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The magnetic susceptibility of (CuCl)LaNb2O7 shows a spin gap despite the Cu2+ ions in each CuClO2 layer forming
a square lattice. To account for this observation, we explored implications of the disorder of the Cl-atom position
in (CuCl)LaNb2O7 by considering possible ordered structures of CuCl4O2 octahedra in each CuClO2 layer, by identifying
various spin exchange interactions of a CuClO2 layer and by estimating the relative strengths of these interactions
in terms of spin dimer analysis. We then probed what kind of spin lattice is required for each CuClO2 layer to have
a spin gap on the basis of the classical spin approximation. Our study suggests that the CuCl4O2 octahedra of
each CuClO2 layer should be arranged such that the resulting spin lattice does not have uniform chains but ring
clusters containing an even number of Cu atoms. Implications of this conclusion were discussed on the basis of
the recently reported neutron scattering and magnetization studies of (CuCl)LaNb2O7.

1. Introduction

The crystal structure1 of (CuCl)LaNb2O7 is made up of
CuCl sheets (Figure 1a) and Nb2O7 double-perovskite slabs
(Figure 1b), with the La3+ ions located at the 12-coordinate
sites of the double-perovskite slabs. The CuCl sheets alternate
with the Nb2O7 slabs along thec direction such that each
CuCl4 square of a CuCl sheet is axially capped by two
oxygen atoms to form a CuCl4O2 octahedron (Figure 1c),
and every CuCl sheet becomes a CuClO2 layer (Figure 1d).
The Cu2+ ions of the CuClO2 layers are the only magnetic
ions of (CuCl)LaNb2O7 and form a square lattice. The X-ray
powder diffraction study1 of (CuCl)LaNb2O7 reported that
the Cl atoms in each CuCl sheet are located at the centers
of the Cu4 squares, so that each CuCl4O2 octahedron has
D4h symmetry with Cu-Cl ) 2.746 Å and Cu-O ) 1.841
Å. The Cu-Cl bond is rather long compared with the value
expected from the ionic radii sum (i.e., 2.54 Å).2 This
coordinate environment (i.e., four long and two short bonds)
is unusual for a Cu2+ ion. A realistic picture for the
coordinate environment of the Cu2+ ions was provided by
the neutron powder diffraction study,3 which shows that the

Cl atom in each Cu4 square is displaced from its center to
the four split positions around it (Figure 2a). By selecting
one of the four split positions for each Cl, every CuCl4O2

octahedron can have two short Cu-Cl (hereafter referred to
as Cu-Cls) and two long Cu-Cl (hereafter referred to as
Cu-Cll) bonds (i.e., 2.402 and 3.142 Å, respectively).
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Figure 1. Structural building blocks of (CuCl)LaNb2O7: (a) CuCl sheet,
(b) Nb2O7 slab, (c) CuCl4O2 octahedron, and (d) CuClO2 layer. The blue,
yellow, cyan, and white circles represent the Cu, Cl, Nb, and O atoms,
respectively.
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Consequently, the resulting octahedron has four short (i.e.,
two Cu-O and two Cu-Cls) and two long (i.e., two Cu-
Cll) bonds, which is the usual coordinate environment for a
Cu2+ ion. An example is shown in Figure 2b, where the two
Cu-O and two Cu-Cls bonds form a CuCl2O2 rhombus with
linear Cls-Cu-Cls. The disorder of the Cl-atom position
means that, in the CuClO2 layers of (CuCl)LaNb2O7, the
CuCl4O2 octahedra with two short and two long Cu-Cl
bonds are present without long-range order in their orienta-
tion and shape (see below).

When its CuClO2 layers are considered to form a square
spin lattice, the magnetic properties of (CuCl)LaNb2O7 are
quite puzzling to understand.4,5 If the CuCl4O2 octahedra of
(CuCl)LaNb2O7 possessD4h symmetry as suggested by the
X-ray powder diffraction study, each CuClO2 layer forms a
square spin lattice defined by two spin exchange interactions
Ja and Jb (Figure 1d).1,4,5 In general, the spin exchangeJb

through the linear Cu-Cl-Cu bridge should be more
strongly antiferromagnetic than the spin exchangeJa through
the Cu-Cl-Cu bridges with∠Cu-Cl-Cu ) 90°.6 Thus,
the spin lattice of the CuClO2 layer is essentially a square
spin lattice (defined by the spin exchange interactionsJb),
the magnetic susceptibility of which is expected to have a
broad maximum with nonzero value atT ) 0.7,8 Although
the magnetic susceptibility of (CuCl)LaNb2O7 shows a broad
maximum at 16.5 K,1,4 it decreases sharply to zero below
16.5 K, hence leading to a spin gap (i.e., the energy gap
that separates the singlet ground state from the first excited
state). Surprisingly, the general features of the magnetic
susceptibility of (CuCl)LaNb2O7 are reasonably well de-
scribed by an isolated spin dimer model.4 Furthermore, when
an isolated spin dimer model is used to analyze the
Q-dependence of the neutron scattering intensity profile

measured for powder samples,4 it is found that the Cu‚‚‚Cu
distance of the dimer is close to that of the fourth nearest-
neighbor spin exchange interactionJc (Figure 1d).

In view of the fact that the Cl-atom position in (CuCl)-
LaNb2O7 is disordered,3 one should question if a square spin
lattice is a proper model for (CuCl)LaNb2O7. In interpreting
the magnetic properties of a magnetic compound, it is
essential to identify its spin lattice (i.e., the lattice made up
of strongly interacting spin exchange paths). It is frequently
assumed that the spin lattice of a magnetic system containing
transition metal ions with unpaired spins is the same as the
geometrical arrangement of its metal ions. For a complex
magnetic system, a spin lattice suggested by this intuitive
appeal is often incorrect because the strength of a spin
exchange interaction between two spin sites is not determined
by the distance between the two spin sites but by the overlap
between their magnetic orbitals.9 Consequently, it is crucial
to identify the spin lattice of a magnetic system on the basis
of appropriate electronic structure calculations. So far, there
has been no study concerning how the disorder of the Cl-
atom position in (CuCl)LaNb2O7 might affect its spin
exchange interactions and hence the topology of its spin
lattice. The present work probes this and its related questions.

Our work is organized as follows. In Section 2, we search
for a spin lattice model relevant for the CuClO2 layer by
examining the consequence of the disorder of the Cl-atom
position on the coordinate environment of the Cu2+ ions in
the CuClO2 layer, identifying various spin exchange paths
of the CuClO2 layer, and then evaluating their relative
strengths on the basis of spin dimer analysis. In Section 3,
we discuss how one might use the classical spin approxima-
tion to predict whether a spin lattice has a spin gap and then
probe what kind of spin lattice is required for the CuClO2

layer to have a spin gap. Essential findings of our work are
summarized in Section 4.

2. Spin Exchange Paths and Spin Dimer Analysis

2.1. Octahedral Distortion and Spin Exchange Paths.
When all the CuCl4O2 octahedra have the four-short-two-
long coordination (Figure 2b) with linear Cls-Cu-Cls units,
the CuClO2 layer is divided into CuClO2 chains of corner-
sharing CuCl2O2 rhombuses (Figure 3). Because there are
four different ways of selecting two short and two long Cu-
Cl bonds for each CuCl4O2 octahedron, there occur four
different CuClO2 chain arrangements, as shown in Figure 3.
If a CuCl4O2 octahedron is allowed to have a nonlinear Cls-
Cu-Cls unit, other types of Cu2+-ion environments are
possible. The CuCl4O2 octahedron of Figure 2c differs from
that of Figure 2b since the Cls-Cu-Cls unit is slightly bent
(∠Cls-Cu-Cls ) 162.1°), but that of Figure 2d is consider-
ably different with∠Cls-Cu-Cls ) 90°. When CuCl4O2

octahedra with nonlinear Cls-Cu-Cls units are included, the
CuClO2 layers of (CuCl)LaNb2O7 can be divided into “ring
clusters” containing an even number of Cu atoms (hereafter

(4) Kageyama, H.; Kitano, T.; Oba, N.; Nishi, M.; Nagai, S.; Hirota, K.;
Viciu, L.; Wiley: J. B.; Yasuda, J.; Baba, Y.; Ajiro, Y.; Yoshimura,
K. J. Phys. Soc. Jpn. 2005, 74, 1702.
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K. J. Phys. Soc. Jpn. 2005, 74, 3155.
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Cambridge, MA; 1963.
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(9) For recent reviews, see: (a) Whangbo, M.-H.; Koo, H.-J.; Dai, D.J.
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H.-J. Solid State Sci. 2005, 7, 827.

Figure 2. Structures of CuCl4O2 octahedra: (a) undistorted CuCl4O2

octahedron with four split positions for each Cl, (b) distorted CuCl4O2

octahedron with linear Cls-Cu-Cls, (c) distorted CuCl4O2 octahedron with
slightly bent Cls-Cu-Cls, and (d) distorted CuCl4O2 octahedron with∠Cls-
Cu-Cls ) 90°. In (b)-(d) the four bonds around the Cu atom are shown
as green cylinders.
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referred to as 2n-ring clusters), as illustrated in Figure 4. In
principle, each CuClO2 layer can be divided into 2n-ring
clusters of varying sizes with or without long-range order.
However, it is likely that each CuClO2 layer consists of 2n-
ring clusters of similar size without long range order. In a
ring cluster with 2n g 6, each ring consists of two parallel
chain fragments containingn Cu2+ ions, the two ends of
which are each capped by a Cls atom.

The spin exchange interactions of interest for the “undis-
torted” CuClO2 layer (Figure 1d) areJa, Jb, andJc. The spin
dimers associated with these interactions are shown in Figure
5a-c. The corresponding spin exchange interactions in the
“distorted” CuClO2 layer consisting of CuClO2 chains (Figure
3a) areJ1, J2, and J3. The spin dimers representing these
interactions are shown in Figure 5d-f. For the CuClO2 layers
composed of 2n-ring clusters, there occur a number of
different spin exchange paths within and between adjacent
clusters, as shown by the interactionsJ′1, J′2, J′3, andJ′4 in
Figure 4a. The spin dimers representing these interactions
are shown in Figure 5g-j. Some structural parameters
associated with these spin exchange paths are summarized
in Table 1.

2.2. Spin Dimer Analysis and Spin Lattice.The CuCl4O2

octahedra of Figures 1c, 2b, and 2d have the magnetic
orbitals shown in Figures 6a, 6b, and 6c, respectively. For a
spin dimer consisting of two spin sites, the two magnetic
orbitals interact to give rise to an energy split∆e. When the
two spin sites of a spin dimer are nonequivalent, their
magnetic orbitals are different in energy by∆e0. Obviously,
∆e0 ) 0 if the two spin sites are equivalent. In the spin dimer
analysis based on extended Hu¨ckel tight binding (EHTB)
calculations, the strength of an antiferromagnetic interaction
between two spin sites is estimated by considering the
antiferromagnetic spin exchange parameterJAF,9

where (∆ε)2 ) (∆e)2 - (∆e0)2, andUeff is the effective on-
site repulsion that is essentially a constant for a given
compound. Therefore, the trend in theJAF values is deter-

Figure 3. Four different arrangements of the CuClO2 chains of a CuClO2
layer that result when all the CuCl4O2 octahedra have the four-short-two-
long coordination with linear Cls-Cu-Cls units.

Figure 4. CuClO2 layers composed of 2n-ring clusters: (a) a CuClO2
layer with long-range order and (b) a CuClO2 layer without long range
order. For simplicity, the long Cu-Cl bonds are not shown.

Figure 5. Spin dimers associated with the spin exchange interactionsJa,
Jb, andJc of the undistorted CuClO2 layer (Figure 1d),J1, J2, andJ3 of the
CuClO2 layer composed of CuClO2 chains (Figure 3a), andJ′1 J′2, J′3, and
J′4 of the CuClO2 layer composed of 2n-ring clusters (Figure 4a).

JAF ) -
(∆ε)2

Ueff
(1)
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mined by that in the corresponding (∆ε)2 values. The
magnetic properties of a variety of magnetic solids are well
described by the (∆ε)2 values obtained from EHTB calcula-
tions,9 when both the d orbitals of the transition metal and
the s/p orbitals of its surrounding ligands are represented by
double-ú Slater-type orbitals.10 The atomic parameters used
for the present EHTB calculations are summarized in Table
2. In this section, we examine the relative strengths of the
various spin exchange interactions defined in Figures 1d, 3a,
and 4a. The (∆ε)2 values calculated for these spin exchange
interactions are summarized in Table 1.11

For the undistorted CuClO2 layer (Figure 1d), Table 1
shows that the SE interactionJb is the strongest antiferro-
magnetic spin exchange interaction. This interaction is strong
due to the linear Cu-Cl-Cu bridge. The SSE interactionJc

is negligible because the small∠Cu-Cl‚‚‚Cl angle (135.0°)
does not allow good overlap between the magnetic orbitals
of the two spin sites (see below). The SE interactionJa is
weaker thanJb by a factor of about four. As expected, the

undistorted CuClO2 layer forms a square spin lattice defined
by the interactionsJb with spin frustration from the interac-
tions Ja.

For the CuClO2 layer composed of CuClO2 chains (Figure
3), Table 1 shows that the SE interactionJ1 is the strongest
antiferromagnetic spin exchange interaction. This interaction
is strong because the SE path Cu-Cls-Cu consists of two
short Cu-Cls bonds and because the∠Cu-Cls-Cu bond
angle (107.9°) deviates substantially from 90°. The SE
interaction J2 is negligible because the magnetic orbital
planes of the two spin sites are nearly orthogonal to each
other so that the overlap between the magnetic orbitals is
small. The SSE interactionJ3 is substantial (J3/J1 ) 0.47)
because the∠Cu-Cl‚‚‚Cl angle (159.2°) is not far from 180°
so that the magnetic orbitals of the two spin sites overlap
well. In essence, the spin lattice of the distorted CuClO2 layer
is defined by the two spin exchange interactions,J1 andJ3.
As depicted in Figure 7, this two-dimensional (2D) spin
lattice consists of strongly interacting uniform chains.

For the CuClO2 layer composed of 2n-ring clusters
depicted in Figure 4a, Table 1 shows that the SE interaction
J′1 is negligible because the magnetic orbital planes of the
two spin sites are essentially parallel to each other. The
strongest antiferromagnetic spin exchange interaction is the
intracluster interactionJ′3, which is stronger than either the
intercluster interactionJ′2 or the intracluster interactionJ′4
by a factor of approximately two. In short, the spin lattice
associated with the interactionsJ′1-J′4 cannot give rise to

(10) Clementi, E.; Roetti, C.At. Data Nucl. Data Tables1974, 14, 177.
(11) Our calculations were carried out by employing the SAMOA (Structure

and Molecular Orbital Analyzer) program package (Dai, D.; Ren, J.;
Liang, W.; Whangbo, M.-H. http://chvamw.chem.ncsu.edu/, 2002).

Table 1. Geometrical Parameters and (∆ε)2 Values Associated with the
Spin Exchange Interactions in the CuClO2 Layers of (CuCl)LaNb2O7

undistorted CuClO2 layer (Figure 1d)

geometrical parametersa (∆ε)2 a

Ja Cu‚‚‚Cu ) 3.884 Å 8100 (0.23)
Cu-Cl ) 2.746 Å (×4)
∠Cu-Cl-Cu ) 90° (×2)

Jb Cu‚‚‚Cu ) 5.492 Å 35 000 (1.00)
Cu-Cl ) 2.746 Å (×2)
∠Cu-Cl -Cu ) 180°

Jc Cu‚‚‚Cu ) 8.684 Å 820 (0.02)
Cu-Cl ) 2.746 Å (×2)
Cl‚‚‚Cl ) 3.884 Å
∠Cu-Cl‚‚‚Cl ) 135.02° (×2)

CuClO2 layer composed of CuClO2 chains (Figure 3a)

geometrical parametersa (∆ε)2

J1 Cu‚‚‚Cu ) 3.884 Å 25 000 (1.00)
Cu-Cl ) 2.402 Å (×2)
∠Cu-Cl-Cu ) 107.9°

J2 Cu‚‚‚Cu ) 5.492 Å 350 (0.01)
Cu-Cl ) 2.402 Å, Cu‚‚‚Cl ) 3.142 Å
∠Cu-Cl‚‚‚Cu ) 164.2°

J3 Cu‚‚‚Cu ) 8.684 Å 11 700 (0.47)
Cu-Cl ) 2.402 Å (×2)
Cl‚‚‚Cl ) 4.025 Å
∠Cu-Cl‚‚‚Cl ) 159.2° (×2)

CuClO2 layer with 2n-ring clusters (Figure 4a)

geometrical parametersa (∆ε)2

J′1 Cu‚‚‚Cu ) 3.884 Å 150 (0.00)
Cu-Cl ) 2.402 Å, Cu‚‚‚Cl ) 3.142 Å
∠Cu-Cl‚‚‚Cu ) 87.9°

J′2 Cu‚‚‚Cu ) 5.492 Å 25 000 (0.44)
Cu-Cl ) 2.402 Å, Cu‚‚‚Cl ) 3.142 Å
∠Cu-Cl‚‚‚Cu ) 164.2°

J′3 Cu‚‚‚Cu ) 3.884 Å 56 700 (1.00)
Cu-Cl ) 2.402 Å (×2)
∠Cu-Cl-Cu ) 107.9°

J′4 Cu‚‚‚Cu ) 3.884 Å 29 000 (0.51)
Cu-Cl ) 2.402 Å (×2)
∠Cu-Cl-Cu ) 107.9°

a In units of (meV)2. The numbers in the parentheses give the relative
tendency for antiferromagnetic coupling.

Table 2. Exponents,úi, and Valence Shell Ionization Potentials,Hii, of
Slater-type Orbitals,øi, Used for Extended Hu¨ckel Tight-Binding
Calculationa

atom øi Hii (eV) úi Cb ú′i C′ b

Cu 4s -11.4 2.151 1.0
Cu 4p -6.06 1.370 1.0
Cu 3d -14.0 7.025 0.4473 3.004 0.6978
Cl 3s -26.3 2.927 0.6262 1.854 0.5051
Cl 3p -14.2 2.624 0.5540 1.475 0.5519
O 2s -32.3 2.688 0.7076 1.675 0.3745
O 2p -14.8 3.694 0.3322 1.659 0.7448

a The diagonal matrix elementHii is defined as<øi|Heff|øi>, whereHeff

is the effective Hamiltonian. In our calculations of the off-diagonal matrix
elementsHeff ) <øi|Heff|øj>, the weighted formula was used.b Contraction
coefficients used in the double-ú Slater-type orbital.

Figure 6. Magnetic orbitals for the CuCl4O2 octahedron of (a) Figure 1c,
(b) Figure 2b, and (c) Figure 2d.
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simple uniform spin lattices such as uniform chains and 2D
square/rectangular lattices.

As far as the disorder of the Cl-atom position is concerned,
each CuClO2 layer can be regarded as composed of CuClO2

chains (Figure 3) or as composed of various 2n-ring clusters
with or without long-range order (Figure 4). It is important
to examine whether the spin lattices associated with such
CuClO2 layers can give rise to a spin gap. This question is
probed in the next section.

3. Predicting a Spin Gap on the Basis of the Classical
Spin Approximation

3.1. Quantum Versus Classical Spin Descriptions of
Energy Spectrum. Suppose that a magnetic system ofM
spin sites with spinsµ at each spin siteµ ()1, 2, ...,M) is
described by a spin HamiltonianĤ. In principle, the energy
spectrum of this system can be determined by evaluating
the matrix representation ofĤ in terms of a set of basis
functions and then diagonalizing the resulting matrix. For
simplicity, assume that all the spin sites have a same
magnetic ion so thats1 ) s2 ) ... ) sM ) s. Then, each spin
site µ is represented by 2s + 1 spin basis functions|s, ms〉µ

(ms ) -s, -s + 1, ...,s - 1, s), and the basis functions for
the system by the product functions,

The total number of such spin basis functions is (2s + 1)M,
and the eigenstates of the system are constructed as linear
combinations of these functions, so that the matrix repre-
sentation ofĤ becomes a (2s + 1)M × (2s + 1)M matrix.
With increasingM, the number (2s + 1)M quickly becomes
large, thereby making it impossible to determine the eigen-
value spectrum on the basis of diagonalizing the matrix
representation ofĤ.12 Thus, it is a difficult and challenging
task to determine the eigenvalue spectra of extended spin
lattices.8,13-16

In the classical spin approximation,9b,17 each spin site is
represented by a spin momentσµ

0 (µ ) 1, 2, ...,M) under

the assumption that it can adopt all possible orientations in
space rather than the 2s + 1 directions allowed in quantum
mechanics. The energy states of a magnetic system are then
determined as linear combinations of theM basis functions
σµ

0 (µ ) 1, 2, ...,M). This way of generating a magnetic
energy spectrum is analogous in spirit to that of estimating
an electronic energy spectrum by solving an eigenvalue
equation with an effective one-electron Hamiltonian (e.g., a
Fock equation in Hartree-Fock theory and the equivalent
Kohn-Sham equation in density functional theory).18 The
magnetic energy spectrum obtained from the classical spin
approximation does not include many-body electron cor-
relation effects. Nevertheless, given that a rigorous theoretical
analysis 8,13,14,16 cannot readily address the question of
whether a 2D spin lattice with a large unit cell size (e.g.,
that shown in Figure 7, see below) has a spin gap, it is
desirable to be able to provide a plausible answer to such a
question. For this purpose, we examine in the next section
whether the occurrence of a spin gap in a spin lattice can be
related to the energy spectrum of the lattice obtained by the
classical spin approximation.

3.2. Eigenvalue Spectra of Simple Spin Lattices.The
total spin exchange energy of an ordered spin arrangement
of a magnetic system can be estimated by using the Freiser
method,9b,17 which assumes that spins adopt all possible
directions in space (i.e., the classical spin approximation)
and the spin exchange interactions are isotropic (i.e., a
Heisenberg description). In a long-range ordered magnetic
state of a magnetic system, the spin sitesµ ()1, 2, ...,m) of
its unit cell located at the coordinate origin (i.e., the lattice
vectorR ) 0) have the spin momentsσµ

0. For a magnetic
solid with repeat vectorsa, b, and c, the ordered spin
arrangement is described by the spin functionsσµ(k),

whereM is the number of unit cells in the magnetic solid,k
is the wave vector, andR is the direct lattice vector.19 The
ordered magnetic stateψi(k) (i ) 1 - m) is then expressed
as a linear combination of the spin functionsσµ(k),

To determine the energyEi(k) of the stateψi(k) and the
coefficientsCµi(k) (µ ) 1 - m), one needs to evaluate the
spin exchange interaction energiesêµν(k) between every two
spin functionsσµ(k) andσν(k),

(12) Dai, D.; Whangbo, M.-H.J. Chem. Phys. 2004, 121, 672.
(13) Barnes, T.Int. J. Mod. Phys. C1991, 2, 659.
(14) Dagotto, E.ReV. Mod. Phys. 1994, 66, 763.
(15) Johnston, D. C.; Kremer, R. K.; Troyer, M.; Wang, X.; Klumper, A.;

Bud’ko, S. L.; Panchula, A. F.; Canfield, P. C.Phys. ReV. B 2000,
61, 9558.

(16) Quantum Magnetism(Lecture Notes in Physics, Vol. 645); Schollwöck,
U., Richter, J., Farnell, D. J. J., Bishop, R. F., Eds.; Springer: New
York, 2004.

(17) Freiser, M. J.Phys. ReV. 1961, 123, 2003.

(18) Wimmer, E. InDensity Functional Methods in Chemistry; Labanowski,
J. K., Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991; Ch.
2.

(19) Given the lattice vector written asR ) naa + nbb + ncc, wherena,
nb, andnc are integers, and the wave vectork written ask ) xaa* +
xbb* + xcc*, wherea*, b* , andc* are the reciprocal vectors, andxa,
xb, andxc are dimensionless numbers, the exp(ik‚R) term becomes
exp[i2π(xana + xbnb + xcnc)].

Figure 7. Spin lattice for the distorted CuClO2 layer defined by the two
spin exchange interactionsJ1 andJ3, whereJ3/J1 ) 0.47.

|s, ms〉1|s, ms〉2 ... |s, ms〉M

σµ(k) )
1

xM
∑
R

σµ
0 exp(ik‚R) (2)

ψi(k) ) C1i(k)σ1(k) + C2i(k)σ2(k) + ... + Cmi(k)σm(k) (3)

êµν(k) ) - ∑
R

Jµν(R) exp(ik‚R), (4)
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and diagonalize the resulting interaction matrix¥(k),

This method of calculating the total spin exchange interaction
energy was originally developed to predict the superstructure
of a magnetic system by finding the wave vector at which
its global energy minimum occurs.9b,17

It is noted that a spin gap does not occur for an
antiferromagnetic uniform chain of spin-1/2 ions, but it does
for an isolated spin dimer of spin-1/2 ions and for an
antiferromagnetic alternating chain of spin-1/2 ions.15,20,21To
examine if these observations can be related to the energy
spectra of these systems determined by the Freiser method,
we consider a chain made up of spin dimers with repeat
distance a, which is described by two spin exchange
parametersJ and J′ (Figure 8). This system represents a
collection of isolated antiferromagnetically coupled dimers
if J < 0 and J′/J ) 0, an antiferromagnetically coupled
alternating chain ifJ < 0 and 0 < J′/J < 1, and an
antiferromagnetically coupled uniform chain ifJ < 0 and
J′/J ) 1. For this one-dimensional (1D) system,k ) xa(2π/
a) wherexa is a dimensionless number.19 Each unit cell of
this chain has two spin sites so that there are two spin basis
functions σ1(k) and σ2(k). The nonzero energy matrix
elementsêµν(k) (µ, ν ) 1, 2) are given by

which lead to the two energy bands

Plots ofE1(k) andE2(k) as a function ofk are presented in
Figure 9. ForJ′/J ) 0 (Figure 9a), the two bands are flat
since the interaction between adjacent dimers is zero. The
lower band represents the fact that each dimer is in the
ground singlet state, and the upper band that each dimer is
in the excited triplet state. The presence of an energy gap
between the two bands is consistent with the fact that each
isolated spin dimer has a spin gap. For 0< J′/J < 1 (Figure
9b), the two bands are separated by an energy gap. The top
of the lower band represents the state in which each dimer
in the ground singlet state interacts ferromagnetically with

its nearest-neighbor dimers (Figure 10a), and the bottom of
the upper band the state in which each dimer in the excited
triplet state interacts antiferromagnetically with its nearest-
neighbor dimers (Figure 10b). As long as 0< J′/J < 1, these
two states differ in energy so that the two bands are separated
by an energy gap. This is consistent with the fact that an
antiferromagnetic alternating chain has a spin gap. ForJ′/J
) 1 (Figure 9c), the two bands merge because the top of
the lower band becomes the same in energy as the bottom
of the upper band, so that there is no energy gap between
the two bands. This is consistent with the fact that an
antiferromagnetic uniform chain does not have a spin gap.
Obviously, use of this classical spin approach is not
appropriate for a Haldane system (i.e., a uniform chain made
up of integer-spin ions), which has a spin gap due to a many-
body electron correlation.20,22

As another example, we examine the 2D spin lattice in
which dimers repeat along the two orthogonal directions with(20) Kahn, O.Molecular Magnetism: VCH: New York, 1993.

(21) Mikeska, H.-J.; Kolezhuk, A. K. InQuantum Magnetism(Lecture
Notes in Physics, Vol. 645); Schollwöck, U., Richter, J., Farnell, D. J.
J., Bishop, R. F., Eds.; Springer: New York, 2004; Chapter 1. (22) Haldane, F. D. M.Phys. ReV. Lett. 1983, 50, 1153.

Figure 8. 1D chain lattice made up of spin dimers with repeat distance
as described by two spin exchange parametersJ andJ′.

¥(k) ) (ê11(k) ê12(k) ... ê1m(k)
ê21(k) ê22(k) ... ê2m(k)
... ... ... ...
êm1(k) êm2(k) ... êmm(k)

) (5)

ê12(k) ) ê21(k) ) -J - J′ cos(2πxa) (6)

E1(k) ) +J + J′ cos(2πxa)

E2(k) ) -J - J′ cos(2πxa) (7)

Figure 9. Dispersion relations of the two spin bands associated with the
1D chain lattice of Figure 8 for the cases of (a)J′/J ) 0, (b)J′/J ) 0.5, and
(c) J′/J ) 1.

Figure 10. Spin arrangements of the 1D chain lattice of Figure 8 at (a)
the top of the lower-lying spin band and (b) the bottom of the higher-lying
spin band. The filled and unfilled circles represent the up-spin and down-
spin, respectively.
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repeat distancesa andb (Figure 11). This 2D spin lattice is
described by three spin exchange parametersJ, J′, andJ′′
with two basis functions,σ1(k) and σ2(k). It becomes a
rectangular spin lattice whenJ ) J′ and 0< J′′/J < 1, and
a square spin lattice whenJ ) J′ ) J′′. The nonzero energy
matrix elements,êµν(k), are given by

which lead to the two energy bands

Plots ofE1(k) andE2(k) as a function ofk are presented in
Figure 12a for a square lattice and in Figure 12b for a
rectangular lattice. In both cases, the lower band is not
separated from the upper band, so the classical spin analysis
predicts that both lattices do not have a spin gap. This
prediction is consistent with the finding that a square spin
lattice made up of spin-1/2 ions has no spin gap.7,8,23

The above discussion suggests that the classical spin
approximation can provide a plausible answer to the question
whether a spin lattice has a spin gap. This simple approach
would fail for a magnetic system whose eigenvalue spectrum
depends strongly on many-body electron correlation effects.
Consider a spin ladder made up of spin-1/2 ions that is
described by the spin exchangeJ along the leg and the spin
exchangeJ⊥ along the rung (J⊥/J > 0). When the interchain
interaction is very weak (J⊥ , J), the ladder consists of very
weakly interacting uniform chains. When calculated using

the classical spin approximation, the energy spectrum of such
a ladder shows no spin gap (not shown). However, numerical
solutions for the eigenvalue spectrum of a spin ladder made
up of spin-1/2 ions on the basis of a rigorous theoretical
method24 showed that it has a spin gap even whenJ⊥ , J
as long asJ⊥ is nonzero. In a sense, a spin ladder consisting
of two weakly interacting uniform chains of spin-1/2 ions
behaves as a Haldane system, i.e., a single uniform chain
made up of spin-1 ions.

3.3. Spin Lattice of the CuClO2 Layer. The 2D spin
lattice of Figure 7 consists of interacting uniform chains and
is effectively a 2D rectangular lattice. Consequently, this spin
lattice is not expected to have a spin gap. A unit cell of the
spin lattice of Figure 7 has eight spin sites and hence eight
basis functionsσµ(k) (µ ) 1-8) (Figure 13a), and this lattice
is formed by two exchange parameters (here designated as
J andJ′). The nonzero energy matrix elementsêµν(k) (µ, ν
) 1-8) associated with these basis functions are summarized
in Table 3. The eight energy bandsEµ(k) (µ ) 1-8) resulting
from these spin exchange interactions are plotted as a
function ofk in Figure 13b, which shows that all the bands
overlap. Thus, as expected, it is unlikely that the 2D spin(23) Richter, J.; Schulenburg, J.; Honecker, A. InQuantum Magnetism

(Lecture Notes in Physics, Vol. 645); Schollwöck, U., Richter, J.,
Farnell, D. J. J., Bishop, R. F., Eds.; Springer: New York, 2004;
Chapter 2.

(24) Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E. S.Phys. ReV. B 1993,
47, 3196.

Figure 11. 2D spin lattice made up of spin dimers with repeat distances
a andb described by two spin exchange parametersJ andJ′.

Figure 12. Dispersion relations of the two spin bands associated with the
2D lattice of Figure 11 for the cases of (a)J′′ ) J′ ) J and (b)J′′ ) J/2
andJ′ ) J.

ê12(k) ) ê21(k) ) -J - J′ cos(2πxa) - 2J′′ cos(2πxb) (8)

E1(k) ) +J + J′ cos(2πxa) + 2J′′ cos(2πxb)

E2(k) ) -J - J′ cos(2πxa) - 2J′′ cos(2πxb) (9)

Figure 13. (a) 2D spin lattice of Figure 7 that is made up of eight spin
sites per unit cell with repeat distancesa and b and that is described by
two spin exchange parametersJ andJ′. (b) Dispersion relations of the eight
spin bands associated with the 2D chain lattice of Figure 13a, whereJ′/J )
0.5.

Table 3. Nonzero Energy Matrix Elementsêµν(k) (µ, ν ) 1-8)
Associated with the Basis Functionsσµ(k) (µ ) 1-8)

ê12(k) ) ê23(k) ) ê34(k) ) ê56(k) ) ê67(k) ) ê78(k) ) -J
ê14(k) ) ê58(k) ) -J exp(i2πxa)
ê17(k) ) -J′ - J′ exp[-i2π(xa + xb)]
ê46(k) ) -J′ - J′ exp[-i2π(xa - xb)]
ê28(k) ) -J′ exp(-i2πxa) - J′ exp(-i2πxb)
ê35(k) ) -J′ exp(i2πxa) - J′ exp(-i2πxb)
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lattice of interacting chains (Figure 7) has a spin gap. This
in turn means that this 2D spin lattice cannot be a correct
model for interpreting the magnetic properties of (CuCl)-
LaNb2O7.

Thus, we are compelled to ask what kind of spin lattice is
required for each CuClO2 layer to have a spin gap. In a
CuClO2 layer composed of 2n-ring clusters of different sizes
(e.g., Figure 4), the intra- and intercluster spin exchange
interactions cannot lead to simple uniform spin lattices such
as uniform chains and 2D square/rectangular spin lattices.
As a consequence, the magnetic energy levels of such a
CuClO2 layer are better described by discrete energy levels
(associated with the constituent ring clusters) rather than by
magnetic energy bands and hence should exhibit a spin
gapped behavior. In other words, the disorder of the Cl-atom
position in (CuCl)LaNb2O7 and the spin gapped behavior of
(CuCl)LaNb2O7 are accounted for if the CuClO2 layers have
CuCl4O2 octahedra with both linear and nonlinear Cls-Cu-
Cls units such that the CuClO2 layers consist of 2n-ring
clusters of varying sizes with no long-range order. As will
be discussed in the next section, however, this picture needs
a slight modification to accommodate results of the recent
neutron scattering4 and magnetization5 studies on (CuCl)-
LaNb2O7.

4. Discussion

From their neutron neutron scattering experiments4 Kageya-
ma et al. found that the magnetic excitations of (CuCl)-
LaNb2O7 exhibit no strong two-dimensionality as if the
CuClO2 layers consist of weakly interacting clusters that are
coupled antiferromagnetically. Such magnetic clusters can
be identified as 2n-ring clusters. The neutron scattering
experiments show a sharp peak at 2.3 meV, which corre-
sponds to the spin gap found from the magnetic susceptibility
measurements at 0.1 T (i.e.,∆ ) 2.3 meV) 26.7 K).4 This
finding implies that there is a narrow range of preferred size
for the 2n-ring clusters because the spin gap of a 2n-ring
cluster should decrease with increasingn. The neutron
scattering study also shows a small peak at 5.0 meV whose
temperature dependence is similar to that of the 2.3 meV
peak. The origin of the 5.0 meV peak is not well understood,
although the collective bound state excitation of several
elementary triplets has been considered as a possible origin.4

It is tempting to suggest that the 5.0 meV excitation is a
spin gap of small 2n-ring clusters.

The magnetization study of (CuCl)LaNb2O7 by Kageyama
et al.5 presents a more complex spin gapped behavior: (a)
the spin gap disappears at 10.3 T, which is much lower than
expected from the spin gap, i.e., 18.4 T () ∆/gµB), and (b)
the magnetization increases linearly without any trace of
fractional plateaus until it saturates at 30.1 T. According to
observation (a), the apparent spin gap determined from the
magnetization experiments is considerably smaller than that
deduced from the magnetic susceptibility and neutron scat-
tering experiments. Observation (b) implies that interactions
among magnetic excitations are substantial, as typically found
for a one-dimensional magnet, which is in apparent contra-
diction to the localized nature of the triplet excitations found
from the neutron scattering experiments.4 As to why (a) and

(b) are observed in the magnetization experiments, Kageyama
et al.5 have considered a number of possible scenarios. The
investigation of this question is beyond the scope of the
present work. Nevertheless, one may speculate if the
observation (b) has a structural origin. For example, suppose
that the 2n-ring clusters responsible for the 2.3 meV gap
are large enough that their two constituent chain fragments
of n spin sites may behave like extended chains. Then, the
localized nature of the triplet excitations may reflect weak
interactions between adjacent 2n-ring clusters, while the
sizable interactions among magnetic excitations detected by
the magnetization study may reflect interactions within each
2n-ring cluster. If this reasoning is correct, the observation
(a) should originate from the property of a 2n-ring cluster.
A plausible scenario would be that a 2n-ring cluster has a
bound state withS) 2, which is one of the several scenarios
suggested by Kageyama et al.5

5. Concluding Remarks

A 2D square spin lattice is not a proper model for
describing the magnetic properties of (CuCl)LaNb2O7 due
to the disorder of its Cl-atom position. This disorder indicates
that the Cu2+ ions of the CuCl4O2 octahedra have the four-
short-two-long coordinate environments, and such CuCl4O2

octahedra appear in the CuClO2 layers without long-range
order in their orientation and shape. If the Cls-Cu-Cls units
of the CuCl4O2 octahedra are restricted to be linear, each
CuClO2 layer is divided into CuClO2 chains, thereby leading
to a 2D spin lattice of strongly interacting uniform chains.
The classical spin analysis suggests that this 2D spin lattice
does not have a spin gap and hence cannot explain the
presence of a spin gap in (CuCl)LaNb2O7. For each CuClO2
layer to have a spin gap, it should have CuCl4O2 octahedra
with both linear and nonlinear Cls-Cu-Cls units such that
there occur no uniform chains but 2n-ring clusters of certain
size with no long-range order. This structural model of
magnetic clusters should be taken into consideration in
interpreting the magnetic properties of (CuCl)LaNb2O7

determined by neutron scattering and magnetization experi-
ments.

It is intriguing that the general features of the magnetic
susceptibility of (CuCl)LaNb2O7 are reasonably well ap-
proximated by an isolated spin dimer model with the Cu‚‚
‚Cu distance found for the fourth nearest-neighbor spin
exchange interactionJc (Figure 1d). In the fitting analysis
of the neutron scattering intensity profile using an isolated
spin dimer model,4 it is implicitly assumed that the orienta-
tion of an isolated spin dimer is random and is independent
of those of other isolated spin dimers. This assumption is
valid when each crystallite of a powder sample contains only
one isolated spin dimer. The latter is highly unlikely so that
the intriguing observation is most likely a fortuitous one.
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