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The magnetic susceptibility of (CuCl)LaNb,0O; shows a spin gap despite the Cu?* ions in each CuClO; layer forming
a square lattice. To account for this observation, we explored implications of the disorder of the Cl-atom position
in (CuCl)LaNb,0- by considering possible ordered structures of CuCl,0, octahedra in each CuClO, layer, by identifying
various spin exchange interactions of a CuClO, layer and by estimating the relative strengths of these interactions
in terms of spin dimer analysis. We then probed what kind of spin lattice is required for each CuClO, layer to have
a spin gap on the basis of the classical spin approximation. Our study suggests that the CuCl,O, octahedra of
each CuClO; layer should be arranged such that the resulting spin lattice does not have uniform chains but ring
clusters containing an even number of Cu atoms. Implications of this conclusion were discussed on the basis of
the recently reported neutron scattering and magnetization studies of (CuCl)LaNb,O5.

1. Introduction

The crystal structufeof (CuCl)LaNkO; is made up of
CuCl sheets (Figure 1a) and p@y double-perovskite slabs
(Figure 1b), with the L& ions located at the 12-coordinate
sites of the double-perovskite slabs. The CuCl sheets alternate
with the NO; slabs along the direction such that each
CuCl, square of a CuCl sheet is axially capped by two
oxygen atoms to form a Cugfd, octahedron (Figure 1c),
and every CuCl sheet becomes a Cugdiyer (Figure 1d).
The Cu@t ions of the CuCIQ@ layers are the only magnetic
ions of (CuCl)LaNBbO; and form a square lattice. The X-ray
powder diffraction studyof (CuCl)LaNkO; reported that
the Cl atoms in each CuCl sheet are located at the centers
of the Cuy squares, so that each CyQ} octahedron has
D4» symmetry with Ct-Cl = 2.746 A and Cu-O = 1.841
A. The Cu-Cl bond is rather long compared with the value
expected from the ionic radii sum (i.e., 2.54 AYhis
coordinate environment (i.e., four long and two short bonds)
is unusual for a C ion. A realistic picture for the Figure 1. Structural building blocks of (CuCl)LaNB;: (a) CuCl sheet,
coordinate environment of the uions was provided by () NPOr slab, () CuGio; octahedron, and (d) CuCldayer. The blue,

” . . yellow, cyan, and white circles represent the Cu, Cl, Nb, and O atoms,
the neutron powder diffraction studyyhich shows thatthe  respectively.

* To whom correspondence should be addressed. E-mail: mike_whangbo@Cl| atom in each Cusquare is displaced from its center to

ncsu.edu. i iti i i i
(1) Kodenkandath, T. A.: Lalena, J. N.: Zhou, W. L.; Carpenter, E. E. the four split positions around it (Figure 2a). By selecting

Sangregorio, C.; Falster, A. U.: Simmons, W. B., Jr.; O'Connor, C. One of the four split positions for each Cl, every Cy@l

@ JSh Wiley: % BD-/i. tAnE: Chteﬂﬂ. 502\1199979613221: 71501743. octahedron can have two short-€0l (hereafter referred to
annon, R. DACla Crystallogr. .
(3) Caruntu, G.; Kodenkandath, T. A.; Wiley: J. Blater. Res. Bull as CU_CIS) and tWO Iong Cu-Cl (hereafter referred t_o as
2002 37, 593. Cu—Cl) bonds (i.e., 2.402 and 3.142 A, respectively).
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measured for powder samples,is found that the Cu-Cu
distance of the dimer is close to that of the fourth nearest-
neighbor spin exchange interactidn(Figure 1d).

In view of the fact that the Cl-atom position in (CuCl)-
LaNk,O- is disordered,one should question if a square spin
lattice is a proper model for (CuCl)LaMB;. In interpreting
the magnetic properties of a magnetic compound, it is
essential to identify its spin lattice (i.e., the lattice made up
of strongly interacting spin exchange paths). It is frequently
assumed that the spin lattice of a magnetic system containing
transition metal ions with unpaired spins is the same as the
Figure 2. Structures of CuGD; octahedra: (a) undistorted CuOb geometrical arrangement of its metal ions. For a complex
OCtaL‘eg:gg V\\flviiw“;oeugrﬁgffglﬁo(n; égtoi?;gcﬂbgi)ofgﬁggi r?\%! magnetic system, a spin lattice suggested by this intuitive
gl(i:gt]itl)e/ bent C{—Cu—Cls, and (d) (?istorted Cu@D, octahzedron with)Cls— appeal is .Often mcorreCt because _the. strgngth of a §p|n
Cu—Cls = 90°. In (b)—(d) the four bonds around the Cu atom are shown €xchange interaction between two spin sites is not determined
as green cylinders. by the distance between the two spin sites but by the overlap
) _ between their magnetic orbitélonsequently, it is crucial
Consequently, the resulting octahedron has four short (i.e., identify the spin lattice of a magnetic system on the basis

two Cu-0 and two Ce-Clg) and two long (i.e., two Ctt of appropriate electronic structure calculations. So far, there
Cl)) bonds, which is the usual coordinate environment for a pas peen no study concerning how the disorder of the CI-

Cu** ion. An example is shown in Figure 2b, where the two  4¢om position in (CuCl)LaNiD; might affect its spin

Cu—0 and two Cu-Cls bonds form a CuGD, rhombus with g change interactions and hence the topology of its spin

linear CL—Cu—Cls. The disorder of the Cl-atom position |5tiice. The present work probes this and its related questions.

gsgaé trz[t’aweglz chﬁﬁ%gesrﬁo?tf ;ﬁgct\l/)vl;all\(l)a&’ et?; Our work is organized as follows. In Section 2, we search
2 9 for a spin lattice model relevant for the CuGl@yer by

?onds z;rehpresent W'Lh?m long-range order in their orienta- examining the consequence of the disorder of the Cl-atom
lon and shape (see below). position on the coordinate environment of the?Cions in

\_/Vhen_ its CuClQ Iayer.s are con.sidered to form a square the CuCIQ layer, identifying various spin exchange paths
spin lattice, the magnetic properties of (CuCl)LaBbare of the CuClQ layer, and then evaluating their relative

quite puzzling to understarfe.If the CuCLO; octahedra of  gyengths on the basis of spin dimer analysis. In Section 3,
(CuClLaNhO; possesD4, symmetry as suggested by the e giscuss how one might use the classical spin approxima-
X-ray powder diffraction study, each CuGl@yerforms a = o, 15 predict whether a spin lattice has a spin gap and then
square spin lattice defined by two spin exchange mteractlonsprobe what kind of spin lattice is required for the CuglO

Ja andJ, (Figure 1d)**In general, the spin exchande  |3yer to have a spin gap. Essential findings of our work are
through the linear CuCl—Cu bridge should be more summarized in Section 4.

strongly antiferromagnetic than the spin exchafgérough

the Cu-CI—Cu bridges withCu—CI—Cu = 90°. Thus, 2 spin Exchange Paths and Spin Dimer Analysis
the spin lattice of the CuClQayer is essentially a square

spin lattice (defined by the spin exchange interactid)s 2.1. Octahedral Distortion and Spin Exchange Paths.
the magnetic susceptibility of which is expected to have a When all the CuCO, octahedra have the four-short-two-
broad maximum with nonzero value &t= 0.78 Although long coordination (Figure 2b) with linear £1Cu—Cls units,

the magnetic susceptibility of (CuCl)LaMB; shows a broad ~ the CuCIQ layer is divided into CuCl@chains of corner-
maximum at 16.5 K;* it decreases sharply to zero below sharing CuGIO, rhombuses (Figure 3). Because there are
16.5 K, hence leading to a spin gap (i.e., the energy gap four different ways of selecting two short and two long-€u
that separates the singlet ground state from the first excitedCl bonds for each Cu@D, octahedron, there occur four
state). Surprisingly, the general features of the magnetic different CuCIQ chain arrangements, as shown in Figure 3.
susceptibility of (CuCl)LaNgO; are reasonably well de- If a CuCLO; octahedron is allowed to have a nonlineag-Cl
scribed by an isolated spin dimer modélurthermore, when ~ Cu—Cls unit, other types of Cii-ion environments are
an isolated spin dimer model is used to analyze the possible. The Cu@D, octahedron of Figure 2c differs from
Q-dependence of the neutron scattering intensity profile that of Figure 2b since the £1Cu—Cls unit is slightly bent
(OCIs—Cu—Cls = 162.7), but that of Figure 2d is consider-
(4) Kageyama, H.; Kitano, T.; Oba, N.; Nishi, M.; Nagai, S.; Hirota, K.; ably different with 1Cls—Cu—Cls = 90°. When CuCJO,

XiCBU'PLH;;’Vi?gC: JJ.p?ébgsas?lzdal,7Jd;zBaba, Y.; Ajiro, Y. Yoshimura,  gctahedra with nonlinear Cu—Cls units are included, the

(5) Kageyama, H.; Yasuda, J.; Kitano, T.; Totsuda, K.; Narumi, Y.; CUCIQ; layers of (CuCl)LaNBO; can be divided into “ring
Hagiwara, M.; Kindo, K.; Baba, Y.; Oba, N.; Ajiro, Y.; Yoshimura,  clusters” containing an even number of Cu atoms (hereafter
K. J. Phys. Soc. Jpr2005 74, 3155.

(6) Goodenough, J. BMagnetism and the Chemical BagniViley:

Cambridge, MA; 1963. (9) For recent reviews, see: (a) Whangbo, M.-H.; Koo, H.-J.; Dai].D.
(7) Takahashi, MPhys. Re. B 1989 40, 2494. Solid State Chen2003 176, 417. (b) Whangbo, M.-H.; Dai, D.; Koo,
(8) Manousakis, E.Rev. Mod. Phys 1991, 63, 1. H.-J. Solid State Sci2005 7, 827.
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Figure 3. Four different arrangements of the CuGléhains of a CuCIlQ
layer that result when all the CufC), octahedra have the four-short-two-
long coordination with linear G+Cu—Cls units.

Figure 4. CuCIQ, layers composed ofr2ring clusters: (a) a CuCID
layer with long-range order and (b) a CuGl@yer without long range
order. For simplicity, the long CtCl bonds are not shown.

referred to as 2ring clusters), as illustrated in Figure 4. In
principle, each CuCl@layer can be divided intorring
clusters of varying sizes with or without long-range order.
However, it is likely that each CuClQayer consists of 2
ring clusters of similar size without long range order. In a
ring cluster with 2 > 6, each ring consists of two parallel
chain fragments containing CW?" ions, the two ends of
which are each capped by as@tom.

Figure 5. Spin dimers associated with the spin exchange interacigns
Jn, andJ; of the undistorted CuCl@ayer (Figure 1d),J1, J,, andJs of the
CuCIQ; layer composed of CuClCrhains (Figure 3a), andl; J'», J'3, and
J4 of the CuCIQ layer composed ofr2ring clusters (Figure 4a).

The spin exchange interactions of interest for the “undis-
torted” CuCIQ layer (Figure 1d) ard,, J», andJ.. The spin
dimers associated with these interactions are shown in Figure
5a—c. The corresponding spin exchange interactions in the
“distorted” CuCIQ layer consisting of CuClgxhains (Figure
3a) ared;, Jo, andJs. The spin dimers representing these
interactions are shown in Figure 58 For the CuCIQ layers
composed of @-ring clusters, there occur a number of
different spin exchange paths within and between adjacent
clusters, as shown by the interactialg J'2, J'3, andJ 4 in
Figure 4a. The spin dimers representing these interactions
are shown in Figure 5g¢j. Some structural parameters
associated with these spin exchange paths are summarized
in Table 1.

2.2. Spin Dimer Analysis and Spin Lattice. The CuClO,
octahedra of Figures 1c, 2b, and 2d have the magnetic
orbitals shown in Figures 6a, 6b, and 6c, respectively. For a
spin dimer consisting of two spin sites, the two magnetic
orbitals interact to give rise to an energy sple. When the
two spin sites of a spin dimer are nonequivalent, their
magnetic orbitals are different in energy hg’. Obviously,

A€’ = 0 if the two spin sites are equivalent. In the spin dimer
analysis based on extended diel tight binding (EHTB)
calculations, the strength of an antiferromagnetic interaction
between two spin sites is estimated by considering the
antiferromagnetic spin exchange parameigt®

2
e =— % 1)

where Ae)? = (Ae)? — (Ae”)?, andUe is the effective on-
site repulsion that is essentially a constant for a given
compound. Therefore, the trend in thg values is deter-
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Table 1. Geometrical Parameters antl<f? Values Associated with the Table 2. Exponentsg;, and Valence Shell lonization Potentials;, of

Spin Exchange Interactions in the CuGlQayers of (CuCl)LaNbO; Slater-type Orbitalsyi, Used for Extended Hikel Tight-Binding
] ) Calculatior
undistorted CuCl@layer (Figure 1d) Ry N - "
geometrical parametérs (Ae)?a atom Xi i (V) & c i ¢
Ja Cu-Cu=3.884 A 8100 (0.23) cu 4s _}1'4 2151 1.0
Cu—Cl = 2.746 A (x4) Cu 4p 6.06 1.370 1.0
DCu—CI—éu =90° (x2) Cu 3d —14.0 7.025 0.4473 3.004 0.6978
o Cu-Cu=5.492 A 35000 (1.00) Cl 3s —26.3 2.927 0.6262 1.854 0.5051
Cu—Cl=2.746 A (x2) Cl 3p —14.2 2.624 0.5540 1.475 0.5519
0Cu—Cl —Cu= 18C° o 2s  —323 2.688 0.7076  1.675  0.3745
Je Cu--Cu=8.684 A 820 (0.02) O 2p —14.8 3.694 0.3322 1.659 0.7448
Cu—Cl=2.746 A (x2) . . . ' f .
Cl---Cl=3.884 A aThe diagonal matrix elemeit; is defined as<y;i|H®"|y;>, whereH®
OCu—Cl---Cl = 135.02 (x2) is the effective Hamiltonian. In our calculations of the off-diagonal matrix
elementdHe = <y;|Heffy;>, the weighted formula was usetiContraction
CuClIQ;, layer composed of CuClhains (Figure 3a) coefficients used in the doubleSlater-type orbital.
geometrical parametérs (Ae€)?
Ju CuCu=3.884 A 25000 (1.00)
Cu—Cl=2.402 A (x2)
OCu—Cl-Cu=107.9
N Cu-Cu=5.492 A 350 (0.01)
Cu—Cl=2.402 A, Cu--Cl=3.142 A
OCu—Cl---Cu=164.2
J3 Cu+-Cu=8.684 A 11 700 (0.47)
Cu—Cl=2.402 A (x2)
Cl--Cl=4.025 A
OCu—Cl---Cl = 159.2 (x2)
CuClIQ, layer with 2n-ring clusters (Figure 4a)
geometrical parametérs (Ae)?
Jy Cu--Cu=3.884 A 150 (0.00)
Cu—Cl=2.402 A, Cu--Cl=3.142 A
OCu—Cl--:Cu=87.9
Js Cu-Cu=5.492 A 25000 (0.44)
g‘é‘uf'czl Zégi’ieil}d =3.142A Figure 6. Magnetic orbitals for the Cu@D; octahedron of (a) Figure 1c,
Js Cu--Cu= 3884 A 56 700 (1.00) (b) Figure 2b, and (c) Figure 2d.
Cu—Cl=2.402 A (x2)
OCu—Cl-Cu=107.9 undistorted CuCl@Ilayer forms a square spin lattice defined
Js  Cu--Cu=3.884A 29 000 (0.51) by the i ions. with soin f ion f he |
Cu—Cl = 2.402 A (x2) y the interactiongy, with spin frustration from the interac-
OCu—Cl-Cu=107.9 tions J,.
a1n units of (meV}. The numbers in the parentheses give the relative ~ For the CuCIQ layer composed of CuClhains (Figure
tendency for antiferromagnetic coupling. 3), Table 1 shows that the SE interacti@ris the strongest

antiferromagnetic spin exchange interaction. This interaction
is strong because the SE path-@Lis—Cu consists of two
short Cu-Cls bonds and because thiégCu—Cls—Cu bond
angle (107.9) deviates substantially from 90 The SE
interaction J, is negligible because the magnetic orbital
planes of the two spin sites are nearly orthogonal to each
other so that the overlap between the magnetic orbitals is
small. The SSE interactiods is substantial J3/J; = 0.47)
because thelCu—Cl---Cl angle (159.2) is not far from 180

so that the magnetic orbitals of the two spin sites overlap
well. In essence, the spin lattice of the distorted Cudé@er

is defined by the two spin exchange interactiohsand Js.

shows that the SE interactial is the strongest antiferro- As.deplctec_i In Figure 7, t_h|s two.-dlmer-lsmnal (Z.D) spin
magnetic spin exchange interaction. This interaction is strong lattice consists of strongly interacting unlfo.rm chains.

due to the linear CtCl—Cu bridge. The SSE interactidh For the CuCIQ layer composed of r2ring clusters

is negligible because the smalcu—Cl---Cl angle (135.6) depicted in Figure 4a, Table 1 shows that the SE interaction
does not allow good overlap between the magnetic orbitals J'1 iS negligible because the magnetic orbital planes of the
of the two spin sites (see below). The SE interactigis two spin sites are essentially parallel to each other. The
weaker thanJ, by a factor of about four. As expected, the Strongest antiferromagnetic spin exchange interaction is the
intracluster interactiod's, which is stronger than either the
(10) Clementi, E.; Roetti, CAt. Data Nucl. Data Tabled974 14, 177. intercluster interactiod', or the intracluster interactiodi,

(11) Our calculations were carried out by employing the SAMOA (Structure : - -
and Molecular Orbital Analyzer) program package (Dai, D.; Ren, J.; by a factor of approximately two. In short, the spin lattice

Liang, W.; Whangbo, M.-H. http://chvamw.chem.ncsu.edu/, 2002). associated with the interactiod§—J'4 cannot give rise to

mined by that in the corresponding\d)?> values. The
magnetic properties of a variety of magnetic solids are well
described by theX¢)? values obtained from EHTB calcula-
tions? when both the d orbitals of the transition metal and
the s/p orbitals of its surrounding ligands are represented by
double¢ Slater-type orbitald? The atomic parameters used
for the present EHTB calculations are summarized in Table
2. In this section, we examine the relative strengths of the
various spin exchange interactions defined in Figures 1d, 3a,
and 4a. The/e¢)? values calculated for these spin exchange
interactions are summarized in Tablé1.

For the undistorted CuClOlayer (Figure 1d), Table 1
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the assumption that it can adopt all possible orientations in
space rather than thes 2 1 directions allowed in quantum
mechanics. The energy states of a magnetic system are then
determined as linear combinations of tklebasis functions
o0 (u =1, 2, ..,M). This way of generating a magnetic
energy spectrum is analogous in spirit to that of estimating
an electronic energy spectrum by solving an eigenvalue
equation with an effective one-electron Hamiltonian (e.g., a
Fock equation in HartreeFock theory and the equivalent
Figure 7. Spin lattice for the distorted CuClQayer defined by the two Kohn—Sham equation in density functional theot§)The
spin exchange interactions and Js, whereJ/J, = 0.47. magnetic energy spectrum obtained from the classical spin
approximation does not include many-body electron cor-
relation effects. Nevertheless, given that a rigorous theoretical
analysis 8131416 cannot readily address the question of
whether a 2D spin lattice with a large unit cell size (e.qg.,
that shown in Figure 7, see below) has a spin gap, it is
desirable to be able to provide a plausible answer to such a
guestion. For this purpose, we examine in the next section
whether the occurrence of a spin gap in a spin lattice can be
related to the energy spectrum of the lattice obtained by the
classical spin approximation.

3. Predicting a Spin Gap on the Basis of the Classical 3.2. Eigenvalue Spectra of Simple Spin LatticesThe
Spin Approximation total spin exchange energy of an ordered spin arrangement

of a magnetic system can be estimated by using the Freiser
method?®1” which assumes that spins adopt all possible
directions in space (i.e., the classical spin approximation)
and the spin exchange interactions are isotropic (i.e., a
Heisenberg description). In a long-range ordered magnetic
state of a magnetic system, the spin sits=1, 2, ...,m) of

its unit cell located at the coordinate origin (i.e., the lattice
vectorR = 0) have the spin moments?. For a magnetic
solid with repeat vectors, b, and c, the ordered spin
arrangement is described by the spin functiopg),

simple uniform spin lattices such as uniform chains and 2D
square/rectangular lattices.

As far as the disorder of the Cl-atom position is concerned,
each CuClQ@layer can be regarded as composed of CyCIO
chains (Figure 3) or as composed of varionsidg clusters
with or without long-range order (Figure 4). It is important
to examine whether the spin lattices associated with such
CuCIG, layers can give rise to a spin gap. This question is
probed in the next section.

3.1. Quantum Versus Classical Spin Descriptions of
Energy Spectrum. Suppose that a magnetic systemNof
spin sites with spirs, at each spin sitg (=1, 2, ...,M) is
described by a spin Hamiltoniath. In principle, the energy
spectrum of this system can be determined by evaluating
the matrix representation d in terms of a set of basis
functions and then diagonalizing the resulting matrix. For
simplicity, assume that all the spin sites have a same
magnetic ion so thag = s, = ... = sy = s. Then, each spin
siteu is represented bys2t+ 1 spin basis functiongs, ml)
(ms=—s,—s+1,..,s—1,9), and the basis functions for 1
the system by the product functions, o,k) = \/—_ Z aﬂo exp(k-R) (2

M

s, mdls, mdd... Is, mly,

whereM is the number of unit cells in the magnetic sokd,
The total number of such spin basis functions is{21)", is the wave vector, anB is the direct lattice vectdf. The
and the eigenstates of the system are constructed as lineanrdered magnetic statg (k) (i = 1 — m) is then expressed
combinations of these functions, so that the matrix repre- as a linear combination of the spin functiongk),
sentation ofd becomes a @+ 1) x (2s + 1) matrix.
With increasingV, the number (8 + 1) quickly becomes (k) = C;;(K)o,(k) + Cy(K)oy(k) + ... + C (K)o (K) (3)
large, thereby making it impossible to determine the eigen-
value spectrum on the basis of diagonalizing the matrix To determine the energi(k) of the stateyi(k) and the
representation dfl.*? Thus, it is a difficult and challenging coefficientsC,i(k) (« = 1 — m), one needs to evaluate the
task to determine the eigenvalue spectra of extended spinspin exchange interaction energias(k) between every two

lattices?*3-16 spin functionso, (k) ando,(k),
In the classical spin approximatiéhl’ each spin site is
represented by a spin momenf (u = 1, 2, ...,M) under E, (k)= — ZJW(R) exp(k-R), (4)

(12) Dai, D.; Whangbo, M.-HJ. Chem. Phys2004 121, 672.
(13) Barnes, Tint. J. Mod. Phys. C1991, 2, 659.

(14) Dagotto, ERev. Mod. Phys 1994 66, 763. (18) Wimmer, E. InDensity Functional Methods in Chemistbyabanowski,
(15) Johnston, D. C.; Kremer, R. K.; Troyer, M.; Wang, X.; Klumper, A.; J. K., Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991; Ch.
Bud'ko, S. L.; Panchula, A. F.; Canfield, P. €hys. Re. B 200Q 2.
61, 9558. (19) Given the lattice vector written & = nza + nyb + ncc, wheren,,
(16) Quantum MagnetisrtLecture Notes in Physics, Vol. 645chollwick, np, andn are integers, and the wave vectowritten ask = x,a* +
U., Richter, J., Farnell, D. J. J., Bishop, R. F., Eds.; Springer: New Xpb* + x.c*, wherea*, b*, andc* are the reciprocal vectors, amgl
York, 2004. Xp, andx. are dimensionless numbers, the ékgR) term becomes
(17) Freiser, M. JPhys. Re. 1961, 123 2003. expli2r(Xana + XpNp + XcNe)]-
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y J ¥ 21
1 2 1 2 1 2
— a EN 07 TV
Figure 8. 1D chain lattice made up of spin dimers with repeat distance
as described by two spin exchange parametersdJ'.
and diagonalize the resulting interaction mafgifk), -2 -2
r X r X
E1a(K) E1K) ... &1n(K) @JI=0 (b) J'/1J=0.5
- En(K) EpaK) ... Eom(K)
:‘(k) — 21 22 2m (5) N
Em(K) Ema(K) ... Enn(K)
This method of calculating the total spin exchange interaction -
energy was originally developed to predict the superstructure
of a magnetic system by finding the wave vector at which
its global energy minimum occuf&?”
It is noted that a spin gap does not occur for an 2
antiferromagnetic uniform chain of spin-1/2 ions, but it does r , x
d P ©¥I=1

for an isolated spin dimer of spin-1/2 ions and for an
antiferromagnetic alternating chain of spin-1/2 i6h¥21To Figure 9. Dispersion relations of the two spin bands associated with the
1D chain lattice of Figure 8 for the cases of (&) = 0, (b)J'/J = 0.5, and

examine if these observations can be related to the energyq yiy = 1.
spectra of these systems determined by the Freiser method,
we consider a chain made up of spin dimers with repeat

distance a, which is described by two spin exchange Py
parameters) and J (Figure 8). This system represents a
collection of isolated antiferromagnetically coupled dimers
if J < 0 andJ/J = 0, an antiferromagnetically coupled @
alternating chain ifJ < 0 and 0< J/J < 1, and an
antiferromagnetically coupled uniform chainJf< 0 and

1 1

J/J = 1. For this one-dimensional (1D) systekn= x,(27/ o J o J ° J ° J o J o

a) wherex, is a dimensionless numb&Each unit cell of

this chain has two spin sites so that there are two spin basis

functions o1(k) and o»(k). The nonzero energy matrix (b)

elementst 1/(k) (‘u y=1 2) are given by Figure 10. Spin arrangements of the 1D chain lattice of Figure 8 at (a)
“ ' ' the top of the lower-lying spin band and (b) the bottom of the higher-lying

_ 1 spin band. The filled and unfilled circles represent the up-spin and down-

glz(k) - gzl(k) =-J-J COS(Z‘[Xa) (6) spin, respectively.

which lead to the two energy bands its nearest-neighbor dimers (Figure 10a), and the bottom of

the upper band the state in which each dimer in the excited
triplet state interacts antiferromagnetically with its nearest-
neighbor dimers (Figure 10b). As long asQJ'/J < 1, these

two states differ in energy so that the two bands are separated

Plots of E;(k) andEx(k) as a function ok are presented in Py an energy gap. This is consistent with the fact that an
Figure 9. ForJ/J = 0 (Figure 9a), the two bands are flat antiferromagnetic alternating chain has a spin gap.J7or
since the interaction between adjacent dimers is zero. The= 1 (Figure 9c), the two bands merge because the top of
lower band represents the fact that each dimer is in thethe lower band becomes the same in energy as the bottom
ground singlet state, and the upper band that each dimer isOf the upper band, so that there is no energy gap between
in the excited triplet state. The presence of an energy gapthe two bands. This is consistent with the fact that an
between the two bands is consistent with the fact that eachantiferromagnetic uniform chain does not have a spin gap.
isolated spin dimer has a spin gap. For@'/J < 1 (Figure Obviously, use of this classical spin approach is not
9b), the two bands are separated by an energy gap. The togPpropriate for a Haldane system (i.e., a uniform chain made
of the lower band represents the state in which each dimerup of integer-spin ions), which has a spin gap due to a many-

in the ground singlet state interacts ferromagnetically with Pody electron correlatioff:??
As another example, we examine the 2D spin lattice in
which dimers repeat along the two orthogonal directions with

E,(k) = +J + J cos(2rx,)

E,(k) = —J — J cos(2rx,) @)

(20) Kahn, O.Molecular Magnetism VCH: New York, 1993.

(21) Mikeska, H.-J.; Kolezhuk, A. K. IfQuantum MagnetisnfLecture
Notes in Physics, Vol. 635Schollwick, U., Richter, J., Farnell, D. J.
J., Bishop, R. F., Eds.; Springer: New York, 2004; Chapter 1.

(22) Haldane, F. D. MPhys. Re. Lett 1983 50, 1153.
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Figure 12. Dispersion relations of the two spin bands associated with the Y r (b)x M r
2D lattice of Figure 11 for the cases of @) = J = J and (b)J' = J/I2
andJ = J. Figure 13. (a) 2D spin lattice of Figure 7 that is made up of eight spin

sites per unit cell with repeat distancesandb and that is described by
repeat distances andb (Figure 11). This 2D spin lattice is two spin exchange parametdrandJ'. (b) Dispersion relations of the eight
P . .( 9 ) P i spin bands associated with the 2D chain lattice of Figure 13a, wHére
described by three spin exchange parameleds, andJ 0.5.
with two basis functionsgi(k) and o»(k). It becomes a
rectangular spin lattice wheh=J and 0< J'/J < 1,and  Table 3. Nonzero Energy Matrix Element,(k) (u, v = 1-8)

; ; Associ ith the Basis Functi =1-
a square spin lattice whelh= J' = J'. The nonzero energy ssociated with the Basis Functions(k) (« = 1-8)

matrix elements§,,(k), are given by Ero(K) = ExsK) = Eaalk) = Ese(k) = Eer(k) = Eralk) = —3
. 514(:? = §5§’(k) j -J expzﬁnzn&)_‘_
E,(K) = &,y(k) = =3 — J cos(2rx,) — 20" cos(2rx,)  (8) gzﬁkg IR gig{_:z& * g}

_ Exlk) = ~J exp(-i2mq) — J exp(-i2x)
which lead to the two energy bands Eag(k) = —J exp27xa) — J exp(—i2rxy)

Ei(k) = +J + J cos(2rx,) + 27" cos(2rx,) the classical spin approximation, the energy spectrum of such
a ladder shows no spin gap (not shown). However, numerical

Ey(k) = —J — J cos(2rx;) — 23" cos(2rx)  (9) solutions for the eigenvalue spectrum of a spin ladder made
up of spin-1/2 ions on the basis of a rigorous theoretical

Plots of Ey(k) andEx(k) as a function ok are presented in method?* showed that it has a spin gap even when< J

Figure 12a for a square lattice and in Figure 12b for a 55 ong ag) is nonzero. In a sense, a spin ladder consisting
rectangular lattice. In both cases, the lower band is not

. i ~of two weakly interacting uniform chains of spin-1/2 ions
separated from the upper band, so the classical spin analysi$onaves as a Haldane system, i.e., a single uniform chain
predicts that both lattices do not have a spin gap. This ,,4e up of spin-1 ions.

prediction is consistent with the finding that a square spin 3.3. Spin Lattice of the CuCIO, Layer. The 2D spin

lattice made up of spin-1/2 ions has no spin §&g’ lattice of Figure 7 consists of interacting uniform chains and

The above discussion suggests that the classical Sping gtectively a 2D rectangular lattice. Consequently, this spin
approximation can provide a plausible answer to the question|juice is not expected to have a spin gap. A unit cell of the

Whether.a spin lattice has a spin gap. This simple approachspin lattice of Figure 7 has eight spin sites and hence eight
would fail for a magnetic system whose eigenvalue spectrum, - i« functions, (k) (« = 1—8) (Figure 13a), and this lattice

depends strongly on many-body electron correlation effects. is formed by two exchange parameters (here designated as

Consider a spin ladder made up of spin-1/2 ions that is 5 andJ). The nonzero ener :
. ) . . gy matrix elemeds(k) («, v
described by the spin exchangalong the leg and the spin - _ 1-8) associated with these basis functions are summarized

9xchange][[ along the rungJ-/J > 0). When the _interchain in Table 3. The eight energy banBi(k) (« = 1—8) resulting
interaction is very weaklf; < J), the ladder consists of Very ¢, these spin exchange interactions are plotted as a
weakly interacting uniform chains. When calculated using function ofk in Figure 13b, which shows that all the bands

overlap. Thus, as expected, it is unlikely that the 2D spin

(23) Richter, J.; Schulenburg, J.; Honecker, A.Quantum Magnetism
(Lecture Notes in Physics, Vol. 6455chollwick, U., Richter, J.,
Farnell, D. J. J., Bishop, R. F., Eds.; Springer: New York, 2004; (24) Barnes, T.; Dagotto, E.; Riera, J.; Swanson, ERIg/s. Re. B 1993
Chapter 2. 47, 3196.
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lattice of interacting chains (Figure 7) has a spin gap. This (b) are observed in the magnetization experiments, Kageyama
in turn means that this 2D spin lattice cannot be a correct et al® have considered a number of possible scenarios. The
model for interpreting the magnetic properties of (CuCl)- investigation of this question is beyond the scope of the
LaNb,O;. present work. Nevertheless, one may speculate if the
Thus, we are compelled to ask what kind of spin lattice is observation (b) has a structural origin. For example, suppose
required for each CuClDlayer to have a spin gap. In a that the 2-ring clusters responsible for the 2.3 meV gap
CuCIG; layer composed ofr2ring clusters of different sizes  are large enough that their two constituent chain fragments
(e.g., Figure 4), the intra- and intercluster spin exchange of n spin sites may behave like extended chains. Then, the
interactions cannot lead to simple uniform spin lattices such localized nature of the triplet excitations may reflect weak
as uniform chains and 2D square/rectangular spin lattices.interactions between adjacent-8ing clusters, while the
As a consequence, the magnetic energy levels of such asizable interactions among magnetic excitations detected by
CuCIG; layer are better described by discrete energy levels the magnetization study may reflect interactions within each
(associated with the constituent ring clusters) rather than by 2n-ring cluster. If this reasoning is correct, the observation
magnetic energy bands and hence should exhibit a spin(a) should originate from the property of a-#ing cluster.
gapped behavior. In other words, the disorder of the Cl-atom A plausible scenario would be that &-#ing cluster has a
position in (CuCl)LaNbO; and the spin gapped behavior of bound state witlfs = 2, which is one of the several scenarios
(CuCl)LaNkO; are accounted for if the CuClayers have suggested by Kageyama et°al.
CuCLO; octahedra with both linear and nonlineag-&Cu— ]
Cls units such that the CuClOayers consist of 2-ring 5. Concluding Remarks
clusters of varying sizes with no long-range order. As will A 2D square spin lattice is not a proper model for
be discussed in the next section, however, this picture needsjescribing the magnetic properties of (CuCl)La®b due
a slight modification to accommodate results of the recent to the disorder of its Cl-atom position. This disorder indicates
neutron scatterirfgand magnetizationstudies on (CuCl)-  that the C&" ions of the CuCJO, octahedra have the four-
LaNbO-. short-two-long coordinate environments, and such GDLI
octahedra appear in the CuGl@yers without long-range
order in their orientation and shape. If the-©@Cu—Cls units
From their neutron neutron scattering experinfeikitgeya- of the CuClO, octahedra are restricted to be linear, each
ma et al. found that the magnetic excitations of (CuCl)- CuCIQ;, layer is divided into CuCl@chains, thereby leading
LaNb,O; exhibit no strong two-dimensionality as if the to a 2D spin lattice of strongly interacting uniform chains.
CuCIG, layers consist of weakly interacting clusters that are The classical spin analysis suggests that this 2D spin lattice
coupled antiferromagnetically. Such magnetic clusters candoes not have a spin gap and hence cannot explain the
be identified as @-ring clusters. The neutron scattering presence of a spin gap in (CuCl)Laj@. For each CuCI@
experiments show a sharp peak at 2.3 meV, which corre-layer to have a spin gap, it should have Ci@loctahedra
sponds to the spin gap found from the magnetic susceptibility with both linear and nonlinear GtCu—Cls units such that

4. Discussion

measurements at 0.1 T (i.A,= 2.3 meV= 26.7 K)* This there occur no uniform chains but-2ing clusters of certain
finding implies that there is a narrow range of preferred size size with no long-range order. This structural model of
for the 2Zr-ring clusters because the spin gap ofraridg magnetic clusters should be taken into consideration in

cluster should decrease with increasing The neutron interpreting the magnetic properties of (CuCl)Lab
scattering study also shows a small peak at 5.0 meV whosedetermined by neutron scattering and magnetization experi-
temperature dependence is similar to that of the 2.3 meV ments.
peak. The origin of the 5.0 meV peak is not well understood, It is intriguing that the general features of the magnetic
although the collective bound state excitation of several susceptibility of (CuCl)LaNEO,; are reasonably well ap-
elementary triplets has been considered as a possible érigin.proximated by an isolated spin dimer model with the-Cu
It is tempting to suggest that the 5.0 meV excitation is a -Cu distance found for the fourth nearest-neighbor spin
spin gap of small @-ring clusters. exchange interactiod. (Figure 1d). In the fitting analysis
The magnetization study of (CuCl)Lab; by Kageyama  of the neutron scattering intensity profile using an isolated
et al® presents a more complex spin gapped behavior: (a) spin dimer modet,it is implicitly assumed that the orienta-
the spin gap disappears at 10.3 T, which is much lower thantion of an isolated spin dimer is random and is independent
expected from the spin gap, i.e., 18.4F A/gus), and (b) of those of other isolated spin dimers. This assumption is
the magnetization increases linearly without any trace of valid when each crystallite of a powder sample contains only
fractional plateaus until it saturates at 30.1 T. According to one isolated spin dimer. The latter is highly unlikely so that
observation (a), the apparent spin gap determined from thethe intriguing observation is most likely a fortuitous one.
magnetization experiments is considerably smaller than that
deduced from the magnetic susceptibility and neutron scat-
tering experiments. Observation (b) implies that interactions
among magnetic excitations are substantial, as typically found
for a one-dimensional magnet, which is in apparent contra-
diction to the localized nature of the triplet excitations found
from the neutron scattering experimefiss to why (a) and IC060104W
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