

Silane Complexes of Electrophilic Metal Centers

Steven L. Matthews, Vincent Pons, and D. Michael Heinekey*

Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700

Received December 13, 2005

Photolysis of solutions of M(CO)₆ (M = Cr, Mo, and W) in the presence of Et₃SiH affords the silane complexes $Cr(CO)_5(\eta^2-HSiEt_3)$, $Mo(CO)_5(\eta^2-HSiEt_3)$, and $W(CO)_5(\eta^2-HSiEt_3)$. Observed values of J_{SiH} in these complexes are consistent with modest elongation of the Si–H bond. With Ph₃SiH, complexes of $Cr(CO)_5$ and $W(CO)_5$ were obtained, but no complex with Mo was observed. When Ph₂SiH₂ was employed, only one Si–H bond interacts with the metal center. A dynamic exchange process observable on the magnetic resonance time scale exchanges the pendant and coordinated Si–H bonds of the coordinated diphenylsilane. Silanes bound to $M(CO)_5$ are activated with respect to reaction with nucleophiles. With methanol, catalytic methanolysis of HSiEt₃ has been observed in the presence of $Cr(CO)_5(\eta^2-HSiEt_3)$, affording Et₃SiOMe.

Introduction

Activation of Si–H bonds is a key step in hydrosilation, a reaction widely employed for the derivatization of olefins.¹ Silane complexes are thought to be intermediates on the pathway to oxidative addition of Si–H bonds, analogous to other σ -bond complexes such as alkane complexes and dihydrogen complexes. Since the first observation of a mononuclear silane complex by Hart-Davis and Graham,² complexation and activation of Si–H bonds has become an active area of research that has been thoroughly reviewed.³ Kubas has pointed out the many similarities between complexation of Si–H bonds and the related chemistry of C–H and H–H bonds.⁴ This aspect has also been emphasized in reviews by Crabtree⁵ and by Schneider.⁶

Kubas and co-workers have studied the interaction of Si-H bonds with various group 6 carbonyl-containing complexes. For example, Mo(CO)(Et₂PCH₂CH₂PEt₂)₂ binds silanes such as H₂SiPh₂. The closely related but less basic Mo(CO)(Ph₂PCH₂CH₂PPh₂)₂ only binds primary silanes and does so more weakly.⁷ Sterically less congested but highly

10.1021/ic052134p CCC: \$33.50 © 2006 American Chemical Society Published on Web 03/03/2006

electrophilic Re and Mn cations such as $[(PPh_3)Re(CO)_4]^+$ and $[mer-Mn(CO)_3{P(OCH_2)_3CMe}_2]^+$ bind silanes such as Et₃SiH more strongly than H₂.^{8,9}

Examples of highly electrophilic, carbonyl-rich metal centers that bind silanes are rare, indeed Kubas has suggested that the "electron-poor group 6 species such as M(silane)-(CO)₅ are not stable".⁴ While such complexes may not be isolable at room temperature, there is precedent for their observation in solution. For example, Brown and co-workers reported that photolysis of Cr(CO)₆ in the presence of Et₃-SiH transiently formed Cr(CO)₅(η^2 -HSiEt₃).¹⁰ Burkey has employed photoacoustic calorimetry (PAC) to estimate the binding enthalpy for complexation of Et₃SiH to M(CO)₅ (M = Cr, Mo, and W) to be 21, 22, and 28 kcal/mol, respectively, and suggests that these complexes may be reasonably stable with respect to silane dissociation.¹¹

We have recently reported that moderately stable dihydrogen complexes $(H_2)Cr(CO)_5$ and $(H_2)W(CO)_5$ can be prepared by photoextrusion of CO from the hexacarbonyls in the presence of H_2 .¹² Here we report our extensions of these methods to the observation of silane coordination to these highly electrophilic metal centers. We also report the

^{*} To whom correspondence should be addressed. E-mail: heinekey@chem.washington.edu.

⁽¹⁾ Marciniec, B. Coord. Chem. Rev. 2005, 249, 2374-2390.

 ⁽²⁾ Hart-Davis, A. J.; Graham, W. A. G. J. Am. Chem. Soc. 1971, 93, 4388-4389.

^{(3) (}a) Schubert, U. In Advances in Organosilicon Chemistry; Marcinicec, B., Chojnowski, J., Eds.; Gordon and Breach: Yverdon-lesBains, Switzerland, 1994. (b) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175–292.

⁽⁴⁾ Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes: Structure, Theory and Reactivity; Kluwer: New York, 2001; Chapter 11.

⁽⁵⁾ Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1993, 32, 789-805.

⁽⁶⁾ Schneider, J. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 1068–1075.
(7) Luo, X.-L.; Kubas, G. J.; Bryan, J. C.; Burns, C. J.; Unkefer, C. J. J.

Am. Chem. Soc. 1994, 116, 10312–10313.

⁽⁸⁾ Huhmann-Vincent, J.; Scott, B. L.; Kubas, G. J. Inorg. Chim. Acta 1999, 294, 240–254.

⁽⁹⁾ Fang, X.; Huhmann-Vincent, J.; Scott, B. L.; Kubas, G. J. J. Organomet. Chem. 2000, 609, 95–103.

 ⁽¹⁰⁾ Zhang, S.; Dobson, G. R.; Brown, T. L. J. Am. Chem. Soc. 1991, 113, 6908–6916. Similar observations were also made by Harris and co-workers: Kotz, K. T.; Yang, H.; Snee, P. T.; Payne, C. K.; Harris, C. B. J. Organomet. Chem. 2000, 596, 183–192.

⁽¹¹⁾ Burkey, T. J. J. Am. Chem. Soc. 1990, 112, 8329-8333.

⁽¹²⁾ Matthews, S. L.; Pons, V.; Heinekey, D. M. J. Am. Chem. Soc. 2005, 127, 850–851.

chemical preparation of a silane complex of the very electrophilic cation $[Re(CO)_5]^+$.

Experimental Section

General Procedures. Standard vacuum-line and drybox techniques were employed in the manipulation of samples and in the vacuum transfer of solvents. NMR spectra were acquired on a Bruker Avance 500-MHz spectrometer running xwinnmr version 2.6. ¹H and ¹³C NMR chemical shifts are referenced to the solvent and are reported in ppm (δ) relative to tetramethylsilane. ³¹P NMR chemical shifts are referenced to PMe₃, which was located at δ -61 relative to 85% H₃PO₄. Magnetization transfer experiments were conducted using the double-pulsed field-gradient spin—echo to achieve selective magnetization prior to standard pulse sequence components to detect exchange.¹³ IR spectra were recorded on a Bruker tensor 27 Fourier transform IR (FTIR) spectrometer.

Reagents. $M(CO)_6$ (M = Cr, Mo, and W; Aldrich or Strem) were sublimed twice prior to use. CD_2Cl_2 (CIL) was distilled, placed over activated silica, and then stored over CaH₂ under vacuum. HSiEt₃ (Strem) and H₂SiPh₂ (Aldrich) were stored over LiAlH₄ under Ar in a Teflon-stopcock-fitted glass bomb. HSiPh₃, Cl₂SiPh₂, LiAlH₄, and LiAlD₄ were used as received from Aldrich. Ph₃-B(C₆F_{5)₄} (Strem) was used as received. Cr(CO)₅(PMe₃) was made by minor modifications to a published procedure¹⁴ in 50-mg batches and purified by sublimation prior to use.

Preparation of HDSiPh₂. A glass bomb fitted with a Teflon stopcock was charged in the glovebox with a Teflon-coated stir bar and equimolar amounts of LiAlH₄ and LiAlD₄ (250 mg, 276.5 mg, 6.59 mmol). The stopcock was fitted and the bomb removed from the glovebox. The bomb was pump-cycled onto a vacuum line. and under a flow of Ar, Cl₂SiPh₂ (4.0 mL, 17.6 mmol) was added by syringe. The bomb was then evacuated by three freezepump-thaw cycles and heated in an oil bath to 350 K for 3 days with stirring. Upon cooling, hexane (10 mL) was added under a flow of Ar to precipitate LiCl. The solution was filtered by a cannula filter into a second Teflon-stopcock-fitted glass bomb, where hexane was removed under vacuum. ¹H NMR spectroscopy confirms the identity of the product and shows that the signals due to $\ensuremath{\text{Ph}_2\text{SiH}_2}$ and Ph₂SiHD are of approximately equal intensity, confirming that the mole ratio of Ph₂SiH₂/Ph₂SiHD is 1:2, as expected for ca. 50% deuteration. A precise integration cannot be obtained because of the small chemical shift separation. The level of deuteration was also measured by mass spectroscopy, which indicated 55% deuteration.

¹³CO Enrichment of Cr(CO)₆ and W(CO)₆. A glass bomb fitted with a Teflon stopcock was charged with M(CO)₆ (M = Cr and W) in the glovebox. The bomb was pumped onto a vacuum line, evacuated briefly, and tetrahydrofuran (THF) was vacuumtransferred at 77 K. The solution was subjected to photolysis at room temperature for 3 h and evacuated every 30 min by a freeze– pump–thaw cycle. After the last freeze–pump–thaw cycle, the bomb was backfilled with ¹³CO(g) (760 mmHg) and left to stand overnight. The orange color of the solution of M(CO)₅(THF) fades to colorless, reforming M(¹³CO)(CO)₅. This cycle was repeated to form enriched M(CO)₆, which was recrystallized from pentane prior to use. Isotope incorporation was checked by IR and ¹³C NMR spectroscopy.

 $[\text{Re}(\text{CO})_5(\eta^2\text{-HSiEt}_3)][B(C_6F_5)_4]$ (4). A screw-cap NMR tube was charged with $Ph_3CB(C_6F_5)_4$ (10 mg, 10.8 mmol). After the

addition of Et₃SiH (ca. 1–2 mL; excess) via vacuum transfer, the resulting yellow mixture was sonicated for 24 h. The volume of Et₃SiH was reduced under vacuum to leave a white solid in a small quantity of HSiEt₃. (CO)₅ReCl (3 mg, 8.25 mmol) was added under Ar, and after evacuation, C₆H₅F was vacuum-transferred into the tube. The sample was then backfilled with Ar. ¹H NMR (250 K, C₆H₅F): δ –10.73 (Re–H–Si, J_{SiH} = 55 Hz).

Photolysis Reactions. A typical sample preparation is as follows: An NMR tube modified to fit a Teflon stopcock was heated to 430 K overnight and pumped into an Ar-filled drybox while still hot. The tube was charged with $M(CO)_6$ (3–5 mg), and the stopcock was fitted before being removed from the glovebox. The tube was pump-cycled onto a vacuum line and evacuated briefly. Approximately 0.5 mL of CD₂Cl₂ (or other solvent) was vacuum-transferred into the tube at 77 K. Addition of the various silanes was achieved either by a gastight syringe under a flow of Ar or by vacuum transfer where possible. Addition of HSiPh₃ was performed in an Ar-filled glovebox. Photolysis (water-jacketed 450-W Hg-arc lamp) was conducted at 195 K in a quartz Dewar. The sample was removed to a separate Dewar that was precooled to 195 K using a dry ice slush for transportation. The sample was then inserted into a precooled NMR probe for analysis. IR spectra of the triethylsilane complexes were recorded on a Bruker tensor 27 FTIR spectrometer using 0.02 M solutions of M(CO)₆ in cyclopentane and an 8-fold excess of silane.

Cr(CO)₅(η^2 -**HSiEt**₃) (1). ¹H NMR (CD₂Cl₂, 240 K): δ –13.58 (1H, Cr–H–Si, $J_{HH} = 1.9$ Hz, $J_{SiH} = 95.2$ Hz), 1.00 (9H, CH₃, $J_{HH} = 7.5$ Hz), 0.88 (6H, Si–CH₂, $J_{HH} = 1.9$ and 7.5 Hz). ¹³C NMR (CD₂Cl₂, 233 K): δ 223.3 (1C, *trans*-CO, $J_{CH} = 2.3$ Hz), 215.1 (4C, *cis*-CO, $J_{CH} = 2.9$ Hz), 7.70 (CH₂), 5.41 (CH₃). IR (ν_{CO} , cyclopentane): 1951 cm⁻¹.

Mo(CO)₅(η^2 -HSiEt₃) (2). ¹H NMR (CD₂Cl₂, 240 K): δ -8.36 (1H, Mo-H–Si, $J_{HH} \sim 1.9$ Hz, $J_{SiH} = 96$ Hz), 0.98 (9H, CH₃, $J_{HH} = 7.9$ Hz), 0.85 (6H, Si–CH₂, $J_{HH} = \sim 1.9$ and 7.9 Hz). ¹³C NMR (CD₂Cl₂, 233 K): δ 203.96 (*cis*-CO), 7.86 (CH₂), 5.26 (CH₃). IR (ν_{CO} , cyclopentane): 1957 cm⁻¹.

W(CO)₅(η^2 -HSiEt₃) (3). ¹H NMR (CD₂Cl₂, 240 K): δ -8.55 (1H, W-H-Si, $J_{\text{HH}} \sim 1.5$ Hz, $J_{\text{SiH}} = 86$ Hz), 0.99 (9H, CH₃, $J_{\text{HH}} = \sim$ 7.5 and 1.5 Hz), 0.98 (6H, Si-CH₂, $J_{\text{HH}} = \sim$ 7.5 and 1.5 Hz). ¹³C NMR (CD₂Cl₂, 233 K): δ 200.3 (1C, *trans*-CO, J_{CH} unresolved), 196.8 (4C, *cis*-CO, $J_{\text{CH}} = 1.3$ Hz), 4.88 (CH₂), 6.12 (CH₃). IR (ν_{CO} , cyclopentane): 1951 cm⁻¹.

Cr(CO)₅(η^2 -**HSiPh**₃) (5). ¹H NMR (CD₂Cl₂, 220 K): δ –11.65 (1H, Cr–H–Si, $J_{SiH} = 111$ Hz).

W(CO)₅(η^2 -HSiPh₃) (6). ¹H NMR (CD₂Cl₂, 230 K): δ -6.38 (1H, W-H-Si, $J_{SiH} = 101$ Hz, $J_{WH} = 36$ Hz).

Cr(CO)₅(**η**²-**H**₂**SiPh**₂) (**7**). ¹H NMR (CD₂Cl₂, 220 K): δ –11.17 (1H, Cr–H–Si, $J_{SiH} = 108$ Hz, ² $J_{HH} = 10.3$ Hz), 6.02 (1H, Cr–Si–H, $J_{SiH} = 234$ Hz, ² $J_{HH} = 10.3$ Hz). When complex **7** was prepared with a 1:2 mixture of Ph₂SiH₂ and Ph₂SiHD, integration of the bound silane resonance at δ –11.2 versus the pendant silane resonance at δ 6.0 showed that the bound silane resonance was slightly more intense, with a ratio of 1.08:1.

Mo(**CO**)₅(η^2 -**H**₂**SiPh**₂) (8). ¹H NMR (CD₂Cl₂, 185 K): δ -6.49 (1H, Mo-H-Si, J_{SiH} = 111 Hz, ² J_{HH} = 11.8 Hz), 6.04 (1H, Mo-Si-H, J_{SiH} = 232 Hz, ² J_{HH} = 11.8 Hz).

W(**CO**)₅(η^2 -**H**₂SiPh₂) (9). ¹H NMR (CD₂Cl₂, 220 K): δ -6.40 (1H, W-H-Si, J_{SiH} = 98 Hz, ² J_{HH} = 11.0 Hz, ¹ J_{WH} = 39 Hz), 6.50 (1H, W-Si-H, J_{SiH} = 236 Hz, ² J_{HH} = 11.0 Hz).

trans-Cr(CO)₄(PMe₃)(η^2 -HSiEt₃) (10). ¹H NMR (CD₂Cl₂, 210 K): δ –12.47 (1H, Cr–H–Si, J_{SiH} = 102 Hz, J_{PH} = 16.8 Hz). ³¹P NMR (CD₂Cl₂, 210 K): δ 21.4.

⁽¹³⁾ Braun, S.; Kalinowski, H. O.; Berger, S. 150 and More Basic NMR Experiments: A Practical Course, 2nd ed.; Wiley: New York, 1999.
(14) Brown, R. A.; Dobson, G. R. Inorg. Chim. Acta 1972, 6, 65–71.

Figure 1. Partial (hydride region) ¹H NMR spectra (CD₂Cl₂, 500 MHz, 220 K) of **1**. Inset: ×24 magnefication.

cis-Cr(CO)₄(PMe₃)(η^2 -HSiEt₃) (11). ¹H NMR (CD₂Cl₂, 210 K): δ -14.18 (1H, Cr-H-Si, J_{SiH} = 99 Hz, J_{PH} = 8.2 Hz). ³¹P NMR (CD₂Cl₂, 210 K): δ 9.4.

Catalytic Methanolysis. In a 50-mL Schlenk tube connected to a bubbler, 5.0 mg (23 μ mol) of Cr(CO)₆ was dissolved in 10.0 mL (62 mmol) of Et₃SiH. After photolysis for 30 min, 5.0 mL (123 mmol) of MeOH was added. Vigorous evolution of H₂ was observed, diminishing gradually over several hours. After 12 h, analysis of the mixture by gas chromatography (GC)–mass spectrometry (MS) revealed the formation of Et₃SiOMe and consumption of 50% of the starting Et₃SiH. If the photochemical preparation of Cr(CO)₅(η^2 -HSiEt₃) is 100% efficient, the turnover number (TON) calculated from these data would be 1350. Separate studies demonstrate that the photolytic preparation of Cr(CO)₅(η^2 -HSiEt₃) has a yield of ca. 50%; thus, a better estimate of the TON would be 2700. Similar methanolysis activity was observed when preformed Cr(CO)₅(THF) was added to a 1:1 mixture of MeOH and Et₃SiH.

Results

All photolysis reactions were carried out at 195 K. Initial studies were carried out in toluene and alkane solvents. Low-temperature solubility of the precursor complexes is quite limited under these conditions, limiting the accessible concentration of silane complexes. Attempts to isolate the silane adducts were frustrated by incomplete photochemical conversion to the desired complex. It was found that methylene chloride provided much increased low-temperature solubility. The stability of the complexes is somewhat reduced in methylene chloride, but more satisfactory NMR spectra were obtained.

Photolysis of methylene chloride solutions of the metal hexacarbonyl complexes $M(CO)_6$ in the presence of Et₃SiH (1 equiv) produces pale-yellow solutions of the σ silane complexes **1**–**3**. The ¹H NMR spectrum of each solution (Figure 1) exhibits a new hydridic signal at δ –13.54 (Cr), –8.36 (Mo), and –8.55 (W). The hydride resonances are partially resolved heptets due to a small three-bond coupling to the methylene protons of the silane. The value of ³J_{HH} in **1** is observed to be 1.9 Hz, reduced from that in the free silane (3.1 Hz). Coupling to ²⁹Si ($I = -1/_2$, 6%) is clearly visible in the hydride resonances for all three complexes and allows the direct measurement of ¹J_{SiH} = 95 (**1**), 96 (**2**), and 86 (**3**) Hz. In addition, **3** also exhibits coupling to ¹⁸³W ($I = 1/_2$, 14%) with ¹J_{WH} = 36 Hz.

In the ¹³C NMR spectrum, the carbonyl signals for 1-3 are weak, but the use of ¹³CO-enriched Cr(CO)₆ and W(CO)₆ allows the observation of the ¹³C NMR signals for the

Figure 2. Partial (hydride region) ¹H NMR spectra (CD₂Cl₂, 500 MHz, 230 K) of **6.** Inset: ×5 magnefication.

carbonyl groups of 1 and 3. These are observed in an approximate intensity ratio of 1:4 at δ 223.3 and 215.1 (1) and δ 200.3 and 196.8 (3). These resonances are assigned to the trans- and cis-carbonyl groups in these molecules, respectively. In both 1 and 3, a two-bond coupling ${}^{2}J_{CH}$ between the metal-bound ¹³CO and a ¹H nucleus is detected in the fully ¹H-coupled ¹³C NMR spectra. The coupling of the *cis*-¹³CO in **1** is ${}^{2}J_{CH} = 2.9$ Hz, larger than that of the *trans*-¹³CO, where ${}^{2}J_{CH}$ is ~2 Hz. This is also true for **3**, where the cis coupling ${}^{2}J_{CH}$ is ~1.3 Hz and the trans coupling is unresolved. The bound Si-H proton was confirmed as the source of these couplings using a ${}^{1}\text{H}{-}{}^{13}\text{C}$ heteronuclear multiple-quantum coherence (HMQC) experiment. Further verification of the structures of 1-3 was provided by IR spectroscopy in an alkane solution, where the CO stretching vibrations can be readily observed. Consistent with previous reports, only the strong E mode could be conclusively assigned as a result of the overlap of other modes with starting materials.¹¹

Yields estimated for these reactions by NMR spectroscopy are between 50% and 75%. Attempts to drive the reactions to completion using longer irradiation times resulted in decomposition. The complexes are persistent for hours in toluene and alkanes at room temperature, with some gradual regeneration of $M(CO)_6$ observed along with decomposition to unidentified products. More rapid decay was observed in methylene chloride below room temperature.

The rhenium complex **4** can be generated by the reaction of Re(CO)₅Cl with [SiEt₃][B(C₆F₅)₄] in the presence of HSiEt₃ in a fluorobenzene solvent. A hydridic resonance is observed at δ –10.73 as an unresolved heptet with satellites due to coupling to ²⁹Si with ¹J_{SiH} = 55 Hz.

Similar low-temperature irradiation experiments carried out with HSiPh₃ produces the complexes **5** and **6**. Binding of HSiPh₃ to Mo(CO)₅ has not been detected under these conditions. The hydride signal for **5** is observed at δ –11.65 ($J_{\text{SiH}} = 111$ Hz), and the corresponding signal for **6** is observed at δ –6.38 ($J_{\text{SiH}} = 101$ Hz). In the case of complex **6**, additional satellites due to coupling to ¹⁸³W with $J_{\text{WH}} =$ 36 Hz are also observed (Figure 2).

Complexes **7**–**9** are obtained similarly in the presence of diphenylsilane. In this case, ¹H NMR resonances due to both coordinated (denoted H_A) and pendant Si–H moieties (denoted H_B) are observed (with ${}^{2}J_{\text{HH}} = 10-12$ Hz), with the former exhibiting diminished values of J_{SiH} of 108 (**7**), 111 (**8**), and 98 (**9**) Hz. The hydridic resonance for complex **8** also exhibits coupling to ¹⁸³W, $J_{\text{WH}} = 39$ Hz. For **7**–**9**,

Figure 4. 1 H NMR spectra (CD₂Cl₂, 500 MHz) of 8 for pendant and bound Si-H resonances at 180–225 K.

the pendant Si-H resonance is observed between δ 6 and 6.5, with J_{SiH} significantly increased from that in the free silane (Figure 3). Values of J_{SiH} for the pendant SiH are 234 (7), 232 (8), and 236 (9) Hz, which are much greater than $J_{\text{SiH}} = 200$ Hz observed in free diphenylsilane.

An interesting dynamic process is observed in complexes 7–9, which exchanges the coordinated and pendant Si–H on the NMR time scale. At low temperatures, two sharp resonances are observed. Upon an increase in the temperature, line broadening is observed as a result of the exchange process (Figure 4). Coalesecence of the resonances could not be observed because of decomposition at higher temperatures. The resonance due to free Ph_2SiH_2 remains sharp at all temperatures. The selective magnetization of the protons in the H_B environment allowed their exchange to be monitored using spin saturation transfer. Exchange was observed only between the H_A and H_B environments and not with the free silane. This remained true even with the longest mixing periods of up to 4 s.

Line-shape analysis over the temperature range 200–260 K allows the extraction of rate data for this exchange process in complexes **7–9**, which was used in an Eyring analysis. Activation parameters are $\Delta H^{\ddagger} = 9.9 \pm 1.8$ kcal/mol and $\Delta S^{\ddagger} = -5 \pm 7$ eu (**7**); $\Delta H^{\ddagger} = 8.0 \pm 0.3$ kcal/mol and $\Delta S^{\ddagger} = -4 \pm 2$ eu (**8**); and $\Delta H^{\ddagger} = 9.7 \pm 0.5$ kcal/mol and $\Delta S^{\ddagger} = -5 \pm 2$ eu (**9**).

A small equilibrium isotope effect is seen in the coordination of HDSiPh₂ to Cr(CO)₅. A 1:2:1 mixture of H₂SiPh₂- d_0 /H₂SiPh₂- d_1 /H₂SiPh₂- d_2 was prepared by reaction of Cl₂-

Figure 5. Partial (hydride region) ¹H NMR spectrum (CD_2Cl_2 , 500 MHz, 210 K) of the products of photolysis of (PMe_3)Cr(CO)₅ with Et₃SiH.

SiPh₂ with 1:1 LiAlH₄/LiAlD₄. Irradiation of Cr(CO)₆ with 1 equiv of this isotopically labeled silane affords a mixture of complex **7**, **7**- d_1 , and **7**- d_2 . Integration of the resonances for protons of H_A and H_B in **7** and **7**- d_1 separately is not possible because of overlap in the ¹H NMR spectrum, but because no isotope effect is expected in the H₂SiPh₂ complex, both resonances can be integrated together. The ratio of integrated intensity of the coordinated SiH resonance to the pendant resonance is 1.08:1.

A phosphine-substituted derivative of $Cr(CO)_6$ was investigated to provide a direct comparison to the $[(PR_3)Re-(CO)_4]^+$ system reported by Kubas and co-workers. Thus, photolysis of $(PMe_3)Cr(CO)_5$ in the presence of Et₃SiH was found to afford both *cis*- and *trans*-silane complexes, along with a small amount of complex **1** formed by phosphine loss (Figure 5).

The major product exhibits a hydridic resonance at δ –12.47 with $J_{\text{PH}} = 16.8$ Hz and $J_{\text{SiH}} = 102$ Hz. This resonance is attributed to **10**. The minor product gives a resonance at δ –14.18 with $J_{\text{PH}} = 9.4$ Hz and $J_{\text{SiH}} = 99$ Hz. This signal is assigned to **11**.

Catalytic Silane Alcoholysis. When solutions of 1 are treated with methanol, the formation of MeOSiEt₃ was observed, identified by ¹H and ¹³C NMR spectroscopy,¹⁵ and confirmed by GC-MS. H₂ gas was evolved, and the presence of Cr(CO)₅(MeOH) was noted. The methanol complex was independently prepared by photolysis of toluene solutions of $Cr(CO)_6$ in the presence of methanol. Bound methanol in this Cr complex has characteristic resonances in the ¹H NMR spectrum at δ 2.69 (3H) and 5.68 (1H). After generation of complex 1 photochemically in neat Et₃SiH, the addition of MeOH to the pale-yellow solution turns it bright yellow and H₂ evolution was observed. The process is catalytic in Cr, with ca. 2700 turnovers observed at room temperature over 12 h before catalyst deactivation occurs. Preformed Cr(CO)5-(THF) was also an effective catalyst precursor. H₂ evolution and formation of MeOSiEt3 were observed upon the addition of Cr(CO)₅(THF) to a 1:1 Et₃SiH/MeOH mixture.

Discussion

Complexation of Si-H bonds to a variety of transitionmetal fragments has been reported in the literature, usually

⁽¹⁵⁾ Field, L. D.; Messerle, B. A.; Rehr, M.; Soler, L. P.; Hambley, T. W. Organometallics 2003, 22, 2387–2395.

Silane Complexes of Electrophilic Metal Centers

with a mixture of Cp, arene, and phosphine coligands. Highly electrophilic, carbonyl-rich metal centers are rarely observed to bind silanes. Indeed, Kubas has suggested that such molecules are not stable.⁴ While such complexes may not be isolable at room temperature, there is precedent for their observation in solution, as noted above.

The preparation of $M(CO)_5(L)$ complexes by photoextrusion of CO in the presence of ligand L is well precedented in the literature. We have previously demonstrated that this procedure can be extended to the preparation of complexes with L being a σ -bond donor such as H_2 .¹² Similar to our experience with H_2 , we find that silane complexes are formed in sufficient yield by this procedure to allow for their observation by ¹H NMR spectroscopy. Because the silane ligands are weakly bound, we have been unable to isolate these complexes in a pure state, partly because of contamination with the starting material $M(CO)_6$. Prolonged irradiation leads to increased formation of unidentified decomposition products.

Triethylsilane Complexes. Complexes 1-3 are indeed observable in solution below room temperature. Formulation as silane σ complexes is based upon the observation of large values of $J_{\text{SiH}} = 95$ (1), 96 (2), and 86 (3) Hz. This formulation as six-coordinate silane adducts is confirmed by the $C_{4\nu}$ geometry of the carbonyl ligands indicated by the ¹³C NMR spectra.

These values of J_{SiH} are substantially reduced from the value of 175 Hz observed in Et₃SiH. In comparison, some other reported values of J_{SiH} in Et₃SiH complexes are 62 Hz¹⁶ in cationic [CpFe(PEt₃)(CO)(η^2 -HSiEt₃)]⁺ and 61 Hz⁸ in cationic $[cis-\text{Re}(\text{CO})_4(\text{PPh}_3)(\eta^2-\text{HSiEt}_3)]^+$. Because the reduction of J_{SiH} is much less than that observed in other Et₃SiH complexes, we conclude that the interaction with the metal center is relatively weak. In particular, because the presence of five CO ligands renders the metal center highly electron-deficient, back-donation from the metal d orbitals into the Si-H σ^* orbital is limited. This result is similar to the reported observations in the case of dihydrogen complexes such as $Cr(CO)_5(H_2)$ and $W(CO)_5(H_2)$, where the properties of the molecules were found to be consistent with limited back-donation from the metal center to the bound H_{2} .¹²

The observation of 1-3 provides a unique opportunity to compare Si-H bond coordination in a homologous series spanning the group 6 metals. If we assume that Si-H bond elongation is inversely proportional to J_{SiH} within a homologous series, we can correlate the observed couplings to bond elongation and use this as a probe for the strength of the interaction with the metal. On the basis of the observed

values of J_{SiH} , the interaction with Cr and Mo is seen to be quite similar, while the interaction in the W complex **3** is somewhat stronger. This is quite consistent with the PAC data of Burkey, where the binding enthalpies of Et₃SiH to Cr(CO)₅ and Mo(CO)₅ were quite similar (21 and 22 kcal/ mol) but the binding to W(CO)₅ was significantly stronger (28 kcal/mol).

The rhenium complex 4 allows an opportunity to investigate the effect of charge on the activation of a coordinated silane. We observe the Si-H bond to be lengthened considerably ($J_{\text{SiH}} = 55$ Hz) with respect to the neutral W(CO)₅ analogue upon an increase in the charge of the molecule. The activation of the bond is mostly due to σ donation to a vacant metal orbital with a minimal contribution from back-donation. Interestingly, complex 4 has a value for J_{SiH} very similar to that reported by Kubas in [*cis*-(PPh₃)-Re(CO)₄(η^2 -HSiEt₃)]⁺ ($J_{\text{SiH}} = 61$ Hz). If back-donation from metal to bound silane were significant, the more electron-rich metal center in the phosphine-substituted cation would be expected to exhibit greater bond elongation and correspondingly lower J_{SiH} .

Triphenylsilane Complexes. In the case of Ph₃SiH, complexation affording 5 and 6 was observed, but no Mo analogue could be obtained. Similar to the Et₃SiH complexes, the values of J_{SiH} are diminished substantially from that of the free silane ($J_{SiH} = 200 \text{ Hz}$) upon coordination. Complex **5** has $J_{\text{SiH}} = 111$ Hz, and complex **6** exhibits $J_{\text{SiH}} = 101$ Hz. For both HSiEt₃ and HSiPh₃, the Si-H bond is more activated for W versus Cr. A small number of examples of Ph₃SiH coordination have been previously reported. In comparison to these examples, the extent of activation of the Si-H bond in 5 and 6 is quite modest. For example, in $(MeCp)Mn(CO)_2(HSiPh_3), J_{SiH} = 65 Hz.^{17}$ We conclude that complexes 5 and 6 represent examples of relatively weak silane complexation, presumably due to steric congestion in Ph₃SiH, which may also be responsible for our failure to observe the Mo analogue. It is interesting to note that a prior report of prolonged photolysis of W(CO)₆ in the presence of Ph₃SiH led to a tricarbonyl species W(CO)₃(η^6 -C₆H₅-SiHPh₂) with a coordinated phenyl group.¹⁸ It seems plausible that complex $\mathbf{6}$ is an intermediate in the formation of this tricarbonyl species, which we do not observe under our conditions.

Diphenylsilane Complexes. Coordination of Ph₂SiH₂ was observed for all of the group 6 metals, affording **7**–**9**. As expected, only one of the Si–H bonds coordinates, with $J_{\text{SiH}_{A}} = 108$ (**7**), 111 (**8**), and 98 (**9**) Hz. Again, the W complex

exhibits the greatest degree of Si-H bond elongation.

⁽¹⁷⁾ Jetz, W.; Graham, W. A. G. Inorg. Chem. 1971, 10, 4-9.

⁽¹⁸⁾ Gądek, A.; Kochel, A.; Szymañska-Buzar, J. Organomet. Chem. 2005, 690, 685–690.

Interestingly, $J_{\text{SiH}_{\text{B}}}$ *increases* slightly upon complexation to 234 (7), 232 (8), and 236 (9) Hz. This large perturbation in the coupling in the pendant SiH moiety has been previously observed only in complexes of R₂SiH₂ with highly electrophilic cationic metal centers, where the bound silane is also activated toward reaction with nucleophiles. In the case of [(PPh₃)Re(CO)₄(η^2 -HSiEt₃)]⁺, liberation of [SiEt₃]⁺ and formation of products consistent with the formation of (PPh₃)Re(CO)₄H has been observed.⁸ Thus, the increase in $J_{\text{SiH}_{\text{B}}}$ may indicate an increase in the s character of the Si–H bond because of the increased polarization of the bound Si–H bond and incipient formation of the silyl cation, which would have sp² hybridization.

In comparison to other reported complexes of Ph₂SiH₂, complexes **7–9** have high values of J_{SiH} , consistent with relatively limited back-donation from the metal center to the Si–H σ^* orbital. Previously reported examples from the Cr triad include $J_{SiH} = 71$ Hz in (η^6 -Me₆C₆)Cr(CO)₂(η^2 -HSiPh₂H)¹⁹ and $J_{SiH} = 50$ Hz in (CO)Mo(dppe)₂(η^2 -HSiPh₂H).⁷

Complexes **7**–**9** exhibit a very interesting intramolecular dynamic process, observable by NMR line broadening and magnetization transfer. The coordinated SiH_A is observed to exchange rapidly with the pendant SiH_B, with enthalpies of activation of 9–10 kcal/mol. Dissociation of the bound silane is not involved because no line broadening is observed in free silane. The entropies of activation are slightly negative, consistent with an intramolecular process with an ordered transition state. We suggest a mechanism for this process proceeding via a species with both Si–H bonds coordinated to the metal, as depicted in the following. Such

a rapid exchange of free and coordinated Si–H bonds in metal complexes of SiH₂R₂ has not been previously observed. Slow exchange of this type was detected using deuterium labeling in the manganese complex CpMn(CO)₂(η^2 -DSi-HRR').²⁰ In the ruthenium silyl hydride Ru(P^tBu₂Me)(CO)-H_A(SiH_BPh₂), exchange of H_A and H_B was detectable by spin saturation transfer.²¹ We suggest that the rapid exchange observed in **7–9** is a further manifestation of the highly electrophilic nature of these metal centers. The coordination of a second Si–H bond to form the η^3 -H,Si,H structure is lowered in energy with respect to the η^2 -Si,H structure in these electrophilic complexes, which enables the exchange to happen more rapidly than has been observed previously.

Equilibrium isotope effects were probed by preparing complex **6** with partially deuterated diphenylsilane using a mixture of H_2SiPh_2 and $HDSiPh_2$. On the basis of extensive

precedent with agostic C–H bonds, it was expected that there would be a nonstatistical occupancy of the bound and pendant site by deuterium. We anticipated that H would concentrate in the metal-bound environment because this bond is weakened and elongated by coordination. Thus, deuterium is expected to concentrate around the pendant site. Integration of the ¹H NMR signals verifies this expectation in that the intensity of the hydridic resonance is slightly greater (1.08:1) than that for the pendant SiH. In a study of alkane σ complexes of CpRe(CO)₂, Ball and co-workers have made similar observations and report a slight preference for H to concentrate in the metal-bound environment.²²

Cr(CO)₄(**PMe**₃)(η^2 -**HSiEt**₃). Photolysis of (PMe₃)Cr(CO)₅ in the presence of Et₃SiH gives two isomeric silane adducts **10** and **11** in a 20:1 ratio. The major product, complex **10**, is assigned to the trans structure based on the larger coupling to ³¹P. This assignment was verified by a ¹H $^{-31}$ P HMQC experiment, which also confirmed the assignment of the ³¹P NMR resonances at δ 21.4 (**10**) and 9.4 (**11**). The starting material (PMe₃)Cr(CO)₅ exhibits a ³¹P NMR signal at δ 9.0. Complexation of Et₃SiH cis to PMe₃ has very little effect on the ³¹P NMR chemical shift, while replacement of a *trans*-CO group with Et₃SiH in **10** leads to a significant chemical shift change to δ 21.4.

Surprisingly, both isomers exhibit nearly identical values of J_{SiH} of 102 (10) and 99 (11) Hz, which are also quite similar to the value for 1 of 95 Hz. This outcome is unexpected because it is generally believed that the identity of the trans ligand controls the degree of bond activation in σ complexes. In these very electrophilic metal centers, the interaction with the Si-H bond is dominated by donation from the Si-H bond to an acceptor orbital on Cr, with minimal contributions from back-donation. Thus, the strong π -acid CO trans to bound silane versus the phosphine ligand leads to a very similar degree of Si-H bond elongation. A similar outcome was recently reported for coordination of H₂ to these Cr centers.²³ The increase in J_{SiH} upon inclusion of a phosphine ligand in the metal coordination sphere is similar to that observed between $[Re(CO)_5(\eta^2-HSiEt_3)]^+$ and $[\text{Re}(\text{CO})_4(\text{PPh}_3)(\eta^2-\text{SiEt}_3)]^+$. Because the electronic nature of the Cr-HSi interaction is very similar in 10 and 11, the observed product ratio of 20:1 versus the statistical ratio of 1:4 must arise from other factors. We suspect either that there is a steric influence to the preferred structure or that the products are themselves photoactive, and the observed product ratio represents that from a photostationary state attained during photosynthesis.

⁽¹⁹⁾ Schubert, U.; Müller, J.; Alt, H. G. Organometallics **1987**, *6*, 469–472.

⁽²⁰⁾ Colomer, E.; Corriu, R. J. P.; Marzin, C.; Vioux, A. Inorg. Chem. 1982, 21, 368–373.

⁽²¹⁾ Gusev, D. G.; Nadasdi, T. T.; Caulton, K. G. Inorg. Chem. 1996, 35, 6772–6774.

⁽²²⁾ Lawes, D. J.; Geftakis, S.; Ball, G. E. J. Am. Chem. Soc. 2005, 127, 4134–4135.

⁽²³⁾ Matthews, S. L.; Heinekey, D. J. Am. Chem. Soc. 2006, submitted for publication.

Silane Complexes of Electrophilic Metal Centers

Catalytic Methanolyis. Binding of silanes to transition metals is well-known to lead to enhanced reactivity with nucleophiles. Particularly important in this respect is the use of alcohols as the nucleophile, which affords silyl ethers. This is a useful reaction in organic synthesis for reversible protection of OH functionalities.

We find that $Cr(CO)_5(L)$ complexes (L = THF and Et_3 -SiH) are effective catalysts for methanolysis of Et_3SiH . We have not optimized the conditions but find that MeOSiEt₃ can be efficiently formed from MeOH and Et_3SiH , with 2600 turnovers prior to catalyst deactivation, which occurs after about 12 h. These results are comparable to those reported by Brookhart and co-workers²⁴ using $[CpFe(CO)_2]^+$ but slower than those of Luo and Crabtree's catalyst $[IrH_2(PPh_3)_2-(THF)_2]^+$.²⁵ We suggest the mechanism depicted below for the catalytic reaction, which is similar to that suggested by Brookhart and co-workers.²⁴

Conclusions. Silanes bind weakly to electrophilic $M(CO)_5$ fragments, with modest activation of the Si-H bond. An unusual rapid exchange between bound and pendant Si-H bonds has been observed in Ph₂SiH₂ complexes. Replacement of one CO ligand with PMe₃ has surprisingly little effect on the activation of Et₃SiH on Cr. The electronic basis of the SiH/metal interaction is relatively insensitive to the coligands, suggesting a minor role for back-donation from metal to

- (24) Chang, S.; Scharrer, E.; Brookhart, M. J. Mol. Catal. A 1998, 130, 107–119.
- (25) Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1989, 111, 2527– 2535.

ligand. Both cis and trans isomers are observed in a nonstatistical ratio.

Increasing the charge on the complex is seen to increase the extent to which the coordinated bond is elongated on coordination, consistent with dominant σ donation from silane to the metal center and minor contributions to the interaction from back-donation. Complexation activates silanes toward reaction with nucleophiles, which has been applied to catalytic methanolysis.

Acknowledgment. This research was supported by the National Science Foundation.

IC052134P