

Epitaxial Film Growth and Superconducting Behavior of Sodium−**Cobalt Oxyhydrate, NaxCoO2**'**yH2O (^x** [∼] **0.3, ^y** [∼] **1.3)**

Kenji Sugiura,† Hiromichi Ohta,*,†,‡ Kenji Nomura,§ Hiroshi Yanagi,[|] **Masahiro Hirano,§ Hideo Hosono,§,**[|] **and Kunihito Koumoto†,‡**

*Graduate School of Engineering, Nagoya Uni*V*ersity, Furo-cho, Chikusa, Nagoya 464-8603, Japan, CREST, JST, in the Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan, ERATO-SORST, JST, in the Frontier Collaborative Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan, and Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan*

Received October 27, 2005

We have developed a unique multistep film growth technique, combining reactive solid-phase epitaxy (R-SPE) with an intercalation process, to fabricate epitaxial films of superconducting sodium− cobalt oxyhydrate, $Na_{0.3}CoO₂·1.3H₂O$. An epitaxial film of $Na_{0.8}CoO₂$ grown on an α -Al₂O₃(0001) substrate by R-SPE was subjected to oxidation and hydration treatment, leading to the formation of a $Na_{0.3}CoO₂·1.3H₂O$ epitaxial film. The film exhibited metallic electrical resistivity with a superconducting transition at 4 K, similar to that of bulk single crystals. The present technique is suitable and probably the only method for the epitaxial growth of superconducting $Na_{0.3}CoO₂·1.3H₂O.$

Since the discovery of superconducting sodium-cobalt oxyhydrate, $Na_{0.3}CoO₂·1.3H₂O$ (superconducting transition temperature, $T_c \sim 4 \text{ K}$ ¹ in 2003, a number of researchers have worked hard to clarify the mechanism for the emergence of the superconductivity.²⁻¹⁴ A high-quality epitaxial film

- § ERATO-SORST, JST.
- [|] Tokyo Institute of Technology.
- (1) Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. A.; Sasaki, T. *Nature* **2003**, *422*, 53.
- (2) Takada, K.; Fukuda, K.; Osada, M.; Nakai, I.; Izumi, F.; Dilanian, R. A.; Kato, K.; Tanaka, M.; Sakurai, H.; Takayama-Muromachi, E.; Sasaki, T. *J. Mater. Chem.* **2004**, *14*, 1448.
- (3) Sakurai, H.; Takada, K.; Sasaki, T.; Takayama-Muromachi, E. *J. Phys. Soc. Jpn.* **2005**, *74*, 2909.
- (4) Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. A.; Sasaki, T. *Physica C* **²⁰⁰⁴**, *⁴¹²*-*414*, 14.
- (5) Foo, M. L.; Schaak, R. E.; Miller, V. L.; Klimczuk, T.; Rogado, N. S.; Wang, Y.; Lau, G. C.; Craley, C.; Zandbergen, H. W.; Ong, N. P.; Cava, R. J. *Solid State Commun.* **2003**, *127*, 33.
- (6) Foo, M. L.; Wang, Y.; Watauchi, S.; Zandbergen, H. W.; He, T.; Cava, R. J.; Ong, N. P. *Phys. Re*V*. Lett.* **²⁰⁰⁴**, *⁹²*, 247001.
- (7) Karppinen, M.; Asako, I.; Motohashi, T.; Yamauchi, H. *Chem. Mater.* **2004**, *16*, 1693.
- (8) Schaak, R. E.; Klimczuk, T.; Foo, M. L.; Cava, R. J. *Nature* **2003**, *424*, 527.

of $\text{Na}_{0.3}\text{CoO}_2$ ⁻¹.3H₂O may play a complementary role to the bulk single crystal in understanding the chemical and physical properties of this material; moreover, the film is more favorable for particular applications. However, the growth of an epitaxial film of $Na_{0.3}CoO₂·1.3H₂O$ has not been successful so far most likely because of the complicated crystal structure and difficulty in controlling the film composition.

A Na_{0.3}CoO₂ \cdot 1.3H₂O crystal (space group *P*6₃/*mmc*, *a* = 0.2823 nm, $c = 1.9621$ nm)¹ has an extremely complicated layered crystal structure, composed of CoO_2^- , Na^+ , and H_2O layers stacked along the [0001] direction.¹⁵ Moreover, it contains volatile chemical species of Na and H_2O , which make the use of conventional high-temperature vapor-phaseepitaxy methods such as sputtering, molecular beam epitaxy, and pulsed-laser deposition (PLD) almost impossible for the fabrication of epitaxial films because of extremely large differences in vapor pressure among Na and/or H_2O and Co.

To overcome these difficulties, we have separated the entire growth process into three elementary steps: (1) the reactive solid-phase epitaxy (R-SPE) process, which is * To whom correspondence should be addressed. E-mail: h-ohta@ particularly suited for the growth of layered compounds, 16-20

- (9) Jin, R.; Sales, B. C.; Khalifah, P.; Mandrus, D. *Phys. Re*V*. Lett.* **²⁰⁰³**, *91*, 217001.
- (10) Chou, F. C.; Cho, J. H.; Lee, P. A.; Abel, E. T.; Matan, K.; Lee, Y. S. Phys. Rev. Lett. 2004, 92, 157004. S. *Phys. Re*V*. Lett.* **²⁰⁰⁴**, *⁹²*, 157004. (11) Sakurai, H.; Takada, K.; Yoshii, S.; Sasaki, T.; Kindo, K.; Takayama-
- Muromachi, E. *Phys. Re*V*. B* **²⁰⁰³**, *⁶⁸*, 132507.
- (12) Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. A.; Sasaki, T. *J. Solid State Chem.* **2004**, *177*, 372.
- (13) Takada, K.; Sakurai, H.; Takayama-Muromachi, E.; Izumi, F.; Dilanian, R. A.; Sasaki, T. *Ad*V*. Mater.* **²⁰⁰⁴**, *¹⁶*, 1901.
- (14) Shikano, M.; Delmas, C.; Darriet, J. *Inorg. Chem.* **2004**, *43*, 1214.
- (15) Although the correct description of the chemical formula is $Na_{0.3}$ - $(H_3O)_zCOO_2'$ ^yH₂O^{2,3} rather than $Na_{0.3}CoO₂$ ⁺1.3H₂O, we could not determine the values *y* and *z*. Therefore, we used the chemical formula of $\text{Na}_{0.3}\text{CoO}_2$ ^{-1.3H₂O throughout this paper.}
- (16) Ohta, H.; Hirano, M.; Nakahara, K.; Maruta, H.; Tanabe, T.; Kamiya, M.; Kamiya, T.; Hosono, H. *Appl. Phys. Lett.* **2003**, *83*, 1029.
- (17) Ohta, H.; Nomura, K.; Orita, M.; Hirano, M.; Ueda, K.; Suzuki, T.; Ikuhara, Y.; Hosono, H. *Ad*V*. Funct. Mater*. **²⁰⁰³**, *¹³*, 139.
- (18) Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. *Science* **2003**, *300*, 1269.

1894 Inorganic Chemistry, Vol. 45, No. 5, 2006 10.1021/ic051865m CCC: \$33.50 © 2006 American Chemical Society

Published on Web 02/03/2006

apchem.nagoya-u.ac.jp.

[†] Nagoya University.

[‡] CREST, JST.

COMMUNICATION

Figure 1. Schematic of the fabrication process for a Na_{0.3}CoO₂.1.3H₂O epitaxial film. Step 1: Pulsed-laser deposition of a highly (111)-oriented epitaxial film of CoO on the (0001) face of an α -Al₂O₃ substrate. Step 2: Surface capping by a YSZ, single-crystal plate and placement of a NaHCO₃ powder on the YSZ plate. Step 3: Heat treatment of the film at 700 °C in air. Step 4: Oxidation treatment of the film in a 1 mol $^1L^{-1}$ HNO₃ aqueous solution (35 °C) for 5 min. Step 5: Hydration treatment of the film in a 0.1 mol·L⁻¹ NaCl aqueous solution (5 °C) for 5 h.

to prepare $\text{Na}_{0.8}\text{CoO}_2$,²¹ (2) the oxidation process to convert $Na_{0.8}CoO₂$ to $Na_{0.3}CoO₂$, and (3) the hydration process to introduce H_2O into $Na_{0.3}CoO₂$. Using this multistep film growth technique, we have successfully grown $Na_{0.3}CoO₂$. 1.3H₂O films on the (0001) face of α -Al₂O₃ substrates. The films were confirmed to have grown epitaxially on the substrate by X-ray diffraction (XRD), and electrical conductivity measurements revealed that the films become superconducting with a T_c value of \sim 4 K, which reasonably agrees with the value reported for the single crystal.

The method of fabricating $Na_{0.3}CoO₂·1.3H₂O$ epitaxial films is schematically illustrated in Figure 1. **Step 1**: An epitaxial film of (111)-oriented CoO was grown on the (0001) face of an α -Al₂O₃ substrate (10 mm \times 10 mm \times 0.5 mm^t) at 700 °C by the PLD method using a $Co₃O₄$ sintered disk as a target. **Step 2**: The surface of the PLDdeposited CoO film was fully capped by a Y_2O_3 -stabilized ZrO₂ (YSZ), single-crystal plate (10 mm \times 10 mm \times 0.5 mm^t) to keep the surface of the film clean. Then, NaHCO₃ powder was put on the YSZ plate. **Step 3**: The capped film was annealed at 700 °C for 1 h in air, after which epitaxial films of $\text{Na}_{0.8}\text{CoO}_2{}^{21}$ were obtained. **Step 4**: The $\text{Na}_{0.8}\text{CoO}_2$ epitaxial film was immersed in a 1 mol $\cdot L^{-1}$ HNO₃ aqueous solution²² at 35 °C for 5 min to convert the film into a Na_{0.3}CoO₂ film. **Step 5**: Finally, the Na_{0.3}CoO₂ film was immersed in a $0.1 \text{ mol} \cdot \text{L}^{-1}$ NaCl aqueous solution for 5 h at 5° C to introduce H₂O molecules to the film.

Figure 2. (Left panel) Out-of-plane and in-plane Bragg XRD patterns for the films obtained at steps 1, 3, and 4, respectively. Epitaxial films of CoO, $Na_{0.8}CoO₂$, and $Na_{0.3}CoO₂$ were obtained at steps 1, 3, and 4, respectively. (Right panel) Change in the lattice parameter of the Na_xCoO₂ films obtained at steps 3 and 4 as a function of the Na content, *x*. Values of powder and crystal from refs 1, 2, 6, and 7 are also plotted for comparison.

Figure 2 (left panel) shows out-of-plane and in-plane Bragg XRD (Cu $K\alpha_1$, ATX-G, Rigaku Co.) patterns²³ for the films after steps 1, 3, and 4, respectively, demonstrating that the PLD-grown (111)-oriented CoO epitaxial film (step 1) was converted into a (0001)-oriented $Na_xCoO₂$ epitaxial film by

⁽¹⁹⁾ Hiramatsu, H.; Ueda, K.; Ohta, H.; Orita, M.; Hirano, M.; Hosono, H. *Appl. Phys. Lett.* **2002**, *81*, 598.

⁽²⁰⁾ Ohta, H.; Hosono, H. *Mater. Today* **2004**, *7*, 42.

⁽²¹⁾ Ohta, H.; Kim, S.-W.; Ohta, S.; Koumoto, K.; Hirano, M.; Hosono, H. *Cryst. Growth Des.* **2005**, *5*, 25.

⁽²²⁾ When the R-SPE-grown $Na_{0.8}CoO₂$ epitaxial film was treated with a $Br₂$ solution, almost all Na⁺ ions in the Na_{0.8}CoO₂ lattice were deintercalated during the Br₂ treatment. After that, we immersed the film into distilled water to introduce H_2O and/or H_3O^+ into the lattice. As a result, the crystal structure was decomposed into Co(OH)₂. Therefore, we judged that a Br_2 -water treatment is not appropriate for our epitaxial film.

COMMUNICATION

Figure 3. (Left panel) Out-of-plane (a) and in-plane (b) Bragg XRD patterns of the film obtained at step 5. Intense Bragg peaks of 000*l* Na_{0.3}-CoO₂^{\cdot}1.3H₂O are seen together with 006 α -Al₂O₃ in part a. Only the intense Bragg peak of 1120 $Na_{0.3}Co₂·1.3H₂O$ is seen with 3300 α -Al₂O₃ in part b. An in-plane X-ray rocking curve of $11\overline{2}0$ Na_{0.3}CoO₂·1.3H₂O (inset) indicates that the Na_{0.3}CoO₂.1.3H₂O film is heteroepitaxially grown on the α -Al₂O₃ substrate. (Right panel) Schematic drawing of the crystal structure of Na_{0.3}- $CoO₂$ ⁻1.3H₂O obtained at step 5.

the heat treatment (step 3). The q_z value of 000*l* Na_xCoO₂ becomes small by the oxidation treatment (step 4), indicating that the lattice constant c of $Na_xCoO₂$ films expands from 1.089 nm (step 3) to 1.121 nm (step 4) as a result of the oxidation treatment. The chemical composition ratios of Na/ Co, *x*, in the $Na_xCoO₂$ films were evaluated to be 0.8 (step 3) and 0.3 (step 4) from the reported relationship^{1,2,6,7} between c and x in Na_xCoO₂ (Figure 2, right panel). The x values were also evaluated by X-ray fluorescence analysis (XRF; ZSX 100e, Rigaku Co.) and found to agree reasonably with each other. From these results, we concluded that epitaxial films of CoO, $Na_{0.8}CoO₂$, and $Na_{0.3}CoO₂$ were obtained at steps 1, 3, and 4, respectively.

We then performed the hydration treatment of the $Na_{0.3}Co₂$ epitaxial film (step 5). Figure 3a shows an out-of-plane XRD pattern of the resultant film, which was taken at 5 °C. Intense Bragg XRD peaks are resolved at scattering vectors $q_z \sim 1$, 2, 3, 4, 5, and 6 nm⁻¹ together with 0006 α -Al₂O₃. The lattice parameter, *c*, was calculated to be 1.973 nm, which corresponds to that of Na_xCoO₂·1.3H₂O ($x = 0.29 - 0.30$; $c =$ $1.977-1.969$ nm) reported by Schaak et al.⁸ The XRF analysis revealed that the *x* value in the $\text{Na}_x\text{CoO}_2 \cdot 1.3\text{H}_2\text{O}$ film is 0.3. An intense Bragg XRD peak of 1120 Na_{0.3}CoO₂. 1.3H₂O is seen in Figure 3b together with 3300 α -Al₂O₃. Six-fold symmetry was observed in the in-plane rocking curve of 1120 $Na_{0.3}CoO₂·1.3H₂O$ (inset of Figure 3b; one peak in the 6-fold symmetry is shown here). These observations indicate that the $Na_{0.3}CoO₂·1.3H₂O$ film keeps an epitaxial relation of (0001) [1120] Na_xCoO₂·1.3H₂O||(0001)

Figure 4. Temperature dependence of the electrical resistivity of the 275 nm-thick $Na_{0.3}CoO₂·1.3H₂O$ epitaxial film grown on the (0001) face of an α -Al₂O₃ substrate. The inset shows the magnetic field dependence of the resistivity below 10 K. Temperature dependences of the electrical resistivity for the polycrystalline compact¹ and single crystals^{9,10} of Na_{0.3}CoO₂·1.3H₂O are also shown for comparison. Superconducting transition behavior is seen at around 4 K.

[1100] α -Al₂O₃. Thus, we conclude that a Na_{0.3}CoO₂·1.3H₂O epitaxial film was successfully fabricated by the intercalation of H_2O into the $Na_{0.3}CoO₂$ film.

Electrical resistivity of the grown films was measured by the ac four-probe method with silver paint contacts (PPMS, Quantum Design). Figure 4 shows the temperature dependence of the electrical resistivity of a 275-nm-thick $Na_{0.3}CoO₂·1.3H₂O$ epitaxial film grown on the (0001) face of the α -Al₂O₃ substrate. The electrical resistivity is $5.9 \times 10^{-4} \Omega$ cm at 100 K, which is \sim ¹/₄₀ that of the polycrystalline compact¹ (2 × 10^{-2} Q cm), and comparable to that of single crystals.^{9,10} It decreased with a decrease in the temperature and then gradually increased with a further decrease in the temperature below ∼30 K. As shown in the inset of Figure 4, it suddenly decreased at ∼4 K, exhibiting a sharp peak, which became broad and shifted to the lower temperature side with the application of an external magnetic field. These observations, which are similar to those reported in $Na_{0.3}CoO₂·1.3H₂O$, clearly indicate that the $Na_{0.3}CoO₂·1.3H₂O$ epitaxial film becomes a superconductor with $T_c \sim 4$ K, which is comparable to that of polycrystalline compacts¹ or bulk single crystals.9,10 A small upturn in the resistivity was also seen at around 10 K, and although its origin is unknown, a similar behavior was also observed in polycrystalline material.¹

In summary, we have demonstrated that superconducting oxyhydrate $Na_{0.3}CoO₂·1.3H₂O$ epitaxial films were successfully grown on the (0001) face of an α -Al₂O₃ substrate by a novel multistep film growth technique in which R-SPE and the intercalation process are combined. The obtained epitaxial film exhibited a temperature dependence of electrical resistivity similar to that of the single crystal, exhibiting a superconductive transition at ∼4 K. The present growth method may be applicable to the growth of intercalated compounds with a layered structure.

IC051865M

⁽²³⁾ We used Cu K α_1 (λ = 0.154 05 nm) radiation, which was monochromated using Ge(220) crystals, in all of the XRD analyses. We converted 2θ values, which were obtained by XRD measurements, into scattering vector *q* using Bragg's equation because lattice spacing, the *d* value, can be more easily obtained using a *q* value rather than a 2*θ* value in the case of an epitaxial film.