Inorg. Chem. 2006, 45, 7575–7577

Inorganic Chemistry

Antiferromagnetic Interaction Achieved by a 3-D Supramolecular Cu^{II} Complex with Pyrazino-Fused TTF as the Ligand, [CuCl₂(BP-TTF)]

Shun Ichikawa,*,† Shinya Kimura,†,‡ Hatsumi Mori,*,†,‡ Gosuke Yoshida,† and Hiroyuki Tajima†

The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan, and CREST, Japan

Received May 2, 2006

The diffusion reaction of TBA₂Cu^{II}Cl₄ (TBA = tetrabutylammonium) and a N-containing organic donor, BP-TTF [=bis(pyrazino)-tetrathiafulvalene], yielded a 3-D supramolecular Cu complex, [CuCl₂(BP-TTF)] (1). The magnetic measurement of 1 exhibits an antiferromagnetic interaction by fitting a Bonner–Fisher model from 2 to 300 K with $S = \frac{1}{2}$ and J = -3.5 K between Cu^{II} mediated by self-assembling donor columns.

The molecular-based multifunctional materials have attracted great interests owing to a large degree of freedom in spin, charge, lattice, and designable molecules. Especially, the materials with conductivity and magnetism have been intensively investigated in the experimental¹⁻⁶ and theoretical⁷ aspects. Among them, metal complexes coordinated by organic donors have a smaller donor-metal distance than those of ordinary noncoordination charge transfer complexes and possess an ability to construct self-assembling donor columns or layers. Therefore, this system is expected to exhibit π -d interactions. For example, the radical cation salt of the Cu^{II} complex, [Cu^{II}(hfac)₂(TTF-py)₂](PF₆)₂•2CH₂Cl₂ [hfac = hexafluoroacetylacetonate and TTF-py = 4-(2tetrathiafulvalenylethenyl)pyridine); Figure 1], contains TTF moieties substituted by a pyridinylethene function as cation ligands.⁸ Although magnetic and conducting systems are covalently linked through a delocalized bridge, the magnetic interaction is not so large, with $\theta = -3.8$ K owing to the long distance between the spin and charge sources. Other novel Cu^I complexes coordinated to ET [=bis(ethylene-

* To whom correspondence should be addressed. E-mail: ichikawa@issp.utokyo.ac.jp (S.I.), hmori@issp.u-tokyo.ac.jp (H.M.). Fax: +81-4-7136-3444. [†] The University of Tokyo.

- [‡] CREST-JST.
- (1) Kobayashi, H.; Cui, H.-B.; Kobayashi, A. Chem. Rev. 2004, 104, 5265.
- (2) Coronado, E.; Day, P. Chem. Rev. 2004, 104, 5419.
- (3) Enoki, T.; Miyazaki, A. Chem. Rev. 2004, 104, 5449.
- (4) Fujiwara, H.; Wada, K.; Hiraoka, T.; Hayashi, T.; Sugimoto, T.; Nakazumi, H.; Yokogawa, K.; Teramura, M.; Yasuzuka, S.; Murata, K.; Mori, T. J. Am. Chem. Soc. 2005, 127, 14166.
- (5) Ouahab, L.; Enoki, T. Eur. J. Inorg. Chem. 2004, 933.
- (6) Kato, R. Bull. Chem. Soc. Jpn. 2000, 73, 515.
- (7) Mori, T.; Katsuhara, M. J. Phys. Soc. Jpn. 2002, 71, 826.
- (8) Setifi, F.; Ouahab, L.; Golhen, S.; Yoshida, Y.; Saito, G. Inorg. Chem. 2003, 42, 1791.

10.1021/ic060746j CCC: \$33.50 © 2006 American Chemical Society Published on Web 08/18/2006

Figure 1. Molecular structures of TTF-py and BP-TTF.

dithio)tetrathiafulvalene] are $(ET)Cu_{2}^{I}Br_{4}$, $(ET)_{2}Cu_{6}^{I}Br_{9}$, $(ET)_{2}[Cu_{4}Br_{6}ET]$, $(ET)_{2}Cu_{2}^{I}Br_{4}$, $(ET)_{2}Cu_{3}^{I}Br_{7}(H_{2}O)$, and $(ET)_{2}Cu_{6}^{I}Br_{10}$, where ET molecules are coordinated to Cu ions with the S atoms of the ethylenedithio groups in various coordination modes, such as monodentate, *trans*-bidentate, and *cis*-bidentate.⁹ These materials are conducting but diamagnetic owing to Cu^I. Much more than a S atom, a N atom is a good Lewis base, so that N-containing organic donors could be good candidates as ligands. Therefore, we have first synthesized the supramolecular Cu complex, where Cu^{II} is coordinated by the *pyrazino-fused* TTF as a ligand, [CuCl₂(BP-TTF)] (Figure 1). Herein, the preparation, X-ray crystal structure analysis, and measurements of the magnetic and electrical properties of **1** are reported.

BP-TTF was synthesized as described in the literature.¹⁰ The Cu complex [CuCl₂(BP-TTF)] was prepared by a diffusion method; BP-TTF (10 mg) in CHCl₃ and TBA₂-CuCl₄ (223 mg) in dry CH₃OH were added in the diffusion cell under a N₂ atmosphere. After about 2 weeks, black needle crystals of [CuCl₂(BP-TTF)] were collected by filtration and washed with dry CH₃OH. The composition of this complex was determined by scanning electron micros-copy–energy-dispersive spectrometry (JEOL JCM-5000 and Oxford WDX 400 spectrometers) and structure analysis.¹¹

The X-ray single crystal analysis of 1 shows the 3-D supramolecular network, as shown in Figure 2a,b. The zigzag $[Cu^{II}Cl_2(BP-TTF)]_n$ chain extends along the *b* axis, where

⁽⁹⁾ Kanehama, R.; Umemiya, M.; Iwahori, F.; Miyasaka, H.; Sugiura, K.; Yamashita, M.; Yokochi, Y.; Ito, H.; Kuroda, S.; Kishida, H.; Okamoto, H. *Inorg. Chem.* **2003**, *42*, 7173.

 ^{(10) (}a) Papavassiliou, G. C.; Yiannopoulos, S. Y.; Zambounis, J. S. *Chem. Scr.* **1987**, *27*, 265. (b) Papavassiliou, G. C.; Yiannopoulos, S. Y.; Zambounis, J. S. *Mol. Cryst. Liq. Cryst.* **1985**, *120*, 333.

COMMUNICATION

Figure 2. (a) Supramolecular [CuCl₂(BP-11F)]_n chains and side-by-side N···S contacts as dashed lines, viewed along the *c* axis, (b) packing of the [CuCl₂(BP-TTF)]_n chains and the regular stacking donor columns viewed perpendicularly to the donor plane, and (c) donor arrangement of columns B and D of [CuCl₂(BP-TTF)].

the Cu^{II} atom in a planar geometry is coordinated by two Cl⁻ and two N atoms of BP-TTF as ligands [Cu-Cl = 2.24 Å; Cu-N = 2.15 Å]. The Cu-Cl bond length is close to Cu^{II} distances; e.g., among Cu^{II} chlorides, one finds for ET₃-Cu^{II}Cl₄•H₂O 2.25 Å,¹² for [(C₂H₅)₂NH₂]Cu^{II}Cl₄ 2.254 Å,¹³

Figure 3. Crystal orientation of $[CuCl_2(BP-TTF)]$ in the ESR rotation experiment.

and for [(R_nH_{4-n})N]₂Cu^{II}Cl₄ 2.252 Å,¹⁴ while for Cu^I chlorides, one finds for α' -ET₂Cu^ICl₂ 2.086 Å,¹⁵ for β' -ET₂-Cu^ICl₂ 2.098 Å,¹⁶ and for [(CH₃)₄N]Cu^ICl₂ 2.107 Å.¹⁷ The nonparallel alignment of the Cl-Cu-Cl fragment with respect to the ligand donor plane by 45° is to satisfy a sizable C-H···Cl hydrogen bond (2.80 Å). On the other hand, the donors form uniform stacking columns to have the β -type donor arrangement with the ring over bond configuration. The donor's interplanar distance is 3.87 Å, which is almost the same as that of $TMTSF_2PF_6$ (TMTSF = tetramethyltetraselenafulvalene) of 3.8-4.0 Å.18 The molecular orbital of BP-TTF including N atoms is calculated by WinMOPAC (version 3.9.0, Fujitsu Ltd.). Based upon the obtained orbitals, the overlap integrals are calculated¹⁹ to be r = -5.3, p =-0.2, and q = 0.6 ($\times 10^{-3}$). The largest interactions, r, are observed in the donor stacking direction, whereas the smaller ones are obtained in the intercolumnar direction, p with the close N····S contacts (3.10 Å) and q as shown in Figure 2a,c. Therefore, the $d-\sigma$ coordination along the b axis and the $\pi - \pi$ interactions in the *ac* plane construct the 3-D supramolecular framework.

The resistivity measurement was performed on single crystals with carbon paint as four-probe contacts. The measurement at room temperature shows that [CuCl₂(BP-TTF)] is an insulator.

To estimate the oxidation state of Cu, the electron spin resonance (ESR) measurement was carried out from 290 to 4 K with a Bruker EMS 9.3-GHz X-band ESR spectrometer equipped with an Oxford ITC305 cryostat. Figure 4 shows the angular dependences of the *g* value and the line width for one Lorentzian signal of the single crystal, [CuCl₂(BP-TTF)₂], with the crystal orientation in Figure 3. The *g* value varies from 2.05 to 2.27 when the crystal is rotated about the pseudo-4-fold axis of Cu^{II}Cl₂N₂ coordination in **1** with the static field perpendicular to this axis (θ rotation), while the *g* value in the ω rotation is much smaller and the line width is nearly 4-fold rotation. This result is similar to that

- (12) Day, P.; Kurmoo, M.; Mallah, T.; Friend, H. R.; Pratt, L. F.; Hayes, W.; Chasseau, D.; Gaultier, J.; Bravic, G.; Ducasse, L. J. Am. Chem. Soc. 1992, 114, 10722.
- (13) Simonsen, S. H.; Harlow, R. L. Am. Crystallogr. Assoc. Abstr. Ser. 2 1977, 5, NH5.
- (14) Clay, R.; Murry-Rust, J.; Murray-Rust, P. Acta Crystallogr. **1975**, *B31*, 289.
- (15) Kurmoo, M.; Talham, D. R.; Day, P.; Howard, J. A. K.; Stringer, A. M.; Obertelli, D. S.; Friend, R. H. Synth. Met. **1988**, 22, 415.
- (16) Bu, X.; Coppens, P.; Lederle, B.; Naughton, M. J. Acta Crystallogr. 1991, C47, 2082.
- (17) Apslund, M.; Jagner, S.; Nilsson, M. Acta Chem. Scand. **1983**, A37, 57.
- (18) Thorup, N.; Rindorf, G.; Soling, H.; Bechgaard, K. Acta Crystallogr. **1981**, *B37*, 1236.
- (19) Mori, T.; Kobayashi, A.; Sasaki, Y.; Kobayashi, H.; Saito, G.; Inokuchi, H. Bull. Chem. Soc. Jpn. 1984, 57, 627.

⁽¹¹⁾ Crystal data for 1: C₁₀H₄N₄S₄CuCl₂, fw 442.86, triclinic, $P\overline{1}$, a = 7.955(8) Å, b = 11.40 Å, c = 3.872 Å, $\alpha = 98.72(9)^{\circ}$, $\beta = 91.54-(9)^{\circ}$, $\gamma = 98.28(9)^{\circ}$, V = 343.4(6) Å³, Z = 1, $D_{calc} = 2.141$ g cm⁻³, R = 0.080, Rw = 0.098, reflections used 2153 with $I > 3\sigma(I)$. Data collection was performed on a Rigaku 7R diffractometer (Mo K α , $\lambda = 0.710$ 69 Å) at 293 K. The structure was solved with direct methods and refined with a full-matrix least-squares technique using Crystal Structure (version 3.6.0; Rigaku Co. and Rigaku/MSC). Anisotropic thermal parameters were applied to all non-H atoms. The H atoms were generated geometrically (C–H = 0.950 Å).

Figure 4. Angular dependence of (a) the *g* value and (b) the line width for [CuCl₂(BP-TTF)] at 290 K (open circle, ω rotation; filled triangle, θ rotation).

Figure 5. Temperature dependence of magnetic susceptibility for [CuCl₂-(BP-TTF)]. The solid line denotes the theoretical fitting for the 1-D Bonner– Fisher model $(H = -2J\sum S_iS_{i+1})^{21}$ in the temperature range 2–300 K, where Cu^{II} $S = \frac{1}{2}$ and the antiferromagnetic interaction J = -3.5 K are estimated.

of (BEDT-TTF)₃Cu^{II}Cl₄·H₂O,¹² within the range for Jahn– Teller distorted Cu^{II}X₄ ions.²⁰ Therefore, the Cu complex is expected to be [Cu^{II}Cl₂(BP-TTF)⁰] in correspondence with the insulating behavior without carriers. The temperature dependence of ESR measurements was carried out from 290 to 4 K in the magnetic field parallel and perpendicular to the *c** axis. With lowering temperatures, the line widths decrease from 29 G (290 K) to 16 G (4 K) for $H \perp c^*$ and from 23 G (290 K) to 18 G (4 K) for $H \parallel c^*$, while the *g* values are almost constant over the temperature range.

COMMUNICATION

The temperature dependence of magnetic susceptibility after subtraction of the Pascal diamagnetic contribution for [CuCl₂(BP-TTF)] was investigated by a Quantum Design MPMS-XL SQUID magnetometer under 10 000 Oe, as shown in Figure 5. The magnetic susceptibility χ at 300 K is 1.334×10^{-3} emu mol⁻¹ and fits to a Bonner–Fisher model²¹ from 2 to 300 K with $S = \frac{1}{2}$ and J = -3.5 K. The preliminary torque measurements indicate that 1 has no longrange magnetic order down to 1.7 K. Above the hump at 4.4–300 K, χ also follows the Curie–Weiss law, $\chi = C/(T)$ $(-\theta)$, with $\theta = -7.4$ K and C = 0.4076 emu mol⁻¹ K⁻¹. Utilizing the g value 2.12 observed from ESR measurements, the spin density is estimated at $N \sim 1$ spin (S = 1/2)/formula unit. These results reveal that the oxidation states are Cu^{II} and BP-TTF⁰, which are in agreement with the crystal structure and transport and ESR measurements. Moreover, it should be kept in mind that $Cu^{II}-Cu^{II}$ and $Cu^{II}Cl\cdots Cu^{II}$ distances are at least 3.87 and 5.56 Å, respectively, so the direct and superexchange interaction between the Cu^{II} ions through Cl⁻ can be ruled out. Therefore, it is concluded that the antiferromagnetic interaction between $Cu^{II} S = \frac{1}{2}$ spins appears through coordinated BP-TTF donors as ligands, namely, the $d-\pi$ interaction.

In conclusion, we have synthesized the Cu^{II} complex with pyrazino-fused TTF as the ligand, [CuCl₂(BP-TTF)]. The crystal structure reveals the 3-D supramolecular framework, where the 1-D zigzag chain [CuCl₂(BP-TTF)]_n extends along the *b* axis, the BP-TTF donors stack to form columns along the *c* axis, and the donor side-by-side interactions appear in the *a* axis. Owing to this supramolecular structure, the magnetic susceptibility measurement demonstrates the antiferromagnetic interactions between Cu^{II} S = 1/2 spins mediated by BP-TTF donors, namely, $d-\pi$ interactions. A further study aimed at the synergetic action of magnetism and conductivity in the novel Cu^{II} complex with other pyrazino-fused donors is promising to open to the novel $d-\pi$ system.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research (Grant 17540315) by JSPS (Japan Society for Promotion of Science) and CREST (Core Research for Evolutional Science and Technology) of JST (Japan Science and Technology Corp.).

Supporting Information Available: X-ray crystallographic data for **1** in CIF format and X-ray analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

IC060746J

⁽²⁰⁾ Smith, D.; Coord, W. Chem. Rev. 1976, 21, 93.

⁽²¹⁾ Bonner, J. C.; Fisher, M. E. Phys. Rev. 1964, 135, A640.