecedented stability of β -1 was due to encapsulation of a larger, more electron-donating Al³⁺O₄⁵⁻ (*T_d*) moiety within a polarizable, fixed-diameter β -W₁₂O₃₆ (*C_{3v}*) shell. This conclusion, while consistent with the correlations noted above,³ was predicated on the assumption that the encapsulated AlO₄⁵⁻ oxoanion in β -1 was indeed tetrahedral in structure, such that no unexpected distortion was involved in stabilization of the β isomer. To verify this assumption, we obtained a high-quality X-ray crystal structure of β -1⁶ and found no structural distortion.

Poblet also predicted⁸ that β -Ga³⁺W₁₂O₄₀⁵⁻ (β -2) should be relatively close in energy to α -Ga³⁺W₁₂O₄₀⁵⁻ (α -2). Using ⁷¹Ga and ¹⁸³W NMR spectroscopy and X-ray crystallography, we now show this prediction to have been correct.

Crystalline α -K₂Na₃GaW₁₂O₄₀ was prepared in 21% yield by modification of a literature method¹⁰ (see the Supporting Information, SI). The α structure was determined by ⁷¹Ga and ¹⁸³W NMR spectroscopy and confirmed by single-crystal X-ray crystallography (vide infra). The Fourier transform

(9) Davidson, E. R. Chem. Rev. 2000, 100, 351-352.

^{*} To whom correspondence should be addressed. E-mail: iaw@ sci.ccny.cuny.edu.

[†] Emory University.

[‡] Bethel University.

⁽⁷⁾ Day, V. W.; Klemperer, W. G. Science 1985, 228, 533-541.

⁽⁸⁾ Lopez, X.; Maestre, J. M.; Bo, C.; Poblet, J.-M. J. Am. Chem. Soc. 2001, 123, 9571–9576.

⁽¹⁰⁾ Fedotov, M. A.; Kazanskii, L. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1988, 9, 2000–2003.

Figure 1. ⁷¹Ga and ¹⁸³W NMR (inset) spectra before, during, and after conversion of a 0.1 M aqueous solution of α -H₅[GaW₁₂O₄₀] (α -H₅**2**) to an equilibrated mixture of α and β isomers at 200 °C.

infrared (FTIR) spectrum (Figure S1 in the SI) includes a strong band at 729 cm⁻¹, assigned to the central Ga $-\mu_4$ -O₄ moiety, and the UV-vis spectrum (Figure S2 in the SI) features a broad absorption with a maximum at 266 nm, typical of α -Keggin dodecatungstate anions.⁴ The first and second one-electron-reduction potentials of **2** (-0.35 and -0.57 V vs Ag/AgCl; Figure S3 in the SI) are similar to those of α -1.¹¹

Isomerically pure α -H₃GaW₁₂O₄₀ was obtained by dissolution of crystalline α -K₂Na₃GaW₁₂O₄₀ in water, the addition of concentrated H₂SO₄, and extraction with diethyl ether. After drying and precipitation from warm water, the free acid, an amorphous white solid, was obtained in 69% yield. When dissolved in D₂O, one singlet at $\delta = 211.1$ ppm ($\nu_{1/2} = 110$ Hz) was observed by ⁷¹Ga NMR spectroscopy (Figure 1; t = 0 h). As expected for an α isomer (T_d symmetry), the ¹⁸³W NMR spectrum featured a single signal (12 equivalent W atoms; see t = 0 h in the inset of Figure 1).

The relative energies of β - and α -2 were measured by equilibration of α -H₅GaW₁₂O₄₀ (0.10 M in water), for 7 days at 200 °C in a 25-mL Teflon-lined bomb. These conditions are identical with those used in previous work,³ in which equilibria between β - and α -1 was observed. Aliquots were removed periodically, and ⁷¹Ga NMR spectra were acquired (Figure 1). Within 6 h, a new signal, assigned to the β isomer, was observed at 207 ppm ($\nu_{1/2} = 340$ Hz). After 24 h, no further changes were observed. To ensure that equilibrium had been reached, the experiment was continued for an additional 6 days. The presence of three new signals in the ¹⁸³W NMR spectrum of the solution (intensity ratio of 1:2:1)^{3,4,6,12} confirmed that the ⁷¹Ga NMR signal at 207 ppm was due to β -2 ($C_{3\nu}$ symmetry) now present in equilibrium with α -2 (Figure 1, inset).¹³

Figure 2. Equilibration of α - and β -2 (0.1 M) in water at 200 °C. The molar ratios of β to α isomers, obtained by integration of ⁷¹Ga NMR spectra, are plotted as a function of time from t = 0 h (no β isomer present) to t = 168 h (7 days). The reported equilibrium constant, $K_{\beta \rightarrow \alpha}$ (the average of all seven mole ratio values after equilibration), is 1/0.2, or 5.0.

Table 1. Relative Energies of α and β Keggin Isomers of $X^{n+}W_{12}O_{40}^{(8-n)-}$, where $X^{n+} = Ga^{3+}$, Al^{3+} , Sl^{4+} , and P^{5+}

	DFT	$COSMO^{a}$	experiment ^b		
X^{n+}	$E_{\beta} - E_{\alpha},$ kcal mol ⁻¹	$K_{\text{calculated}}(\beta \rightarrow \alpha)$	$\overline{\Delta G_{eta} - \Delta G_{lpha}},$ kcal mol ⁻¹	$K_{\text{observed}}(\beta \rightarrow \alpha)$	
Ga ³⁺	0.32	1.7	0.65	5.0	
Al^{3+}	2.37	55	2.1	9.1	
Si ⁴⁺	3.82	633	NA^{c}	NA^{c}	
P ⁵⁺	4.57	2248	NA^{c}	NA^{c}	

^{*a*} Values calculated for X^{*n*+}W₁₂O₄₀^{(8-*n*)⁻} in a dielectric continuum (ϵ = 78), at 25 °C. ^{*b*} Values for X^{*n*+} = Ga³⁺ and Al³⁺ refer to 0.1 M aqueous solutions of the free acids, H₃X^{*n*+}W₁₂O₄₀, equilibrated at 200 °C. ^{*c*} Not reported. To our knowledge, fully oxidized β isomers have not been observed by ²⁹Si or ³¹P NMR in *equilibrated* aqueous solutions.

Isomer ratios of β - to α -H₅**2** were calculated by integration of the ⁷¹Ga NMR signals (6.5- μ s pulse width and a 1-s delay). From these data (Figure 2), the equilibrium constant, $K_{\beta \to \alpha}$, for isomerization of β -**2** to α -**2** at 473 K ($K_{\beta \to \alpha} = [\alpha]/[\beta]$) is 5.0 ± 0.2 . Using $\Delta G = -RT \ln K_{\beta \to \alpha}$, the β isomer is 0.65 kcal mol⁻¹ (0.028 eV) higher in energy than the α isomer. This value is similar to that observed for solutions of **1** (X^{*n*+} = Al³⁺), equilibrated under identical conditions.³ There, ²⁷Al NMR spectra indicated that $K_{\beta \to \alpha} = 9.1$, such that β -**1** is higher in energy than the α isomer by 2.1 kcal mol⁻¹ (0.09 eV).

In 2001, Poblet and co-workers reported DFT results for the relative energies of the α and β isomers of **1** and **2** in vacuo.⁸ They calculated that $E_{\beta-1} - E_{\alpha-1} = -7.8$ kcal mol⁻¹ (-0.35 eV) and that $E_{\beta-2} - E_{\alpha-2} = -4.19$ kcal mol⁻¹ (-0.18 eV). In both cases, they found the β isomers to be lower in energy than their α analogues.

In 2004, however, Poblet and Lopez calculated updated $E_{\beta} - E_{\alpha}$ values for X^{*n*+}W₁₂O₄₀^{(8-*n*)-} anions (X^{*n*+} = Al³⁺, Si⁴⁺, and P⁵⁺).^{14,15} Rather than vacuum values, they now used a "conductor-like screening model" (COSMO),¹⁶ in which the solvent dielectric constant was set at $\epsilon = 78$ (water at 25 °C). For α - and β -1 (X = Al³⁺), these calculations gave $E_{\beta-1} - E_{\alpha-1} = 2.37$ kcal mol⁻¹ (0.104 eV), a value much closer to the experimental value of 2.1 kcal mol⁻¹ (0.09 eV), observed by ²⁷Al NMR at 200 °C.³ For α - and β -2, their

(16) Klamt, A. J. Phys. Chem. 1995, 99, 2235.

 ⁽¹¹⁾ Geletii, Y. V.; Hill, C. L.; Bailey, A. J.; Hardcastle, K. I.; Atalla, R. H.; Weinstock, I. A. Inorg. Chem. 2005, 44, 8955–8966.

⁽¹²⁾ Lefebvre, J.; Chauveau, F.; Doppelt, P.; Brevard, C. J. Am. Chem. Soc. 1981, 103, 4589–4591.

⁽¹³⁾ These spectra are very similar to those shown in ref 10 (although α and β isomers are not mentioned there).

⁽¹⁴⁾ Lopez, X.; Poblet, J. M. Inorg. Chem. 2004, 43, 6863-6865.

⁽¹⁵⁾ Poblet, J. M.; López, X.; Bo, C. *Chem. Soc. Rev.* **2003**, *32*, 297–308.

COMMUNICATION

Table 2. Radii^{*a*} and Electronegativities^{*b*} of Heteroatoms X^{n+} and Mean^{*c*} Bond Distances (Å) and Angles (deg) for α - $X^{n+}W_{12}O_{40}^{(8-n)-}$

X^{n+}	radius, Å	electronegativity	Х-μ4-Ο	μ_4 -O–W	sum of $X-\mu_4$ -O and μ_4 -O-W	0-X-0	ref
Ga ³⁺	0.61	1.81	1.799(7)	2.205(7)	4.004(9)	109.1(3)	this work
Al^{3+}	0.53	1.61	1.742(8)	2.265(8)	4.007(11)	109.5(6)	3
Si^{4+}	0.40	1.90	1.63(2)	2.35(2)	3.98(3)	$109.5(4)^{b}$	14
P^{5+}	0.31	2.19	$1.526(1)^{b}$	$2.438(3)^d$	$3.964(3)^d$	$109.5(2)^{b}$	14

^{*a*} Shannon and Prewitt radii for the four-coordination X^{n+} cations. ^{*b*} Pauling electronegativities of the main-group elements. ^{*c*} Average values with uncertainties (1 σ) in parentheses. ^{*d*} Uncertainties not reported; values shown were calculated from scatter in published data.

Figure 3. Thermal ellipsoid plot (50% probability) of α -2.

COSMO calculation¹⁷ ($\epsilon = 78$) gave $E_{\beta-2} - E_{\alpha-2} = 0.32$ kcal mol⁻¹ (0.014 eV), again much closer to the value provided by ⁷¹Ga NMR (this work).¹⁸ These results are summarized in Table 1, along with data for X^{*n*+}W₁₂O₄₀^{(8-*n*)-} anions containing Si⁴⁺ and P⁵⁺ heterotaoms.

The DFT calculations⁸ show that β -W₁₂O₃₆ shells are more polarizable than their α -isomer analogues (α -W₁₂O₃₆) and, as a result, are stabilized to a greater extent by electron donation from X^{*n*+}O₄^{(8-*n*)-} "fragments". The close agreement between theory and experiment in the data in Table 1 thus suggests that the electron-donating ability of the encapsulated X^{*n*+}O₄^{(8-*n*)-} oxoanions generally increases as X^{*n*+} is varied from P⁵⁺ to Ga³⁺.

At the same time, the experimental results show that a change in X^{n+} from Al^{3+} to Ga^{3+} has a relatively small effect on the relative energies of the respective β and α isomers. To investigate this in more detail, we obtained an X-ray crystal structure of α -K₂Na₃GaW₁₂O₄₀.¹⁹

The structure of the α -GaW₁₂O₄₀⁵⁻ anion is shown in Figure 3. In Table 2, key bond lengths and angles are compared with analogous data from the series: α -X^{*n*+}W₁₂-O₄₀^{(8-*n*)-}, where X^{*n*+} = Al³⁺, Si⁴⁺, and P⁵⁺. Included in Table 2 are Shannon and Prewitt cationic radii²⁰ of the heteroatoms

 X^{n+} and Pauling electronegativities²⁰ of the corresponding main-group elements, X.

In all cases, the X- μ_4 -O and μ_4 -O-W bond distances sum to ca. 4.0 Å and the central X^{*n*+}O₄^{(8-*n*)-} oxoanion is a nearly ideal tetrahedron (O-X-O angles are all close to 109.5°).²¹ As X^{*n*+} is varied within the third period from P⁵⁺ to Si⁴⁺ to Al³⁺, cationic radii (Table 2; coordination number = 4) increase in increments of 0.09 and 0.13 Å and electronegativities decrease from 2.19 to 1.61. Moving down group IIIA from Al³⁺ to Ga³⁺, the cationic radius increases by 0.08 Å, while the electronegativity now *increases* from 1.61 for Al to 1.81 for Ga. This simultaneous increase in both the cation size *and* the electronegativity explains why the increase in the X- μ_4 -O bond distance observed upon replacement of Al³⁺ by Ga³⁺ (+0.06 Å) is smaller than the 0.09 and 0.13 Å increments observed when X^{*n*+} is varied from P⁵⁺ to Si⁴⁺ to Al³⁺.

In addition, the larger electronegativity of Ga attenuates the extent to which an increase in the radius of X^{n+} , and, thus, in the size of the central $X^{n+}O_4^{(8-n)-}$ oxoanion, is able to stabilize the β isomer by delivery of electron density to the polarizable β -W₁₂O₄₀ shell. As a result, the equilibrium constant, $K_{\beta\to\alpha}$, and the difference in energy between β - and α -2 ($X^{n+} = \text{Ga}^{3+}$, $K_{\beta\to\alpha} = 5.0$; $\Delta G = 0.65$ kcal mol⁻¹) are only slightly smaller than those for $X^{n+} = \text{Al}^{3+}$ ($K_{\beta\to\alpha} =$ 9.1; $\Delta G = 2.1$ kcal mol⁻¹).

Acknowledgment. We thank the DOE (Grant DE-FC36-95GO10090 to I.A.W.) and the NSF (Grant CHE-0236686 to C.L.H.) for support.

Supporting Information Available: Optimized syntheses of α -K₂Na₃[GaW₁₂O₄₀] and α -H₅[GaW₁₂O₄₀]; FTIR and UV-vis spectra and a cyclic voltammogram of α -K₂Na₃[GaW₁₂O₄₀] (Figures S1-S3); experimental details, crystal data, and structure refinement parameters for α -K₂Na₃[GaW₁₂O₄₀]·9.3H₂O (Table S1); select bond lengths and angles (Table S2); ratios of the average errors in the crystal structures of H₅[GaW₁₂O₄₀] and α -K₂Na₃[GaW₁₂O₄₀]·9.3H₂O (Table S3); full structural data in CIF format; and a discussion of the structure reported in ref 21. This material is available free of charge via the Internet at http://pubs.acs.org.

IC051789N

- (20) Huheey, J. E. Inorganic Chemistry: Principles of Structure and Reactivity, 2nd ed.; Harper & Row: New York, 1978.
- (21) See the SI for discussion: Niu, J.-Y.; Li, M.-X.; Wang, J.-P.; Bo, Y. J. Chem. Cryst. 2003, 33, 799–803 (X-ray structure of GaW₁₂O₄₀⁵⁻).
 (22) A gradient of Cardinal Control of Cardinal Cont
- (22) A new DFT study of α- and β-1 appeared (on the web) after submission: Zhang, F. Q.; Wu, H. S.; Qin, X. F.; Li, Y. W.; Jiao, H. J. Mol. Struct. 2005, 755, 113–117.

⁽¹⁷⁾ Poblet, J. M., private communication.

⁽¹⁸⁾ At 200 °C (15.5 bar), the dielectric constant of water is ca. 38: Shock, E. L.; Oelkers, E. H.; Johnson, J. W.; Sverjensky, D. A.; Helgeson, H. *Faraday Trans.* **1992**, 88, 803–826.

⁽¹⁹⁾ The X-ray-quality crystals of α-K₂Na₃[GaW₁₂O₄₀]•9.3H₂O were grown by adding KCl to an aqueous solution of α-2, prepared by modification of the procedure in ref 10. The crystal system is trigonal, space group P3₂21, Z = 3, ρ_{calcd} = 4.150 g cm⁻³, a = 18.9201(13) Å, b = 18.9201(13) Å, c = 12.5108(12) Å, and V = 3878.5(5) Å³. The final statistics based on F² are R1 = 0.0380 and wR2 = 0.0917 for I > 2σ(I).