Inorg. Chem. **2006**, 45, 2370−2372

Observation of Triplet Intraligand Excited States through Nanosecond Step-Scan Fourier Transform Infrared Spectroscopy

Dmitry E. Polyansky,† Evgeny O. Danilov,‡ and Felix N. Castellano*,†

*Department of Chemistry and Center for Photochemical Sciences and Ohio Laboratory for Kinetic Spectrometry, Bowling Green State Uni*V*ersity, Bowling Green, Ohio 43403*

Received October 24, 2005

Nanosecond step-scan Fourier transform infrared spectroscopy permits the observation of triplet intraligand (3IL) character in the excited states of $[Ru(bpy)₂(PNI-phen)]²⁺$ and $[Ru(PNI-phen)₃]²⁺$ where PNI is 4-piperidinyl-1,8-naphthalimide. After pulsed 355 nm laser excitation, the two ground-state imide $C=O$ bands in each compound are bleached and two substantially lower energy vibrations are produced; the lower energy feature appears as two distinct bands split by an overlapping transient bleach. Model studies confirm that the time-resolved vibrational data are consistent with photoinduced sensitization of the ³IL excited state. Density functional theory calculations also support these assignments because localization of triplet electron density on the PNI moiety is expected to lead to red-shifted $C=O$ vibrations of magnitude similar to those measured experimentally. The current results illustrate that triplet electron density can be directly tracked by time-resolved infrared measurements in metal−organic chromophores and that frequency shifts comparable to those observed in charge-transfer systems can be realized.

Time-resolved infrared (TRIR) spectroscopy continues to emerge as a powerful tool for interrogating and following the structural evolution of excited states. $1-8$ This technique is particularly powerful when applied to photoinduced

- (1) Chen, P.; Omberg, K. M.; Kavaliunas, D. A.; Treadway, J. A.; Palmer, R. A.; Meyer, T. J. *Inorg. Chem.* **¹⁹⁹⁷**, *³⁶*, 954-955.
- (2) Ford, P. C.; Bridgewater, J. S.; Lee, B. *Photochem. Photobiol.* **1997**, *⁶⁵*, 57-64.
- (3) George, M. W.; Turner, J. J. *Coord. Chem. Re*V*.* **¹⁹⁹⁸**, *¹⁷⁷*, 201- 217.
- (4) Schoonover, J. R.; Strouse, G. F. *Chem. Re*V*.* **¹⁹⁹⁸**, *⁹⁸*, 1335-1355. (5) Omberg, K. M.; Smith, G. D.; Kavaliunas, D. A.; Chen, P.; Treadway,
- J. A.; Schoonover, J. R.; Palmer, R. A.; Meyer, T. J. *Inorg. Chem.* **¹⁹⁹⁹**, *³⁸*, 951-956.
- (6) Dattelbaum, D. M.; Omberg, K. M.; Schoonover, J. R.; Meyer, T. J. *Inorg. Chem.* **²⁰⁰²**, *⁴¹*, 6071-6079.
- (7) Rubtsov, I. V.; Redmore, N. P.; Hochstrasser, R. M.; Therien, M. J. *J. Am. Chem. Soc.* **²⁰⁰⁴**, *¹²⁶*, 2684-2685.
- (8) Rubtsov, I. V.; Kang, Y. K.; Redmore, N. P.; Allen, R. M.; Zheng, J.; Beratan, D. N.; Therien, M. J. *J. Am. Chem. Soc.* **²⁰⁰⁴**, *¹²⁶*, 5022- 5023.

charge-transfer systems where electron density changes following light absorption are tracked either directly or indirectly by frequency shifts of IR chromophores strategically placed in structures of interest. In metal-to-ligand charge-transfer (MLCT) molecules, TRIR spectroscopy has proven quite successful in diagnosing the nature of the lowest excited states in various d^6 metal complexes.¹⁻⁶ In Ru^{II} systems, charge-transfer assignments are readily accessible, whereas triplet intraligand (^{3}IL) excited states have yet to be identified using TRIR methods. This limitation stems from the fact that most Ru^{II} molecules possessing ${}^{3}IL$ character lack appropriate IR-absorbing functionalities. In 2001, we performed a detailed photophysical study on Ru^{II} compounds bearing naphthalimide chromophores (**1** and **2**).9 Luminescence and transient absorption methods revealed an excited state composed predominately of ³IL (4-piperidinyl-1,8naphthalimide, PNI) character thermally equilibrated with the emissive ³MLCT manifold. This equilibrated excited state is easily accessed using any excitation wavelength between 355 and 550 nm.9

As each PNI subunit bears two strongly absorbing $C=O$ functionalities, we anticipated that the production of the 3 IL excited state could be readily observed in nanosecond stepscan Fourier transform infrared (FT-IR) experiments. This is indeed the case, and comparison to an appropriate model system (**3**, ANI) strongly suggests that triplet electron density can be directly tracked in 1 and 2. Importantly, $C=O$ frequency shifts comparable to those observed in chargetransfer imide-containing systems are realized,^{7,8} supporting the notion that TRIR methods can be successfully applied toward detecting ³IL excited states.

Compounds $1-3$ (Figure 1) are available from our previous study,⁹ and TRIR experiments using 355-nm excitation at 1 mJ/pulse (Spectra Physics GCR Nd:YAG laser) were performed using instrumentation based on a Bruker IFS-55 FT-IR spectrometer with 8-cm⁻¹ resolution.¹⁰ All TRIR experiments were performed on compounds in

^{*} To whom correspondence should be addressed. E-mail: castell@ bgnet.bgsu.edu.

[†] Department of Chemistry and Center for Photochemical Sciences. ‡ Ohio Laboratory for Kinetic Spectrometry.

⁽⁹⁾ Tyson, D. S.; Luman, C. R.; Zhou, X.; Castellano, F. N. *Inorg. Chem.* **²⁰⁰¹**, *⁴⁰*, 4063-4071.

⁽¹⁰⁾ Fedorov, A. V.; Danilov, E. O.; Merzlikine, A. G.; Rodgers, M. A. J.; Neckers, D. C. *J. Phys. Chem. A* **²⁰⁰³**, *¹⁰⁷*, 3208-3214.

Figure 1. Structures of compounds **¹**-**3**. The counterions in each RuII complex are PF_6^- .

Figure 2. (A) TRIR difference spectrum of 3 taken 1 μ s after a 355-nm pulse. (B) FT-IR spectrum of 3 in CHCl₃.

argon-deaerated CHCl₃ using two $CaF₂$ windows configured as a flow cell (10 mL/min). Additional experimental details are available as Supporting Information.

Prior to discussing the FT-IR and TRIR spectra of the Ru^{II} complexes (**1** and **2**), it is useful to first discuss the relevant spectra of model chromophore **3**. We know from previous studies that the singlet excited state of ANI dominates its photophysics ($\tau = 8.5$ ns; $\Phi = 0.91$),¹¹ so any long-delaytime photophysical processes result from triplet-state formation.9,12 Figure 2 presents the ground- and excited-state difference spectra obtained in the mid-IR for **3**. There are three strong IR bands observed between 1550 and 1725 cm^{-1} in the ground-state spectrum, Figure 2B. The two bands centered at 1657 and 1705 cm⁻¹ are assigned as imide $C=O$ vibrations. The other band positioned at 1585 cm^{-1} is complex but originates predominately from imide naphthalene ring vibrations. Density functional theory (DFT) calculations performed on this model chromophore substantiate the assignments.13 Table 1 lists the FT-IR and TRIR experimental values as well as their assignments together with pertinent frequencies calculated by DFT for the ground state and the lowest triplet state of **3**.

Table 1. C=O Vibration Frequencies Observed for 3 by TRIR before (GS) and after (TR) 355-nm Excitation*^a*

experiment	GS, cm^{-1}	TR or TS, cm^{-1}	Δ , cm ⁻¹
TRIR	1705c	1636c	69
	1657^d	1570, 1598 ^d	59.87
	1585^{e}		
DFT^b	1713c	1645c	68
	1682^{d}	$(1595, 1590, 1585, 1582)^f$	(87, 92, 97, 100)
	1565^e	1505e	60

^a The DFT line collects the frequencies calculated for the ground (GS) and excited triplet state (TS) of **3**. The difference between TR and GS or TS and GS is denoted as Δv . *b* B3LYP 6-31G(d), scaled by 0.96. *c* Symmetrical C=O stretching vibrations. *d* Antisymmetrical C=O stretching vibrations. \mathscr{C} C-H aromatic vibrations. \mathscr{F} Four modes of C=O stretching vibrations weakly coupled with aromatic C-H vibrations (see the Supporting Information for details).

The TRIR spectrum of **3** at a 1-*µ*s delay time contains a combination of bleached ground-state vibrations along with positive OD transients associated with the ANI triplet state. The two C=O bands at 1657 and 1705 cm^{-1} are bleached, and three red-shifted transient absorptions are produced $(1570, 1598, \text{ and } 1636 \text{ cm}^{-1})$. These experimental observations reveal a reduction of the force constant (and bond order) in the $C=O$ substituents in the excited state, consistent with triplet-state production in **3**. The carbonyl vibration associated with the 1705-cm⁻¹ ground-state band shifts to 1636 cm⁻¹ $(\Delta \nu = 69 \text{ cm}^{-1})$. However, the fate of the 1657-cm⁻¹ band
is not as straightforward because the associated transient is not as straightforward because the associated transient should emerge somewhere in the vicinity of the two lowenergy bands observed experimentally. Concomitantly, the 1585 -cm⁻¹ ground-state bleach appears as a dip between the excited-state transients. Therefore, we believe the 1570- and 1596-cm⁻¹ excited-state bands are simply a single $C=O$ band split into two parts by ground-state bleaching of the 1585 cm^{-1} naphthalene ring mode. This assignment renders the transient corresponding to the 1657 -cm⁻¹ C=O vibration somewhere in the vicinity between 1570 and 1598 cm⁻¹, yielding a red shift between 59 and 87 cm^{-1} , largely in agreement with that observed for the higher energy $C=O$ band. DFT calculations predict well the red shift of $C=O$ vibrations in the triplet excited state of **3** compared to its ground state (Table 1). The transient associated with the 1585 -cm⁻¹ mode is likely masked by solvent absorptions because we do not observe any transients below 1550 cm^{-1} . We note that DFT calculations predict the triplet-state vibration corresponding to the 1585 -cm⁻¹ mode as centered near 1505 cm-¹ , outside of our experimental window.

Figure 3 presents the ground- and excited-state difference spectra obtained in the mid-IR for **1**. Because the corresponding ground- and excited-state difference spectra of **1** and **2** are identical within experimental error (see the Supporting Information), the following discussion applies to both Ru^{II} chromophores. Just as was observed in model 3, there are three strong IR bands observed between 1550 and 1725 cm-¹ in the ground-state spectrum of **1**, Figure 3B. Accordingly, all three bands correspond to the same features as those seen in **3**, although there are minor energy differences within our experimental uncertainty. The TRIR spectrum of **1** contains the same combination of bleached ground-state vibrations along with transients attributed to the

⁽¹¹⁾ Greenfield, S. R.; Svec, W. A.; Gosztola, D.; Wasielewski, M. R. *J.*

Am. Chem. Soc. **1996**, *118*, 6767–6777. (12) Triplet-state production in naphthalene imides is well documented. For example, see: (a) Demeter, A.; Biczok, L.; Berces, T.; Wintgens, V.; Valat, P.; Kossanyi, J. *J. Phys. Chem.* **¹⁹⁹³**, *⁹⁷*, 3217-3224. (b) Aveline, B. M.; Matsugo, S.; Redmond, R. W. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 11785-11795. (c) Rogers, J. E.; Kelly, L. A. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 3854-3861.

⁽¹³⁾ Selected DFT output files and simulated IR spectra of the ground state and lowest triplet state of **3** are provided as Supporting Information.

Figure 3. (A) TRIR difference spectrum of **1** taken 1 *µ*s after a 355-nm pulse. (B) FT-IR spectrum of **1** in CHCl3.

PNI-localized triplet state, just as was observed in model chromophore 3 . Specifically, two C=O bands at 1668 and 1705 cm⁻¹ are bleached, and three red-shifted transient absorptions are produced (1567, 1597, and 1643 cm^{-1}). The difference spectrum can be interpreted in precisely the same manner as that described above for **3**. The higher energy carbonyl is red-shifted in the excited state to 1643 cm^{-1} . The appearance of two lower energy excited-state bands results from a single $C=O$ vibration being cut into two portions by the ground-state bleaching of the 1585 -cm⁻¹ band. Therefore, the true peak of the lower energy excitedstate carbonyl vibration can be found between 1567 and 1597 cm-¹ . The limit imposed by the solvent window prevents observation of the transient associated with the 1585-cm-¹ ground-state vibration. The pertinent ground- and excitedstate $C=O$ frequencies measured for compounds $1-3$ in addition to their respective differences are collected in Table 2.

In summary, we have applied nanosecond step-scan FT-IR measurements to detect 3 IL excited states in Ru^{II}

Table 2. C=O Vibration Frequencies Observed for $1-3$ in the Ground State (GS) and Transients Observed after (TR) 355-nm Excitation*^a*

compound	GS, cm^{-1}	TR , cm ^{-1}	$\Delta \nu$, cm ⁻¹
	1705	1643	62
	1668	1567, 1597 b	71, 101
	1705	1645	60
	1668	1568, 1600 ^b	68, 100
3	1705	1636	69
	1657	1570, 1596 ^b	61, 87

^a The difference between TR and GS is denoted as ∆*ν*. *^b* Two bands result from a single peak that is split by a ground-state bleach. The true peak of the vibration lies between these energies.

complexes bearing PNI subunits. Our data show that the two $C=O$ vibrations are substantially red-shifted following laser excitation, a direct consequence of sensitizing the PNIlocalized triplet excited state. The time-resolved FT-IR stepscan experiment is essentially a supra-nanosecond technique mandating the use of compounds with long-lived excited states. We believe that the current study illustrates that this method can be extended to inorganic molecules with lowlying ³IL states bearing appropriate IR-absorbing chromophores. The current results also demonstrate that triplet-state electron density can be directly tracked by TRIR in these chromophores and that frequency red shifts comparable to those observed in charge-transfer imide-bearing systems^{7,8} can be realized.

Acknowledgment. This work was supported by the NSF (CAREER Award CHE-0134782 to F.N.C.) and the AFOSR (Grant FA9550-05-1-0276 to F.N.C.). D.E.P. was a McMaster Fellow in the PCS program at BGSU. TRIR measurements were performed in the Ohio Laboratory for Kinetic Spectrometry at BGSU.

Supporting Information Available: Experimental details, DFT calculations, and additional spectra (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC0518374