Inorg. Chem. 2006, 45, 2307-2316

Mononuclear $[Ni^{II}(L)(P-(o-C_6H_4S)_2(o-C_6H_4SH))]^{0/1-}$ (L = Thiolate, Selenolate, PPh₃, and CI) Complexes with Intramolecular $[Ni\cdotsS\cdotsH\cdotsS]/[Ni\cdotsH\cdotsS]$ Interactions Modulated by the Coordinated Ligand L: Relevance to the [NiFe] Hydrogenases

Chien-Hong Chen,[†] Gene-Hsiang Lee,[‡] and Wen-Feng Liaw^{*,†}

Department of Chemistry, National Tsing Hua University, Hsinchu 30043, Taiwan, and Instrumentation Center, National Taiwan University, Taipei, Taiwan

Received November 7, 2005

The shift of the IR ν_{S-H} frequency to lower wavenumbers for the series of complexes [Ni^{II}(L)(P-(o-C₆H₄S)₂(o-C₆H₄-SH))]^{0/1-} (L = PPh₃ (1), CI (6), Se-*p*-C₆H₄-CI (5), S-C₄H₃S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni–S···H–S] interactions. Compared to the Ni···S(H) distance, in the range of 3.609–3.802 Å in complexes 1 and 4–7, the Ni···S(CH₃) distances of 2.540 and 2.914 Å observed in the [Ni^{II}(PPh₃)(P(o-C₆H₄S)₂(o-C₆H₄-SCH₃))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at δ 1.820 (–60 °C) and 2.109 ppm (60 °C) (C₄D₈O)) and the Ni···S(CH₃) distances of 3.258 and 3.229 Å found in the [Ni^{II}(L)(P(o-C₆H₄S)₂(o-C

Introduction

Molecular hydrogen plays an important role in the metabolism of many microorganisms. Hydrogenases catalyze the reversible two-electron oxidation of H₂ in aerobic and anaerobic microorganisms.^{1,2} Two classes of hydrogenases, [Fe]-only hydrogenases ([Fe]-only H₂ases) and [NiFe] hy-

10.1021/ic051924w CCC: \$33.50 $\,$ © 2006 American Chemical Society Published on Web 02/07/2006 $\,$

drogenases ([NiFe] H₂ases), have been studied widely.^{1,2} [Fe]-only H₂ases are usually associated with hydrogen production, and [NiFe] H₂ases are generally involved in hydrogen uptake.^{3–7} The X-ray crystallographic studies of the active-site structure of [NiFe] hydrogenases isolated from *D. gigas, D. vulgaris, D. fructosovorans*, and *D. desulfuri*-

 $[\]ast$ To whom correspondence should be addressed. E-mail: wfliaw@mx.nthu.edu.tw.

[†] National Tsing Hua University.

[‡] National Taiwan University.

 ^{(1) (}a) Adams, M. W. W.; Mortenson, L. E.; Chen, J.-S. *Biochim. Biophys. Acta* **1981**, *594*, 105–176. (b) Adams, M. W. W.; Stiefel, E. I. *Curr. Opin. Chem. Biol.* **2000**, *4*, 214–220.
 (2) (a) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.;

^{(2) (}a) Carepo, M.; Tierney, D. L.; Brondino, C. D.; Yang, T. C.; Pamplona, A.; Telser, J.; Moura, I.; Moura, J. J. G.; Hoffman, B. M. J. Am. Chem. Soc. 2002, 124, 281–286. (b) Albracht, S. P. J. Biochim. Biophys. Acta 1994, 1188, 167–204. (c) van der Zwaan, J. W.; Coremans, J. M. C. C.; Bouwens, E. C. M.; Albracht, S. J. P. Biochim. Biophys. Acta 1990, 1041, 101–110. (d) Vignais, P. M.; Billoud, B.; Meyer, J. FEMS Microbiol. Rev. 2001, 25, 455–501.

^{(3) (}a) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. *Science* **1998**, *282*, 1853–1858. (b) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. *Structure* **1999**, *7*, 13–23. (c) Lemon, B. J.; Peters, J. W. *J. Am. Chem. Soc.* **2000**, *122*, 3793–3794. (d) Nicolet, Y.; de Lacey, A. L.; Vernéde, X.; Fernandez, V. M.; Hatchikian, E. C.; Fontecilla-Camps, J. C. *J. Am. Chem. Soc.* **2001**, *123*, 1596–1601.

^{(4) (}a) Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. *Nature* 1995, *373*, 580-587. (b) Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J.-C. *Structure* 1999, 7, 557-566. (c) Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J. *Nature* 1997, *385*, 126. (d) Volbeda, A.; Garcin, E.; Piras, C.; De Lacey, A. L.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. *J. Am. Chem. Soc.* 1996, *118*, 12989-12996.

cans ATCC27774 in combination with infrared spectroscopy have revealed an active site comprised of a heterobimetallic $(S_{cvs})_2Ni(\mu-S_{cvs})_2(\mu-X)Fe(CO)(CN)_2$ (X = O, OH) cluster.⁴⁻⁷ The bridging ligand, X, was proposed to be an oxide or hydroxide in the oxidized state and was found to be absent in the reduced state. The geometry of nickel in the active site of [NiFe] H₂ases is pseudotetrahedral in the reduced state and pseudosquare-pyramidal in the oxidized state. During the catalytic cycle of [NiFe] H₂ases, the various catalytic states corresponding to IR vibrations, the EPR g value, and $E_{\rm m}$ values (vs NHE) were proposed; the formal oxidation state of the nickel center in the Ni-A, Ni-B, and Ni-C states is a paramagnetic Ni(III), while it is a Ni(II) in the Ni-R, Ni-SU, Ni-SI, and Ni-SIa states.⁸ Hall and De Gioia suggested that the Ni-R state existed as [(S_{cys}-H)(S_{cys})Ni^{II}(µ- $S_{cys})_2Fe(CO)(CN)_2$ and $[(S_{cys}-H)(S_{cys})Ni^{II}(\mu-H)(\mu-S_{cys})_2-$ Fe(CO)(CN)₂] with a Scys...H interacting directly with the nickel center (a [Ni···H-S_{cvs}] interaction).^{9,10} Both of the proposed mechanisms suggested that the intermediate Ni-C state existed as $[(S_{cys}-H)(S_{cys})Ni^{III}(\mu-H)(\mu-S_{cys})_2Fe(CO)-$ (CN)2], a hydride bridge. Also, the architecture of the silentactive Ni-SIa is proposed to be a Cys···SH proton directly interacting with nickel, [(S_{cys}-H)(S_{cys})Ni^{II}(µ-S_{cys})₂Fe(CO)-(CN)₂]. Early electron nuclear double resonance (ENDOR) studies have provided evidence for the existence of a solvent exchangeable proton which may coordinate to the Ni atom as an in-plane hydride form or as a η^2 -H₂ form.¹¹ Recently, ENDOR and hyperfine sublevel correlation spectroscopy (HYSCORE) have been applied to study the active site of the catalytic [NiFe] hydrogenase from D. vulgaris Miyazaki F. in the reduced Ni-C state.^{5c-d,12} These techniques have provided direct experimental evidence for the hydride bridging between the nickel and iron atoms. The Ni-C state was suggested to be either an early product of the heterolytic cleavage of H_2 or a precursor to H_2 formation.¹²

- (5) (a) Higuchi, Y.; Yagi, T.; Yasuoka, N. Structure 1997, 5, 1671–1680.
 (b) Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Structure 1999, 7, 549–556. (c) Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628–11635. (d) Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83–93.
- (6) Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, A.; Asso, M.; Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11625–11630.
- (7) Matias, P. M.; Soares, C. M.; Saraiva, L. M.; Coelho, R.; Morais, J.; Le Gall, J.; Carrondo, M. A. J. Biol. Inorg. Chem. 2001, 6, 63–81.
- (8) (a) De Lacey, A. L.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C.; Fernandez, V. M. J. Am. Chem. Soc. 1997, 119, 7181–7189. (b) Maroney, M. J.; Davidson, G.; Allan, C. B.; Figlar, J. Struct. Bonding 1998, 92, 1–65. (c) Bagley, K. A.; Duin, E. C.; Roseboom, W.; Albracht S. P. J.; Woodruff, W. H. Biochemistry 1995, 34, 5527. (d) Coremans, J. M. C. C.; van der Zwaan, G. W.; Albracht, S. P. J. Biochim. Biophys. Acta 1992, 1119, 157–168. (e) Stein, M.; Lubitz, W. Curr. Opin. Chem. Biol. 2002, 6, 243–249.
- (9) Niu, S.; Thomson, L. M.; Hall, M. B. J. Am. Chem. Soc. 1999, 121, 4000–4007.
- (10) De Gioia, L.; Fantucci, P.; Guigliarelli, B.; Bertrand, P. Inorg. Chem. 1999, 38, 2658–2662.
- (11) (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le Gall, J.; Peck, H. D., Jr.; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 20–24. (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629– 5635.
- (12) Foerster, S.; van Gastel, M.; Brecht, M.; Lubitz, W. J. Biol. Inorg. Chem. 2005, 10, 51–62.

Several mononuclear nickel-thiolate complexes have been synthesized to obtain information about the structure of Ni in the active site of the [NiFe] H₂ase.¹³ Complex Ni^{II}(Bm^{Me})₂ $(Bm^{Me} = bis(2-mercapto-1-methylimidazolyl)borate)$ with a [NiS₄H₂] core and an Ni····H-B interaction may provide a structural model of the nickel site of a [NiFe] H₂ase.¹⁴ Model complex $[Ni^{II}(SC(NH_2)NHNCH-C_6H_4-o-OH)_2]$ with the labile phenolic OH group catalyzes the isotopic exchange of D₂ with the phenol OH proton upon exposure of a DMSO/ ethanol solution of the Ni complex to D2.15 Recent kinetic studies of the protonation of complexes [Ni(SPh)(triphos)]⁺, $[Ni(SePh)(triphos)]^+$, and $[Ni(SEt)(triphos)]^+$ (triphos = (Ph₂PCH₂CH₂)₂PPh) revealed that the sulfur atom's lone pair of electrons is the initial site for the protonation of [Ni(SR)-(triphos)]⁺.¹⁶ However, for the more electron-donating alkylthiolate ligand ligated to Ni, interaction of the proton with both the nickel and sulfur sites (an η^2 -EtS-H complex) was proposed.¹⁶ Recently, Tatsumi and co-workers reported the isolation of dithiolato-bridged [NiFe] complexes, [Fe(CO)2- $(CN)_2(\mu$ -SCH₂CH₂CH₂S)Ni(S₂CNR₂)]⁻ (R = Et; R₂ = $-(CH_2)_5-$). These complexes display the close structural feature of the active site of reduced form [NiFe] H₂ase.¹⁷

In the previous study of the $[Ni^{II}(L)(P-(o-C_6H_4S)_2(o-C_6H_4-$ SH))] (L = SePh (4), S-C₄H₃S (7)) complexes, the interaction between the thiol proton and both the nickel and sulfur atoms (a combination of intramolecular [Ni-S···H-S] and [Ni···H-S] interactions) was demonstrated.¹⁸ The desire to explore the correlation between the extent of the interactions and the basicity (electronic density) of nickel has inspired us to synthesize model complexes [Ni^{II}(L)(P-(o-C₆H₄S)₂(o-C₆H₄-SH))]^{0/1-} (L = PPh₃ (1), SePh (4), Se-*p*-C₆H₄-Cl (5), and Cl (6)) and $[Ni^{II}(L')(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]^{0/1-}(L' = PPh_3)$ (8), SPh (9), SePh (10)) with various electron-donating ligands, L/L', coordinated to the nickel center. This study further provides evidence that the pendant thiol proton of the Ni(II) complexes, $[Ni^{II}(L)(P-(o-C_6H_4S)_2(o-C_6H_4SH))]^{0/1-}$, were "arrested" by both the sulfur of thiolate and nickel resulting in combinations of intramolecular [Ni-S····H-S] and [Ni···H-S] interactions, and the extent of the interactions was modulated by the monodentate ligand.

Results and Discussion

Synthesis of Ni(II)-Thiol Complex $[Ni^{II}(PPh_3)(P-(o-C_6H_4S)_2(o-C_6H_4SH))]$ (1). Reaction of NiCl₂(PPh₃)₂ and tris-(2-phenylthiol)phosphine (P(o-C₆H₄SH)₃) in THF at ambient temperature led to the isolation of the red-brown four-

- (14) Alvarez, H. M.; Krawiec, M.; Donovan-Merkert, B. T.; Fouzi, M.; Rabinovich, D. *Inorg. Chem.* **2001**, *40*, 5736–5737.
- (15) Zimmer, M.; Schulte, G.; Luo, X.-L.; Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1991, 30, 193–194.
- (16) Clegg, W.; Henderson, R. A. Inorg. Chem. 2002, 41, 1128-1135.
- (17) Li, Z.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2005, 127, 8950– 8951.

^{(13) (}a) Darensbourg, M. Y.; Lyon, E. J.; Smee, J. Coord. Chem. Rev. 2000, 206, 533-561. (b) Allan, C. B.; Davidson, G.; Choudhury, S. B.; Gu, Z.; Bose, K.; Day, R. O.; Maroney, M. J. Inorg. Chem. 1998, 37, 4166-4167. (c) James, T. L.; Cai, L.; Mutterties, M. C.; Holm, R. H. Inorg. Chem. 1996, 35, 4148-4161. (d) Cha, M.; Shoner, S. C.; Kovacs, J. A. Inorg. Chem. 1996, 32, 1860-1863. (e) Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.; Boyminaar, E. L.; Munck, E. J. Am. Chem. Soc. 1996, 118, 8963-8964. (f) Bouwman, E.; Reedijk, J. Coord. Chem. Rev. 2005, 249, 1555-1581.

Scheme 1

 $\operatorname{NiCl}_{2}(\operatorname{PPh}_{3})_{2} + \operatorname{P}(o - \operatorname{C}_{6}\operatorname{H}_{4}\operatorname{SH})_{3} \longrightarrow [\operatorname{Ni}^{II}(\operatorname{PPh}_{3})(\operatorname{P}(-o - \operatorname{C}_{6}\operatorname{H}_{4}\operatorname{S})_{2}(o - \operatorname{C}_{6}\operatorname{H}_{4}\operatorname{SH}))]$

coordinated Ni(II) complex, **1**, in a high yield (79%) (Scheme 1).^{18,19} Complex **1** is soluble in CH₂Cl₂/THF and displays air sensitivity in organic solvents. However, in the solid state, complex **1** is air-stable for minutes. The ¹H NMR spectrum of complex **1** displays the benzene proton resonances at 6.993 (t), 7.181 (t), 7.293–7.424 (m), 7.708 (t) ppm, and the ³¹P NMR spectrum shows two nonequivalent phosphorus atoms at 76.57 (d) $(J_{31}P_{-31}P_{-} = 695 \text{ Hz}, (P-(o-C_6H_4S)_2(o-C_6H_4SH))$ and 24.65 (d) $(J_{31}P_{-31}P_{-} = 695 \text{ Hz}, PPh_3)$ ppm (vs H₃PO₄) (CDCl₃). Both the ¹H and ³¹P NMR spectra are consistent with a low-spin d⁸ Ni(II) electronic configuration in a square-

planar ligand field. The chemical shift (5.91 ppm (S-H) $(CDCl_3)$) of the pendant thiol of complex 1 is shifted ca. 1.84 ppm downfield from that of the free thiol $P(o-C_6H_4-$ SH)₃ (δ 4.07 (d)).¹⁹ Treatment of complex 1 with D₂O in a THF solution at 5 °C led to the H/D exchange product $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4SD))]$ (1-D), identified by IR and ²H NMR. The IR ν_{S-D} stretching frequency of 1752 (br) cm^{-1} (ν_{S-D} , KBr) for complex **1-D** is consistent with the calculated position, based only on the difference in masses between S-H and S-D. The ²H NMR spectrum of complex **1-D** (using the natural abundance of D in C_4H_8O solvent, two singlet peaks at 1.73 and 3.57 ppm, as internal standard) displaying the signal at 6.175 (br) ppm (C_4H_8O) was assigned to the S-D resonance. When a THF solution of complex 1 was recrystallized with THF-hexane, complex 1a, displaying a broad v_{S-H} stretching band at 2393 cm⁻¹ (KBr), was isolated and characterized by X-ray crystallography (Scheme 1). In contrast, the diffusion of hexane into a CH₂Cl₂ solution of complex 1 yielded complex 1b with a broad ν_{S-H} stretching band at 2240 cm⁻¹ (KBr), characterized by singlecrystal diffraction (Scheme 1). The IR spectra of complexes **1a** and **1b** display broad ν_{S-H} stretching bands at 2393 and 2240 cm⁻¹ (KBr), which are \sim 90 and \sim 250 cm⁻¹, respectively, lower than the free ligand, 2488 cm⁻¹ (KBr). This lower ν_{S-H} stretching frequency may imply the existence of intramolecular [Ni-S···H-S]/[Ni···H-S] interactions.¹⁸

The ORTEP diagrams of complexes **1a** and **1b** are shown in Figure 1. The selected bond distances and angles are given in the figure caption. Complexes **1a** and **1b** consist of a fourcoordinate nickel(II) center in a distorted square planar geometry with two thiolate sulfur atoms and two phosphorus atoms, respectively, in the trans positions. In complex **1a**, the acute (C(14)–S(3)–H(3A)) bond angle of 95.04° and the similar distances of Ni···S(3) (3.802 Å) and S(2)···S(3) (3.743 Å) suggested that the proton of S(3)–H(3A) points toward the middle, between the Ni and S(2) atoms, and interacts with both the sulfur (S(2)) and nickel atoms (i.e., a combination of the intramolecular [Ni–S···H–S] and

Figure 1. ORTEP drawing and labeling scheme of $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4SH))]$ (**1a** and **1b**). Selected bond distances (Å) and angles (deg): complex **1a** Ni-S(1) = 2.1892(9), Ni-S(2) = 2.1751(9), Ni-P(1) = 2.1318(8), Ni-P(2) = 2.2452(8), S(1)-Ni-S(2) = 156.68(4), P(1)-Ni-P(2) = 171.64, S(1)-Ni-P(2) = 94.66(3), S(2)-Ni-P(2) = 93.85(3), C(1)-P(1)-Ni = 106.37(10), C(7)-P(1)-Ni = 110.05(11), C(13)-P(1)-Ni = 117.02(9); complex **1b** Ni-S(1) = 2.1782(5), Ni-S(2) = 2.1916(5), Ni-P(1) = 2.1224(5), Ni-P(2) = 2.2340(5), S(1)-Ni-S(2) = 156.01(2), P(1)-Ni-P(2) = 169.75(2), S(1)-Ni-P(2) = 94.88(2), S(2)-Ni-P(2) = 94.82(2), C(1)-P(1)-Ni = 110.33(7), C(7)-P(1)-Ni = 106.60(6), C(13)-P(1)-Ni = 116.50(6).

 $[Ni\cdots H-S]$ interactions, Scheme 1). In contrast, the Ni \cdots S(3) distance of 3.248 Å is significantly shorter than the S(1)...S(3)distance of 3.966 Å in complex **1b**. Also, the Ni-P(1)-C(13)-C(14) torsion angle of 35.2° observed in complex **1b** is significantly smaller than the Ni-P(1)-C(13)-C(14)torsion angle of 62.6° observed in complex **1a** (Scheme 1). Compared to complex 1a, the acute C(14)-S(3)-H(3A)bond angle of 99.64°, the smaller Ni-P(1)-C(13)-C(14) torsion angle of 35.2°, and a lower $v_{\rm S-H}$ stretching band $(2240 \text{ cm}^{-1} \text{ (KBr)})$ may indicate that the thiol proton tends to interact directly with the nickel atom in complex 1b (i.e., a [Ni···H-S] interaction). We noticed that the most probable Ni····H(3A)–S distance of 2.182 Å in complex 1b is roughly consistent with the Ni···H-B distance of 1.863 Å in complex Ni^{II}(Bm^{Me})₂.¹⁴ The pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization.

Syntheses of Complexes $[Ni^{III}(PPh_3)(P(o-C_6H_4S)_3)]$ (2) and $[PPN][Ni^{II}(PPh_3)(P(o-C_6H_4S)_3)]$ (3). When dry O₂ was added to the THF solution of complex 1 at 0 °C, a color change from red-brown to dark green was observed (Scheme 2a). As observed in the previous study,¹⁸ the reaction led to the formation of complex 2 accompanied by the byproduct H₂O, characterized by UV-vis, ¹H NMR, SQUID, and single-crystal X-ray diffraction. The formation of the byproduct, H₂O, was confirmed again by treating a dry THF solution of complex 1-D with dry O₂ at ambient temperature. The ²H NMR spectrum shows the expected signal at 2.783 ppm (br) for the byproduct D_2O , and the UV-vis spectra display the characteristic absorption bands (610, 672, and 1152 nm (CH_2Cl_2) of complex 2. Complex 2 is soluble in $CH_2Cl_2/$ THF and displays air and thermal sensitivity. The ¹H NMR spectrum of complex 2 displays the paramagnetic chemical shifts at -3.99 (br), 5.48 (br), 8.42 (br), 9.70 (br), 11.82 (br), 12.62 (br), and 13.67 (br) ppm (CDCl₃) at 298 K, and the effective magnetic moment in the solid state, found using the the SQUID magnetometer, is $1.71 \,\mu_{\rm B}$. These results support the idea that complex 2 adopts a low-spin d^7 Ni(III) electronic configuration in a distorted trigonal bipyramidal ligand field. The cyclic voltammogram of complex 2 (measured in a 2 mM CH_2Cl_2 solution of complex 2, with 0.1 M $[n-Bu_4N][PF_6]$ as the supporting electrolyte at room temperature, scan rate 100 mV/s) reveals one reversible reduction-oxidation process (i.e., reversible Ni(III)-Ni(II) redox process) at $E_{1/2} = -0.865$ V (vs Cp₂Fe/Cp₂Fe⁺) (Figure 2).

When a CH₃CN-THF (1:3 volume ratio) solution of complex **1** and [SPh]⁻ (or [SEt]⁻) was stirred at ambient temperature for 3 h (Scheme 2b), a deprotonation reaction occurred yielding mononuclear complex **3** accompanied by the liberation of thiophenol (or ethanethiol), identified by ¹H NMR spectra; protonation of complex **3** in THF at 0 °C by HClO₄ produced complex **1** (Scheme 2b'), characterized by IR and ¹H NMR spectra. Instead of ligand displacement, treatment of complex **2** with 1 equiv of [SEt]⁻ in CH₃CN-THF solutions (1:3 volume ratio) for 1.5 h at ambient temperature led to the reduction of complex **2** to produce complex **3** and diethyl disulfide, identified by ¹H NMR (Scheme 2c). Complex **3** is soluble in CH₂Cl₂ or CH₃CN-THF (1:3 volume ratio), but it is significantly less soluble

⁽¹⁸⁾ Lee, C.-M.; Chen, C.-H.; Ke, S.-C.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2004, 126, 8406-8412.

⁽¹⁹⁾ Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327–2329.

Figure 2. Cyclic voltammogram of $[Ni^{III}(PPh_3)(P(o-C_6H_4S)_3)]$ (2) (measured in a 2 mM CH₂Cl₂ solution with 0.1 M [*n*-Bu₄N][PF₆] as the supporting electrolyte at room temperature, scan rate 100 mV/s) vs Cp₂Fe/Cp₂Fe⁺ ($\Delta E_p = 0.087$ V).

Figure 3. ORTEP drawing and labeling scheme of $[Ni^{III}(PPh_3)(P(o-C_6H_4S)_3)]$ (2). Selected bond distances (Å) and angles (deg): Ni-P(1) = 2.1270(10), Ni-P(2) = 2.2519(10), Ni-S(1) = 2.2392(11), Ni-S(2) = 2.3010(12), Ni-S(3) = 2.2564(11), P(1)-Ni-P(2) = 178.73(4), P(1)-Ni-S(1) = 86.36(4), P(2)-Ni-S(1) = 94.64(4), S(1)-Ni-S(2) = 117.66(5), S(1)-Ni-S(3) = 126.01(5), S(2)-Ni-S(3) = 114.57(5).

in pure THF or pure CH₃CN. The CH₂Cl₂ solution of complex **3** is air sensitive. The ¹H NMR spectrum of complex **3** is consistent with low-spin d⁸ Ni(II). Complex **2** was regenerated upon addition of $[Cp_2Fe][PF_6]$ to complex **3** in CH₃CN at 0 °C, based on the disappearance of the 801 nm absorption band (CH₂Cl₂) and the concomitant formation of 611 and 671 nm absorption bands of complex **2** (Scheme 2c'). Apparently, complexes **2** and **3** are chemically interconvertible without decomposition. During the reversible reduction/oxidation of complexes **2/3**, the retention of the coordination number and geometry of the nickel ion and the prevention of a potential dimerization from removing the triphenylphosphine ligand suggest that the one phosphine and three thiolate ligands coordinated to Ni(III)/Ni(II) may optimize the electronic structure of the nickel ion to stabilize complexes **2** and **3**.

X-ray crystal structures of complexes 2 and 3 are depicted in Figures 3 and 4, respectively, and selected bond coordinates for complexes 2 and 3 are presented in the figure captions. Complex 2 is essentially isostructural with complex 3. The geometry of the Ni center is a trigonal bipyramidal

Figure 4. ORTEP drawing and labeling scheme of $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_3)]^-$ anion (**3**). Selected bond distances (Å) and angles (deg): Ni-P(1) = 2.0995(7), Ni-P(2) = 2.1978(7), Ni-S(1) = 2.2801(7), Ni-S(2) = 2.3729(8), Ni-S(3) = 2.3056(8), P(1)-Ni-P(2) = 177.00(3), P(1)-Ni-S(1) = 85.12(3), P(2)-Ni-S(1) = 92.19(3), S(1)-Ni-S(2) = 121.17(3), S(1)-Ni-S(3) = 120.77(3), S(2)-Ni-S(3) = 115.62(3).

with three thiolate sulfurs in the equatorial positions and two phosphorus atoms in the axial positions for both complexes 2 and 3. The strained effect of the chelating ligand from the tridentate mode in complex 1 to the tetradentate mode in complex 3 results in an increase of mean Ni-S bond distances of 0.137 Å. Compared to Ni(II) complex 1, the mean Ni-S distance in Ni(III) complex 2 increased by 0.082 Å. Obviously, the longer Ni-S bond distances in complex 2 indicate that the influence of the strained effect of the chelating ligand overwhelms the contraction effect resulting from the oxidation of Ni(II) (complexes 1/3) to Ni(III) (complex 2). Reduction of complex 2 to 3 (Ni(III) to Ni(II)) was believed to cause the elongation of the mean Ni-S bond distances (mean Ni-S bond distances: 2.266 Å for 2, 2.320 Å for 3). In complex 2, the nickel atom lies 0.174 Å under the mean plane defined by three sulfur atoms toward the axial triphenyl phosphine. The displaced distance (0.2102 Å) of the nickel atom from the mean three sulfur atom plane toward the axial triphenyl phosphine was observed in complex 3.

Preparation of Ni(II)-Thiol Derivatives by Ligand **Displacement.** In contrast to the deprotonation of complex 1 by addition of the anionic thiolates [PhS]⁻/[SEt]⁻, the addition of [SePh]⁻ (or [Cl]⁻/[Se-p-C₆H₄-Cl]⁻) to the CH₃CN-THF solution (1:3 volume ratio) of complex 1 at 0 °C for 4 h yielded ligand-displacement complexes, [Ni^{II}- $(L)(P-(o-C_6H_4S)_2(o-C_6H_4SH))]^-$ (L = SePh (4), Se-p-C₆H₄-Cl (5), Cl (6)), isolated as red-brown solids and identified by IR, NMR, UV-vis, and single-crystal X-ray diffraction (Scheme 2d and 2e).¹⁸ Reaction of complex 1 and stronger (hard) Lewis base ligands ([PhS]⁻ and [SEt]⁻) triggers deprotonation of complex 1 to yield complex 3. However, the reaction of complex 1 and weaker (soft) Lewis base ligands ([SePh]⁻, [Se-*p*-C₆H₄-Cl]⁻, [Cl]⁻) preferred the ligand-displacement reaction to produce complexes 4-6. Complex 6 is soluble in CH_2Cl_2 and $CH_3CN-THF$ (1:3) volume ratio) and is air sensitive. The IR spectrum of complex 6 displays the v_{S-H} stretching band at 2300 $cm^{-1}(KBr)$ which is ~150 cm^{-1} lower than that of the free

Figure 5. ORTEP drawing and labeling scheme of the $[Ni^{II}Cl(P(o-C_6H_4S)_2-(o-C_6H_4SH)]^-$ anion (6). Selected bond distances (Å) and angles (deg): Ni-S(1) = 2.1783(7), Ni-S(3) = 2.2111(8), Ni-P(1) = 2.0891(7), Ni-Cl(1) = 2.2243(7), S(1)-Ni-S(3) = 161.36(3), P(1)-Ni-Cl(1) = 170.89(3), S(1)-Ni-Cl(1) = 91.93(3), S(3)-Ni-Cl(1) = 95.74(3), C(18)-P(1)-Ni = 106.63(9), C(6)-P(1)-Ni = 110.44(9), C(12)-P(1)-Ni = 116.20(10).

Table 1. IR $\nu_{\rm S-H}$ Stretching Frequencies for Complexes 1a, 1b, 4, 5, 6, and 7

complex	ν (S-H), cm ⁻¹ (KBr)
$L = PPh_3 (1a)$	2393
L = Cl (6)	2300
$L = Se - p - C_6 H_4 - Cl (5)$	2288
$L = S - C_4 H_3 S(7)$	2283
L = SePh(4)	2273
$\mathbf{L} = \mathrm{PPh}_3\left(\mathbf{1b}\right)$	2240

ligand $P(o-C_6H_4SH)_3$, and the ¹H NMR spectrum of complex **6** shows the downfield chemical shift of the SH group at 5.808 (s) ppm (CDCl₃), suggesting the existence of an intramolecular [Ni-S···H-S] interaction (or presumably, a combination of [NiS···H-S] and [Ni···H-S] interactions).

Figure 5 displays an ORTEP plot of the anionic mononuclear complex **6**, and the selected bond distances and angles are presented in figure caption. The single-crystal X-ray structural analysis of complex **6**, isostructural with complex **5**, reveals that the geometry of Ni(II) in complex **6** is a distorted square planar with a phosphorus, a chloride and two trans thiolate ligands. The large C(12)-P(1)-Ni angle of 116.20(10)° differs from the C(6)-P(1)-Ni and C(18)-P(1)-Ni angles of 110.44(9)° and 106.63(9)° in complex **6**. The acute (C(12)-S(2)-H(2S)) bond angle of 99.89° and the similar distances of Ni···S(2) (3.642 Å) and S(1)···S(2) (3.698 Å) also suggested that the specific intramolecular [Ni-S···H-S] interaction exists in complex **6**.

As shown in Table 1, the IR ν_{S-H} stretching frequencies for complexes **1a**, **4**, **5**, **6**, and $[Ni^{II}(S-C_4H_3S)(P-(o-C_6H_4S)_2-(o-C_6H_4SH))]^-$ (**7**) reflect the expected changes as the electron-donating abilities of the monodentate ligands [SePh]⁻, $[S-C_4H_3S]^-$, $[Se-p-C_6H_4-CI]^-$, $[CI]^-$, and PPh₃ are varied.¹⁸ The IR ν_{S-H} stretching frequencies of complexes **1a**, **4**, **5**, **6**, and **7** clearly revealed that the stronger electron-donating monodentate ligands enriched the electronic density of the Ni(II) and sulfur centers triggering the stronger pendant thiol proton interacting with both Ni(II) and thiolate sulfur to result in the weaker S–H bond strength. The above results unambiguously illustrate one aspect of how a coordinated ligand functions to promote $[Ni-S\cdots H-S]$ interactions (or a combination of $[Ni-S\cdots H-S]$ and $[Ni\cdots H-S]$ interactions).

Syntheses of Ni(II)-Thioether Complexes. To further corroborate the pendant thiol proton interacting with the sulfur atom (or presumably, both the sulfur and nickel atoms) in 1a, 1b, and 4-7, where the proton is bound to sulfur and "attracted" by the second sulfur atom to yield an intramolecular [Ni-S···H-S] interaction, the neutral [Ni^{II}(PPh₃)- $(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]$ (8) complex was synthesized. As shown in Scheme 2f, treatment of [Me₃O][BF₄] and complex 3 in a CH_3CN -THF solution (1:3 volume ratio) at 0 °C for 4 h yielded the green solid, [Ni^{II}(PPh₃)(P(o-C₆H₄S)₂-(o-C₆H₄-SCH₃))] (8), identified by NMR, UV-vis, and single-crystal X-ray diffraction. Complex 8 is soluble in THF and CH₂Cl₂, but it is insoluble in hexane, CH₃CN, and MeOH. The ¹H NMR spectrum of complex 8 exhibits the methyl (CH₃) proton resonance at 2.021 ppm, and the ³¹P NMR spectrum shows two nonequivalent phosphorus atoms at 84.423 (d) $(J_{^{31}P}-^{^{31}P}=649 \text{ Hz})$ and 26.639 ppm (d) $(J_{^{31}P}-^{^{31}P})$ = 649 Hz, PPh₃) (vs H_3PO_4) (CDCl₃) at room temperature. Both the ¹H NMR and ³¹P NMR spectra are consistent with a low-spin d⁸ Ni(II) complex in a square planar ligand field. However, the temperature dependence of the ¹H NMR spectrum of complex 8 revealed that the chemical shifts of the methyl group change from 1.820 ppm at -60 °C to 2.109 ppm at 60 °C (C₄D₈O) (Supporting Information). On the basis of the single-crystal X-ray diffraction, two different conformational isomers were isolated. The green crystals of complex 8a were obtained by diffusion of hexane into the THF solution of complex 8 at 0 °C. Interestingly, the diffusion of hexane into the THF solution of complex 8 at 30 °C produced green crystals (complex 8a) and red crystals which were identified by single-crystal X-ray diffraction as complex 8b. Each crystal form shows identical ¹H NMR spectroscopic properties (methyl (CH₃) proton resonance at 2.021 ppm) (CDCl₃)) when complexes 8a and 8b were redissolved in CDCl₃ at room temperature. Obviously, these two conformational isomers (8a and 8b) are in equilibrium with one another via intramolecular rearrangement controlled by the temperature in solution.

Figure 6 displays ORTEP plots of complexes **8a** and **8b**, respectively. The nickel center is best described as existing in a distorted square planar coordination environment surrounded by two trans thiolate sulfur atoms and two phosphorus atoms. The selected bond distances and angles are given in the caption of Figure 6. The increase in the Ni···S(3) distance of ca. 0.37 Å from complex **8a** to **8b** has several consequences. The torsion angles of Ni–P(1)–C(13)–C(18) are 6.5 and 24.9° in complexes **8a** and **8b**, respectively. The C(13)–P(1)–Ni angle of 115.76(11)° differs from the C(1)–P(1)–Ni and C(7)–P(1)–Ni angles of 110.65(11)° and 107.38(10)° in complex **8b**. In contrast, complex **8a** shows similar bond angles, $\angle C(7)$ –P(1)–Ni = 110.82(11), $\angle C(1)$ –P(1)–Ni = 111.19(12), and $\angle C(13)$ –P(1)–Ni = 111.09(12)°. The Ni–S(3)–C(19) bond angles of 109° in complex **8a**

Figure 6. ORTEP drawing and labeling scheme of $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]$ (**8**a) and $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]$ (**8**b). Selected bond distances (Å) and angles (deg): complex **8a** Ni-S(1) = 2.2150(11), Ni-S(2) = 2.2281(10), Ni-P(1) = 2.1209(10), Ni-P(2) = 2.2323(10), Ni···S(3) = 2.5397(10), S(1)-Ni-S(2) = 147.99(4), P(1)-Ni-P(2) = 177.31(4), S(1)-Ni-P(2) = 90.01(4), S(2)-Ni-P(2) = 94.39(4), C(7)-P(1)-Ni = 110.82(12), C(1)-P(1)-Ni = 111.19(12), C(13)-P(1)-Ni = 111.09(12), C(18)-S(3)-C(19) = 99.30(19), Ni-S(3)-C(19) = 109.00(17); complex **8b** Ni-S(1) = 2.1828(9), Ni-S(2) = 2.2044(8), Ni-P(1) = 2.1160(8), Ni-P(2) = 2.2343(8), Ni···S(3) = 2.9135(11), S(1)-Ni-S(2) = 153.42(4), P(1)-Ni-P(2) = 173.33, S(1)-Ni-P(2) = 93.22(3), S(2)-Ni-P(2) = 95.55(3), C(1)-P(1)-Ni = 110.65(11), C(7)-P(1)-Ni = 107.38(10), C(13)-P(1)-Ni = 115.76(11), Ni-S(3)-C(19) = 158.18(19), C(18)-S(3)-C(19) = 103.7(2).

and 158.18° in complex 8b demonstrate that the methyl groups of these Ni(II) complexes, 8a/8b, do not point directly to the Ni or S atoms. These results further support that the pendant thiol proton of the Ni(II)-thiol complexes, 1a/4-7, locates in the position attracted by both nickel and the sulfur of thiolate to stabilize the thiol proton. Compared to the $Ni \cdot \cdot \cdot S(3)$ distances of 3.802 and 3.248 Å observed in complexes 1a and 1b (Scheme 1), the single-crystal X-ray structure revealed that a thioether sulfur semibonding to Ni(II) (Ni···S(3) distances of 2.5397 Å) may exist in complex 8a, and there is no interaction between Ni and S(3) (Ni···S(3) distances of 2.9135 Å) in complex 8b. The electron back-donation of Ni(II) to the π -accepting thioether sulfur may be adopted to rationalize the upfield chemical shift of the methyl group in complex 8a (green crystals obtained at 0 °C or lower),²⁰ as compared to complex 8b (red crystals obtained at 30 °C).

In contrast to the temperature-dependent interconversion of the conformational isomers **8a** and **8b**, the temperatureindependent four-coordinated Ni(II)-thioether complexes $[Ni^{II}(L)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]^-$ (L = SPh (9), SePh (10)) were isolated when complex 8 was reacted with $[SPh]^-/$ $[SePh]^-$ in THF at room temperature overnight, respectively (Scheme 3). The red brown complexes 9 and 10 are soluble in THF, CH₂Cl₂, and CH₃CN. The ¹H NMR spectra of

Figure 7. ORTEP drawing and labeling scheme of the $[Ni^{II}(SPh)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]^-$ anion (9). Selected bond distances (Å) and angles (deg): Ni-S(1) = 2.1664(7), Ni-S(2) = 2.2187(7), Ni-P(1) = 2.0998(7), Ni-S(4) = 2.2322(7), $Ni\cdots S(3) = 3.258(7)$, S(1)-Ni-S(2) = 159.61(3), P(1)-Ni-S(4) = 176.97(3), S(1)-Ni-S(4) = 93.79(3), S(2)-Ni-S(4) = 91.82(3), C(7)-P(1)-Ni = 106.73(9), C(1)-P(1)-Ni = 110.53(9), C(13)-P(1)-Ni = 119.48(9), C(18)-S(3)-C(19) = 100.66(15), Ni-S(3)-C(19) = 102.47(15).

complexes 9 and 10 are consistent with the diamagnetic d⁸ square planar Ni(II) complexes, and the chemical shifts at 2.528 (s) and 2.553 (s) ppm (CDCl₃) were assigned to the methyl groups of complexes 9 and 10, respectively. Presumably, there is no interaction between Ni(II) and the thioether sulfur atom (Ni···S(3) distance of 3.258(7) and 3.229 (5) Å in complexes 9 and 10, respectively); therefore, the absence of electron back-donation of Ni(II) to the π -accepting thioether sulfur may explain the downfield chemical shift of the methyl groups in complexes 9 and 10, as compared to complexes 8a and 8b.

Figures 7 shows the thermal ellipsoid plot of the anionic complex 9, and the selected bond distances and angles of complex 9 are given in the figures caption, respectively. Complexes 9 and 10 are isostructural Ni(II) complexes with the monodentate thiolate/selenolate ligands. The Ni···S_(thioether) distances of 3.258(7) and 3.229 (5) Å found in complexes 9

^{(20) (}a) Ashby, M. T.; Enemark, J. H.; Lichtenberger, D. L. Inorg. Chem. 1988, 27, 191–197. (b) Jacobsen, H.; Kraatz, H.-B.; Ziegler, T.; Booran, P. M. J. Am. Chem. Soc. 1992, 114, 7851–7860. (c) Kraatz, H.-B.; Jacobsen, H.; Ziegler, T.; Boorman, P. M. Organometallics 1993, 12, 76–80. (d) McGuire, D. G.; Khan, M. A.; Ashby, M. T. Inorg. Chem. 2002, 41, 2202–2208.

and **10**, respectively, indicated that no interaction exists between Ni(II) and the thioether sulfur atom (Supplementary information).

Conclusion and Comments

Studies on the mononuclear Ni(II)-thiol complexes (1, 4-7), Ni(III, II)-thiolate complexes (2, 3), and Ni(II)-thioether complexes (8a, 8b, 9, 10) have produced the following results.

(1) Neutral Ni^{II}-thiol complex **1** was synthesized and characterized by IR, ¹H NMR, UV-vis, and single-crystal X-ray diffraction. Complex **1** serves as a precursor for the syntheses of the anionic mononuclear Ni^{II}-thiol complexes **4**-**7** via a ligand-displacement reaction. On the basis of ²H NMR and IR ν_{S-D} studies, the pendant thiol proton of complexes **1/4-7** is D₂O exchangeable.

(2) In complexes 1a, 1b, and 4-7, the presence (strength) of the intramolecular [Ni-S···H-S] interaction (or a combination of intramolecular [Ni-S···H-S] and [Ni···H-S] interactions) was verified in the solid state by the observation of a lower IR ν_{S-H} stretching frequency compared to that of the free ligand $P(o-C_6H_4SH)_3$ (Table 1)¹⁸ and was subsequently confirmed by a single-crystal X-ray diffraction. Single-crystal X-ray diffraction studies reveal that the Ni···S(1) distance falls into the range of 3.609-3.802 Å in Ni(II)-thiol complexes 1a and 4-7 (type A), compared to those of 2.540 and 2.914 Å in the Ni(II)-thioether complexes **8a** and **8b** (type C). In contrast, the long Ni···S(1) distances (3.258 and 3.229 Å) found in complexes 9 and 10 indicated the absence of interaction between the Ni and S(1) atoms (type D). These results rule out the existence of an intramolecular Ni···S(1) interaction (Ni···S(1) distance of 3.609-3.802 Å) in complexes 1a/4-7 (type B) and may support the idea that the pendant thiol protons of Ni(II)-thiol complexes 1/4-7 were attracted by both nickel and the sulfur of thiolate, resulting in combinations of intramolecular [Ni-S····H-S] and [Ni····H-S] interactions (type A).

(3) The extent of the intramolecular $[Ni-S\cdots H-S]$ interaction (or a combination of intramolecular $[Ni-S\cdots H-S]$ and $[Ni\cdots H-S]$ interactions) was modulated by the distinct monodentate ligands PPh₃, $[Se-p-C_6H_4-Cl]^-$, $[S-C_4H_3S]^-$, $[Cl]^-$, and $[SePh]^-$ in complexes **1a** and **4**–**7**. The IR ν_{S-H} stretching frequency reflects that an increase in the Ni basicity (electronic density) regulated by the monodentate ligand arrests the proton of the pendant thiol effectively and causes the weaker S–H bond.

(4) Compared to the Ni····S(3) distances of 3.802 and 3.248 Å observed in complexes **1a** and **1b** (Scheme 1), the singlecrystal X-ray structure revealed that thioether sulfur semibonding to Ni(II) (Ni···S(3) distance of 2.5397 Å) may exist in complex 8a and that there is no interaction between Ni and S(3) (Ni···S(3) distance of 2.9135 Å) in complex 8b. On the basis of the ¹H NMR spectra and single-crystal X-ray diffractions, the intramolecular interaction between Ni^{II} and the thioether sulfur atom became weaker when the temperature is increased or the more electron-donating monodentate ligand is ligated to the Ni^{II} center as observed in the mononuclear Ni^{II}-thioether complexes 8a, 8b, 9, and 10. Obviously, increasing the electron density on Ni should have the opposite effect on the interaction with RSH and RSR'. Increasing the electron density on Ni favors the interaction with S-H (Ni acts as a hydrogen-bond acceptor) and disfavors the interaction with S in SRS' (RSR' is an electron pair donor).

(5) Complexes 1 and 4-7 are sensitive toward O_2 to yield mononuclear Ni(III) thiolate complexes [Ni^{III}(L)(P(o- $C_{6}H_{4}S_{3}]^{0/1-}$ (L = PPh₃ (2), Se-*p*-C₆H₄-Cl (11), SePh (12), $S-C_4H_3S$ (13)).¹⁸ $[Ni^{II}(L')(P(o-C_6H_4S)_2(o-C_6H_4-SH))]^{0/1-}$ $(L' = Se-p-C_6H_4-Cl, SePh, S-C_4H_3S)$ and $[Ni^{II}(L')(P(o C_6H_4S_2(o-C_6H_4-SH))^{0/1-}$, with the monodentate selenolate/ thiolate ligands L', show more O₂ sensitivity than complex 1. It is presumed that the stronger intramolecular [Ni-S····H-S] interaction found in the $[Ni^{II}(L')(P(o-C_6H_4S)_2(o-C_6$ C_6H_4 -SH))]^{0/1-} complexes led to the weaker S-H bond strength and accelerated the oxidation of the [Ni^{II}(L')(P(o- $C_6H_4S_2(o-C_6H_4-SH))]^{0/1-}$ complexes to produce complexes 11-13¹⁸ A detailed study is underway. The isolation of complexes 1a and 1b-10 may support the proposed protonbonding type of the active site of the Ni-R and Ni-SI states in the catalytic cycle of [NiFe] hydrogenases.

Experimental Section

Manipulations, reactions, and transfers were conducted under nitrogen according to Schlenk techniques or in a glovebox (argon gas). Solvents were distilled under nitrogen from appropriate drying agents (diethyl ether from CaH₂; acetonitrile from CaH₂–P₂O₅; methylene chloride from CaH₂; hexane and tetrahydrofuran (THF) from sodium benzophenone) and stored in dried, N₂-filled flasks over 4 Å molecular sieves. Nitrogen was purged through these solvents before use. Solvent was transferred to the reaction vessel via stainless cannula under positive pressure of N₂. The reagents bis(triphenylphosphoranylidene)ammonium chloride ([PPN][Cl]) (Fluka), diphenyl diselenide, bis(4-chlorophenyl) diselenide, di(2thienyl) disulfide, (triphenylphosphine) nickel(II) dichloride, and deuterium oxide, 99.9 atom % D (Aldrich) were used as received. Compound tris(2-thiophenyl)phosphine (P-(o-C₆H₄SH)₃) was synthesized by published procedures.¹⁹ Infrared spectra of the ν (SH) stretching frequencies were recorded on a Perkin Elmer model Spectrum One B spectrophotometer with sealed solution cells (0.1 mm, KBr windows) or KBr solid. UV–vis spectra were recorded on a GBC Cintra 10e. ¹H and ²H NMR spectra were obtained on a Varian Unity-500 spectrometer. Electrochemical measurements were performed with a CHI model 421 potentionstat (CH Instrument). Cyclic voltammograms were obtained from a 2.0 mM analyte concentration in CH₂Cl₂ using 0.1 M [*n*-Bu₄N][PF₆] as a supporting electrolyte. Potentials were measured at 298 K versus a Ag/AgCl reference electrode using a glassy carbon working electrode. Under the conditions employed, the potential (V) of the ferrocinium/ ferrocene couple was 0.39 (CH₂Cl₂). Analyses of carbon, hydrogen, and nitrogen were obtained with a CHN analyzer (Heraeus).

Preparation of [Ni^{II}(PPh₃)(P(o-C₆H₄S)₂(o-C₆H₄SH))] (1). NiCl₂-(PPh₃)₂ (0.195 g, 0.3 mmol) and P(o-C₆H₄SH)₃ (0.108 g, 0.3 mmol) were dissolved in 5 mL of THF and stirred at ambient temperature for 20 min. Hexane (20 mL) was then added to precipitate the red solid $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4SH))]$ (1) (yield 0.160 g, 79%). Diffusion of hexane into the THF solution of complex 1 at room temperature for 5 days led to red-brown needle crystals identified by single-crystal X-ray diffraction as complex 1a. In contrast. diffusion of hexane into the CH₂Cl₂ solution of complex 1 afforded dark red crystals characterized by single-crystal diffraction as complex **1b**. IR (KBr): complex **1a** 2393 (ν_{SH}) cm⁻¹; complex **1b** 2240 ($\nu_{\rm SH}$) cm⁻¹. ¹H NMR (CDCl₃): δ 5.908 (s) (SH), 6.992 (s), 7.180 (t), 7.297-7.421 (m), 7.708 (t). ³¹P NMR (CDCl₃): δ 76.57 (d) $(J_{^{31}P}_{^{-31}P} = 695 \text{ Hz}, (P-(o-C_6H_4S)_2(o-C_6H_4SH)), 24.65 (d) (J_{^{31}P}_{^{-31}P})$ = 695 Hz, PPh₃) (vs H₃PO₄). Absorption spectrum (CH₂Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 606 (181). Anal. Calcd for C₃₆H₂₈P₂S₃Ni: C, 63.83; H, 4.17. Found: C, 63.51; H, 3.73.

Preparation of [Ni^{III}(PPh₃)(P(*o***-C₆H₄S)₃)] (2). Dry oxygen gas (9 mL) was purged into a red THF solution (7 mL) of complex 1** (0.203 g, 0.3 mmol) at 0 °C. The reaction solution was stirred at 0 °C for an additional 30 min, and a significant change in color of the reaction solution from red to deep green was observed. Hexane (25 mL) was then added to precipitate the dark green solid [Ni^{III}(PPh₃)(P(*o*-C₆H₄S)₃)] (2) (yield 0.155 g, 76%). Diffusion of hexane into a CH₂Cl₂ solution of complex **2** at -15 °C for three weeks led to dark green crystals suitable for X-ray crystallography. ¹H NMR (CDCl₃): δ -3.99 (br), 5.48 (br), 8.42 (br), 9.70 (br), 11.82 (br), 12.62 (br), 13.67 (br). Absorption spectrum (CH₂Cl₂) [λ_{max}, nm (ε, M⁻¹ cm⁻¹)]: 611 (1777), 671 (1596), 1150 (1031). Anal. Calcd for C₃₆H₂₇P₂S₃Ni: C, 63.92; H, 4.02. Found: C, 63.71; H, 3.61.

Preparation of [PPN][Ni^{II}(PPh₃)(P(o-C₆H₄S)₃)] (3). Method A. [PPN][SPh] (0.323 g, 0.5 mmol) dissolved in CH₃CN (5 mL) was added to a stirred solution of complex 1 (0.339 g, 0.5 mmol) in THF (5 mL) under N₂ at ambient temperature. The reaction mixture was stirred for 3 h, and diethyl ether (25 mL) was added to precipitate the orange solid. The orange solid was dried under vacuum to give [PPN][Ni^{II}(PPh₃)(P(o-C₆H₄S)₃)] (3). Yield: 0.384 g, 63%.

Method B. A solution containing complex 2 (0.338 g, 0.5 mmol) and [PPN][SEt] (0.300 g, 0.5 mmol) in THF–CH₃CN (volume ratio 5:5 mL) was stirred at ambient temperature under N₂ for 3 h. Diethyl ether (25 mL) was then added to precipitate the orange solid. After the orange solid was dried under vacuum, complex 3 was isolated. Yield: 0.330 g, 54%. Red-orange crystals suitable for X-ray diffraction analysis were obtained by the diffusion of diethyl ether into a THF–CH₃CN (3:1 volume ratio) solution of complex 3 at 0 °C for one week. ¹H NMR (CD₃CN): δ 6.748 (t), 6.925 (t), 7.270–7.481 (m), 7.539–7.580 (m), 7.648 (t), 7.777 (t). Absorption

spectrum (CH₂Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 801 (533). C₇₂H₅₇NP₄S₃Ni: C, 71.17; H, 4.73; N, 1.15. Found: C, 70.54; H, 4.93; N, 1.64.

Protonation of Complex 3 by HClO₄. HClO₄ (28 μ L, 0.2 mmol) was added dropwise to complex **3** (0.243 g, 0.2 mmol) in THF (5 mL) at 0 °C under a N₂ atmosphere. The reaction mixture was stirred for 30 min and then filtered through Celite to remove [PPN][ClO₄]. Hexane (10 mL) was added to precipitate the red solid, identified as complex **1** (0.076 g, 56%) by FTIR, UV–vis, and ¹H NMR spectra.

Reaction of Complex 3 and [Cp₂Fe][PF₆]. [Cp₂Fe][PF₆] (0.067 g, 0.2 mmol) dissolved in CH₃CN (5 mL) was added dropwise to the THF-CH₃CN (3:1 volume ratio) solution of complex **3** at 0 °C under a N₂ atmosphere. After the mixture was stirred for 30 min, it was dried under vacuum to produce a green-yellow solid, and then the green-yellow solid was redissolved in THF (5 mL). The THF solution was then filtered through Celite to remove [PPN][PF₆], and diethyl ether (20 mL) was added to precipitate the green solid. The green solid was washed twice with 20 mL diethyl ether and dried under vacuum to yield complex **2** (0.061 g, 45%) characterized by UV-vis and ¹H NMR spectra.

Reaction of Complex 1 and [PPN][SePh]/[PPN][Se-*p***-C₆H₄-Cl]. Complex 1 (0.067 g, 0.1 mmol) and [PPN][SePh] (0.069 g, 0.1 mmol) (or [PPN][Se-***p***-C₆H₄-Cl] (0.073 g, 0.1 mmol)) were dissolved in THF (4 mL) and stirred overnight under nitrogen at ambient temperature. Diethyl ether (10 mL) was then added to precipitate the red-brown solid, identified as [PPN][Ni^{II}(SePh)P-((***o***-C₆H₄S)₂(***o***-C₆H₄SH))] (4) (0.071 g, 61%) and [PPN][Ni^{II}(Se-C₆H₄-***p***-Cl)(P(***o***-C₆H₄SH))] (5) (0.080 g, 70%) by FTIR, UV-vis, ¹H NMR spectra, and single-crystal X-ray diffraction.¹⁸ Complex 5. IR (KBr): 2283 (***ν***_{SH}) cm⁻¹. ¹H NMR (C₄H₈O): δ 8.39 (d) (S-H). Absorption spectrum (CH₂Cl₂) [λ_{max}, nm (***ε***, M⁻¹ cm⁻¹)]: 440 (4320). Anal. Calcd for C₅₈H₄₆NP₃S₅Ni: C, 65.17; H, 4.34; N, 1.31. Found: C, 65.04; H, 4.46; N, 1.01.**

D/H Exchange for Reaction of Complexes 1/5 and D₂O. A 100-fold excess of D₂O (0.8 mL, 40 mmol) was added to a THF solution of complex 1 (THF-CH₃CN solution, 3:1 mL, volume ratio) or complex 5 (0.458 g, 0.4 mmol)) at 0 °C. The reaction solution containing complex 1 (or complex 5) and D_2O was stirred for 30 min at 0 °C. Diethyl ether (3 mL) was then added to layer above the mixture. The flask was tightly sealed and kept in the refrigerator at -15 °C for one week. Red-brown crystals [Ni^{II}(PPh₃)-(P(o-C₆H₄S)₂(o-C₆H₄SD))] (**1-D**) were isolated. Yield: 0.155 g, 77%. IR (KBr): 1752 (ν_{SD}) cm⁻¹. ²H NMR (CDCl₃): δ 6.175 (br) (SD) (using the natural abundance of D in C₄H₈O solvent, two singlet peaks at 1.73 and 3.57 ppm, as the internal standard). Redbrown crystals of [PPN][Ni(Se-p-C₆H₄-Cl)(P(o-C₆H₄S)₂(o-C₆H₄-SD))] (**5-D**) were isolated (0.398 g, 86.9%). IR (KBr): 1676 (ν_{SD}) cm⁻¹. ²H NMR (CH₂Cl₂): δ 7.833 (br) (vs CHDCl₂, natural abundance of D in CH₂Cl₂ solvent, 5.32 ppm).

Preparation of [PPN][Ni^{II}Cl(P(*o***-C₆H₄S)₂(***o***-C₆H₄SH))] (6). Complex 1** (0.068 g, 0.1 mmol) and [PPN][Cl] (0.057 g, 0.1 mmol) were loaded into a 20 mL Schlenk tube. After THF (3 mL) was added to give a red solution, the solution mixture was stirred at ambient temperature overnight. Diethyl ether (12 mL) was then added to precipitate the red-brown solid, [PPN][Ni^{II}Cl(P(*o*-C₆H₄S)₂-(*o*-C₆H₄SH))] (6). Yield: 0.068 g, 69%. Red-brown crystals suitable for X-ray crystallography were obtained by the diffusion of diethyl ether into a THF–CH₃CN (3:1 volume ratio) solution of complex **6** at 0 °C for one week. IR (KBr): 2300 (*ν*_{SH}) cm⁻¹. ¹H NMR (CDCl₃): δ 5.808 (s) (SH), 6.818 (t), 6.905 (t), 7.025 (t), 7.188–7.298 (m), 7.403–7.488 (m), 7.637–7.666 (t). Absorption spectrum (CH₂Cl₂) [λ_{max}, nm (ε, M⁻¹ cm⁻¹)]: 605 (453), 876 (137). Anal. Calcd for $C_{54}H_{43}P_3S_3$ ClNNi: C, 65.57; H, 4.38; N, 1.42. Found: C, 64.80; H, 4.38; N, 1.19.

Preparation of $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]$ (8). A CH₃CN solution (3 mL) containing [Me₃O][BF₄] (0.030 g, 0.2 mmol) was added dropwise to the THF-CH₃CN (3:1 volume ratio) solution of complex 3 at 0 °C under a N₂ atmosphere. After the mixture was stirred for 1 h, the volume of the reaction mixture was reduced under vacuum, and then methanol (10 mL) was added to precipitate the green solid. The green solid was washed twice with another 10 mL of methanol and dried under vacuum to produce green solid $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]$ (8). Yield: 0.162 g, 78%. Diffusion of hexane into a THF solution of complex 8 at 0 °C for three weeks led to dark green crystals characterized by X-ray crystallography as complex 8a. However, diffusion of hexane into a THF solution of complex 8 at 30 °C for one week yielded dark green crystals (complex 8a) and some red crystals which were characterized by single-crystal X-ray diffraction as complex 8b. The X-ray diffraction analyses revealed the subtle differences between the red and green crystals. ¹H NMR (25 °C) (CDCl₃): δ 2.012 (s) (S-CH₃), 6.914 (t), 7.072 (t), 7.230-7.441 (m), 7.596-7.659 (m), 7.735-7.772 (m). VT ¹H NMR (C₄D₈O): δ 1.820 (-60 °C), ~2.109 (60 °C) (s) (S-CH₃). Absorption spectrum (CH_2Cl_2) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 393 (3367), 609 (374). Anal. Calcd for C₃₇H₃₀P₂S₃Ni: C, 64.27; H, 4.37. Found: C, 64.56; H, 4.93.

Preparation of [PPN][Ni^{II}(L)(P(o-C₆H₄S)₂(o-C₆H₄-SCH₃))] (L = SPh (9), SePh (10)). Complex 8 (0.1 mmol, 0.069 g) and [PPN]-[SPh] (0.1 mmol, 0.065 g) (or [PPN][SePh], 0.1 mmol, 0.070 g) were loaded into a 20 mL Schlenk tube, and then 5 mL of THF was added to the tube via cannula under a positive pressure of nitrogen. After the reaction mixture was stirred overnight under N₂ at room temperature, the green solution completely converted into a red-brown solution. Hexane (10 mL) was then added to precipitate the red-brown solid. The red-brown solid was washed twice with 10 mL of diethyl ether and dried under vacuum to afford $[PPN][Ni^{II}(SPh)(P(o-C_6H_4S)_2(o-C_6H_4-SCH_3))]$ (9) (0.074 g, 68%) (or [PPN][Ni^{II}(SePh)(P(o-C₆H₄S)₂(o-C₆H₄-SCH₃))] (10), 0.088 g, 78%). Suitable red crystals of complexes 9 and 10 for single-crystal X-ray diffraction were obtained by diffusion of diethyl ether into the THF solution of complexes 9 and 10, respectively. Complex 9. ¹H NMR (CDCl₃): δ 2.553 (s) (SCH₃), 6.684 (t), 6.750 (t), 6.862-6.904 (m), 6.990 (t), 7.194-7.454 (m), 7.587-7.619 (m), 7.708-7.725 (m). Absorption spectrum (CH₂Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 445 (2015). Anal. Calcd for C₆₁H₅₀NP₃S₄Ni: C, 68.03; H, 4.68; N, 1.30. Found: C, 68.03; H, 4.44; N, 1.29. Complex 10. ¹H NMR (CDCl₃): δ 2.528 (s) (SCH₃), 6.684 (t), 6.843–6.900 (m), 6.992 (t), 7.182-7.453 (m), 7.584-7.616 (m), 7.837-7.856 (m). Absorption spectrum (CH₂Cl₂) [λ_{max} , nm (ϵ , M⁻¹ cm⁻¹)]: 478 (1816). Anal. Calcd for C₆₁H₅₀NNiP₃S₃Se: C, 65.19; H, 4.48; N, 1.25. Found: C, 64.55; H, 5.02; N, 0.95.

Magnetic Measurements. The magnetization data were recorded on a SQUID magnetometer (MPMS5 Quantum Design company) with an external 1 T magnetic field for complex **2** in the temperature range of 2-300 K. The magnetic susceptibility of the experimental data was corrected for diamagnetism by the tabulated Pascal's constants.

Crystallography. The crystals chosen for the X-ray diffraction studies measured 0.40 \times 0.35 \times 0.20 mm for complex **1a**, 0.40 \times 0.30×0.30 mm for complex **1b**, $0.25 \times 0.20 \times 0.10$ mm for complex 2, $0.32 \times 0.20 \times 0.20$ mm for complex 3, $0.50 \times 0.45 \times$ 0.40 mm for complex 5, $0.20 \times 0.15 \times 0.15$ mm for complex 6, $0.35 \times 0.33 \times 0.15$ mm for complex 8a, $0.30 \times 0.15 \times 0.15$ mm for complex **8b**, $0.4 \times 0.32 \times 0.27$ mm for complex **9**, and $0.30 \times$ 0.25×0.25 mm for complex 10. Each crystal was mounted on a glass fiber and quickly coated in epoxy resin. Unit-cell parameters were obtained by least-squares refinement. Diffraction measurements for complexes 1a, 1b, 2, 3, 5, 6, 8a, 8b, 9, and 10 were carried out on a SMART CCD (Nonius Kappa CCD) diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.7107$ Å) between 2.07 and 27.50° for complex 1a, 1.45 and 27.50° for complex 1b, 1.35 and 27.50° for complex 2, 1.33 and 27.50° for complex 3, 1.24 and 27.50° for complex 5, 1.26 and 27.50° for complex 6, 1.25 and 27.50° for complex 8a, 1.48 and 27.50° for complex 8b, 1.23 and 27.50° for complex 9, and 1.23 and 28.31° for complex 10. Least-squares refinement of the positional and anisotropic thermal parameters of all non-hydrogen atoms and fixed hydrogen atoms (H(3A) in complex 1 and H(2S) in complex 6) was based on F². A SADABS absorption correction was made.²¹ The SHELXTL structure refinement program was employed.²²

Acknowledgment. We gratefully acknowledge financial support from the National Science Council (Taiwan).

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of $[Ni^{II}(PPh_3)(P-(o-C_6H_4S)_2(o-C_6H_4SH))]$, $[Ni^{III}(PPh_3)(P(o-C_6H_4S)_3)]$, $[PPN][Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4SH))]$, $[P(o-C_6H_4S)_3)]$, $[PPN][Ni(Se-p-C_6H_4-Cl)(P(o-C_6H_4S)_2(o-C_6H_4SH))]$, $[PPN][Ni(Cl)P((o-C_6H_4S)_2(o-C_6H_4SH))]$, $[Ni^{II}(PPh_3)(P(o-C_6H_4S)_2(o-C_6H_4S)_2(o-C_6H_4S)_2(o-C_6H_4SCH_3))]$, and $[PPN][Ni^{II}(SePh)(P(o-C_6H_4S)_2(o-C_6H_4SCH_3))]$ and figures showing ¹H NMR spectra of **8** and an ORTEP drawing of **10**. This material is available free of charge via the Internet at http://pubs.acs.org.

IC051924W

⁽²¹⁾ Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1996.

⁽²²⁾ Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.