Inorg. Chem. 2006, 45, 9914–9925



# Mono{hydrotris(mercaptoimidazolyl)borato} Complexes of Manganese(II), Iron(II), Cobalt(II), and Nickel(II) Halides

Shunsuke Senda, Yasuhiro Ohki, Tomoko Hirayama, Daisuke Toda, Jing-Lin Chen, Tsuyoshi Matsumoto, Hiroyuki Kawaguchi,<sup>†</sup> and Kazuyuki Tatsumi\*

Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

Received June 7, 2006

A series of  $[Tm^{Me}M(\mu-CI)]_2$  and  $Tm^RMCI$  ( $Tm^R = tris(mercaptoimidazolyl)borate; R = Me, 'Bu, Ph, 2,6-'Pr_2C_6H_3$ (Ar); M = Mn, Fe, Co, Ni) complexes have been prepared by treatment of NaTm<sup>Me</sup> or LiTm<sup>R</sup> with an excess amount of metal(II) chlorides, MCl<sub>2</sub>. Treatment of  $Tm^RMCI$  (R = 'Bu, Ph, Ar) with Nal led to a halide exchange to afford  $Tm^RMI$ . The molecular structures of  $[Tm^{Me}M(\mu-CI)]_2$  (M = Mn, Ni),  $[Tm^{Me}Ni(\mu-Br)]_2$ ,  $Tm^{tBu}MCI$  (M = Fe, Co),  $Tm^{Ph}MCI$  (M = Mn, Fe, Co, Ni),  $Tm^{Ar}MCI$  (M = Mn, Fe, Co, Ni),  $Tm^{Ph}MI$  (M = Mn, Co), and  $Tm^{Ar}MI$  (M = Fe, Co, Ni) have been determined by X-ray crystallography. The  $Tm^R$  ligands occupy the tripodal coordination site of the metal ions, giving a square pyramidal or trigonal bipyramidal coordination geometry for  $[Tm^{Me}M(\mu-CI)]_2$  and a tetrahedral geometry for the  $Tm^RMCI$  complexes, where the S–M–S bite angles are larger than the reported N–M–N angles of the corresponding hydrotris(pyrazolyl)borate ( $Tp^R$ ) complexes. Treatment of  $Tm^{Ph}_2Fe$  with excess FeCl<sub>2</sub> affords  $Tm^{Ph}FeCI$ , indicating that  $Tm^R_2M$  as well as  $Tm^RMCI$  is formed at the initial stage of the reaction between MCl<sub>2</sub> and the  $Tm^R$  anion.

## Introduction

Tripodal face-capping ligands have proven to be useful entities for transition metal chemistry. The most well-known type of such ligands is hydrotris(pyrazolyl)borate and its derivatives  $(Tp^R)$  with a wide variety of substitutions (R) on the pyrazole rings;<sup>1</sup> the coordination chemistry of  $Tp^R$  has been extensively explored. The related borate ligands, including (thioether)borates PhB(CH<sub>2</sub>SR)<sub>3</sub><sup>2</sup> and (phosphino)-borates PhB(CH<sub>2</sub>PR<sub>2</sub>)<sub>3</sub>,<sup>3</sup> have also been explored for a range of late transition metal complexes. The advantages of these

ligands are their negatively charged properties, leading to a stable coordination to the metal ions, as well as their varied steric influence at the metals according to the size of the substituents on the ligands. Recently, hydrotris(mercaptoimidazolyl)borates (Tm<sup>R</sup>), a new class of such tripodal borate



ligands, has been developed by Reglinski and co-workers.<sup>4</sup> An important property of the Tm<sup>R</sup> ligands is the delocalized anionic charge on the thioimidazole groups, which brings about the thiolate-like character of the thioimidazole sulfurs.

<sup>\*</sup> To whom correspondence should be addressed. E-mail: i45100a@nucc.cc.nagoya-u.ac.jp. Fax: +81-52-789-2943.

<sup>&</sup>lt;sup>†</sup> Present address: Coordination Chemistry Laboratory, Institute for Molecular Science, Myodaiji, Okazaki 444-8595, Japan.

 <sup>(</sup>a) Chaudhuri, P.; Wieghardt, K. Prog. Inorg. Chem. 1987, 35, 329.
 (b) Cooper, S. P. Acc. Chem. Res. 1988, 21, 141. (c) Trofimenko, S. Chem. Rev. 1993, 93, 943. (d) Trofimenko, S. Scorpionates; Imperial College Press: London, 1999.

<sup>(2) (</sup>a) Ge, P.; Haggerty, B. S.; Rheingold, A. L.; Riordan, C. G. J. Am. Chem. Soc. 1994, 116, 8406. (b) Ohrenberg, C.; Ge, P.; Schebler, P. J.; Riordan, C. G.; Yap, G. P. A.; Rheingold, A. L. Inorg. Chem. 1996, 35, 749. (c) Ohrenberg, C.; Saleem, M. M.; Riordan, C. G.; Yap, G. P. A.; Rheingold, A. L. Chem. Commun. 1996, 1081. (d) Schebler, P. J.; Riordan, C. G.; Liable-Sands, L.; Rheingold, A. L. Inorg. Chim. Acta 1998, 270, 543. (e) Schebler, P. J.; Riordan, C. G.; Guzei, I. A.; Rheingold, A. L. Inorg. Chem. 1998, 37, 4754. (f) Ohrenberg, C.; Rioldan, C. G.; Liable-Sands, L.; Rheingold, A. L. Coord. Chem. Rev. 1998, 174, 301.

<sup>9914</sup> Inorganic Chemistry, Vol. 45, No. 24, 2006

<sup>(3) (</sup>a) Barney, A. A.; Heyduk, A. F.; Nocera, D. G. Chem. Commun. 1999, 2379. (b) Peters, J. C.; Feldman, J. D.; Tilly, T. D. J. Am. Chem. Soc. 1999, 121, 9871. (c) Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.

#### Mono{hydrotris(mercaptoimidazolyl)borato} Complexes

One notable aspect of these face-capping ligands is their application to the models of the metal-containing enzymes. Various model complexes of metalloenzyme active sites coordinated by histidine imidazoles such as hemerythrin and hemocyanin have been accomplished by utilization of Tp<sup>R</sup> ligands.<sup>5</sup> Sulfur-ligated transition metal centers are also abundant in enzymes such as nitrogenase, hydrogenase, and carbon monoxide dehydrogenase, and the modeling of these active sites has been the focus of our attention.<sup>6</sup> In terms of mimicking the active site of metalloenzymes bearing sulfur ligands, tripodal sulfur ligands have also been used. For instance, several Tm<sup>R</sup>Zn complexes were prepared to mimic the sulfur-rich environments of zinc enzymes featuring a tetrahedral coordination in the Ada repair protein or liver alcohol dehydrogenase (LADH).<sup>7</sup>

The chemistry of the Tm<sup>C</sup>-metal complexes is potentially rich and important because analogous structural types observed with Tp<sup>R</sup> ligands would be available with Tm<sup>R</sup> ligands and the substituents on the imidazole rings are suitable for steric modification. As the tetrahedral transition metal halide complexes of the Tp<sup>R</sup> derivatives, Tp<sup>R</sup>MCl,<sup>8</sup> are known to be versatile precursors for a wide range of transition metal mono-Tp<sup>R</sup> complexes, the analogous compounds comprising a  $Tm^{R}$  ligand,  $Tm^{R}MX$  (X = halides), are also expected to be useful synthons. However, such types of Tm<sup>R</sup>-transition metal complexes are still rare, probably because of their propensity to form sandwich complexes (Tm<sup>R</sup>)<sub>2</sub>M.<sup>9,10</sup> Whereas efficient synthetic procedures for cobalt complexes,  $Tm^{R}CoX$  (R = Me, <sup>t</sup>Bu; X = Cl, Br, I), have recently appeared,9 we found a convenient route to the M(II) (M = Mn, Fe, Co, Ni) halide complexes with a  $Tm^{R}$ ligand using metal halides and the alkaline metal salts of

- (4) (a) Garner, M.; Reglinski, J.; Cassidy, I.; Spicer, M. D.; Kennedy, A. R. Chem. Commun. 1996, 1975. (b) Reglinski, J.; Garner, M.; Cassidy, I. D.; Slavin, P. A.; Spicer, M. D.; Armstrong, D. R. J. Chem. Soc., Dalton Trans. 1999, 2119.
- (5) (a) Armstrong, W. H.; Lippard, S. J. J. Am. Chem. Soc. 1987, 105, 4837. (b) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 1277. (c) Kitajima, N.; Moro-oka, Y. Chem. Rev. 1994, 94, 737. (d) Feig, A. L.; Lippard, S. J. Chem. Rev. 1994, 94, 759.
- (6) (a) Ohki, Y.; Sunada, Y.; Honda, M.; Katada, M.; Tatsumi, K. J. Am. Chem. Soc. 2003, 125, 4052. (b) Ohki, Y.; Sunada, Y.; Tatsumi, K. Chem. Lett. 2005, 34, 172. (c) Li, Z.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2005, 127, 8950. (d) Takuma, M.; Ohki, Y.; Tatsumi, K. Inorg. Chem. 2005, 44, 6034. (e) Takuma, M.; Ohki, Y.; Tatsumi, K. Organometallics 2005, 24, 1344.
- (7) (a) Kimblin, C.; Bridgewater, B. M.; Churchill, D. G.; Parkin, G. *Chem. Commun.* **1999**, 2301. (b) Parkin, G. *Chem. Commun.* **2000**, 1971.
  (c) Bridgewater, B. M.; Fillebeen, T.; Friesner, R. A.; Parkin, G. *J. Chem. Soc., Dalton Trans.* **2000**, 4494. (d) Tesmer, M.; Shu, M.; Vahrenkamp, H. *Inorg. Chem.* **2001**, *40*, 4022.
- (8) (a) Trofimenko, S. Prog. Inorg. Chem. 1986, 34, 115. (b) Gorrell, I. B.; Parkin, G. Inorg. Chem. 1990, 29, 2452. (c) LeCloux, D. D.; Keyes, M. C.; Osawa, M.; Reynolds, V.; Tolman, W. B. Inorg. Chem. 1994, 33, 6361. (d) Huang, J.; Lee, L.; Haggerty, B. S.; Rheingold, A. L.; Walters, M. A. Inorg. Chem. 1995, 34, 4268. (e) Kremer, -A. A.; Klaeui, W.; Bell, R.; Strerath, A.; Wunderlich, H.; Mootz, D. Inorg. Chem. 1997, 36, 1552. (f) Kisko, J. L.; Hascall, T.; Parkin, G. J. Am. Chem. Soc. 1998, 120, 10561. (g) Guo, S.; Ding, E.; Yin, Y.; Yu, K. Polyhedron 1998, 17, 3841. (h) Chen, J.; Woo, L. K. J. Organomet. Chem. 2000, 601, 57. (i) Brunker, T. J.; Hascall, T.; Cowley, A. R.; Rees, L. H.; O'Hare, D. Inorg. Chem. 2001, 40, 3170. (j) Rheingold, A. L.; Yap, G. P. A.; Zakharov, L. N.; Lev, N.; Trofimenko, S. Eur. J. Inorg. Chem. 2002, 9, 2335. (k) Trofimenko, S.; Rheingold, A. L.; Sands, L. M. L. Inorg. Chem. 2002, 41, 1889.

Tm<sup>R</sup>. In contrast to the previous reports that discussed the formation of  $(Tm^R)_2M$  by the reaction of MCl<sub>2</sub> and the Tm<sup>R</sup> anion in a 1:1 molar ratio, Tm<sup>R</sup>MCl complexes were obtained selectively by addition of excess MCl<sub>2</sub> to the Tm<sup>R</sup> anion. The use of excess MCl<sub>2</sub> toward the Tm<sup>R</sup> anion and the prolonged reaction time turned out to be the keys for the successful formation of the anticipated Tm<sup>R</sup>MX complexes. We report herein the preparation of the mono-Tm<sup>R</sup> (R = Me, 'Bu, Ph, Ar; Ar = 2,6-iPr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) complexes of metal halides, [Tm<sup>Me</sup>M( $\mu$ -Cl)]<sub>2</sub> and Tm<sup>R</sup>MX (M = Mn, Fe, Co, Ni; X = Cl, I), which would be useful starting materials for various transition metal complexes of Tm<sup>R</sup>.

## **Results and Discussion**

Synthesis of Tm<sup>R</sup>MX and [Tm<sup>Me</sup>M(µ-X)]<sub>2</sub> Complexes  $(R = Me, {}^{t}Bu, Ph, 2,6 {}^{-i}Pr_2C_6H_3(Ar); M = Mn, Fe, Co,$ Ni; X = Cl, I). In order to synthesize the target compounds, we first attempted the reaction of FeCl<sub>2</sub> with 1 equiv of NaTm<sup>Me</sup> or LiTm<sup>Ph</sup>. However, these reactions appeared to give the sandwich-type complex Tm<sup>R</sup><sub>2</sub>Fe. Indeed, Reglinski, Parkin, and their co-workers have already demonstrated that the reactions of M'Cl<sub>2</sub> (M' = Fe, Ni) with NaTm<sup>Me</sup> or M"Cl<sub>2</sub> (M'' = Fe, Co) with LiTm<sup>Ph</sup> afford Tm<sup>Me</sup><sub>2</sub>M' (M' = Fe, Ni) or  $\text{Tm}^{\text{Ph}_2}M''$  (M'' = Fe, Co), respectively.<sup>10,11</sup> The dominant formation of sandwich complexes would be attributed to the much lower solubility of FeCl<sub>2</sub> than that of the mono-Tm<sup>R</sup>substituted complexes. That is, during the course of the reactions, the concentration of the mono-Tm<sup>R</sup> complexes is expected to exceed that of FeCl<sub>2</sub>, which leads to the more preferable formation of the sandwich complexes. However, we found that the prolonged reaction time in the presence of excess FeCl<sub>2</sub> allows the selective formation of the mono-Tm<sup>R</sup>-substituted complexes. Treatment of the LiTm<sup>Ph</sup> with excess FeCl<sub>2</sub> at room temperature in dichloromethane immediately afforded a dark green suspension, which indicated the formation of Tm<sup>R</sup><sub>2</sub>Fe. However, over the course of the reaction for 4 days, the dark green color gradually became brighter, and eventually, the green suspension was obtained. The monoculear Tm<sup>Ph</sup>FeCl complex was obtained in 86% yield after the usual workup.



A similar reaction with LiTm<sup>tBu</sup> and NaTm<sup>Me</sup> also led to the formation of the mono-Tm<sup>tBu</sup>- and mono-Tm<sup>Me</sup>-substi-

<sup>(9) (</sup>a) Mihalcik, D. J.; White J. L.; Tanski, J. M.; Zakharov, L. N.; Yap, G. P. A.; Incarvito, C. D.; Rheingold, A. L.; Rabinovich, D. J. Chem. Soc., Dalton Trans. 2004, 1626. (b) Dodds, C. A.; Lehmann, M.-A.; Ojo, J. F.; Reglinski, J.; Spicer, M. D. Inorg. Chem. 2004, 43, 4927.
(10) Kimblin, C.; Churchill, D. G.; Bridgewater, B. M.; Girard, J. N.;

Quarless, D. A.; Parkin, G. Polyhedron **2001**, 20, 1891.

Garner, M.; Lewinski, K.; Patek-Janczyk, A.; Reglinski, J.; Sieklucka, B.; Spicer M. D.; Szaleniec, M. J. Chem. Soc., Dalton Trans. 2003, 1181.

tuted complexes, respectively. The molecular structures of Tm<sup>Ph</sup>FeCl and Tm<sup>tBu</sup>FeCl were eventually determined by X-ray structural analysis, and their monomeric structures were identified (vide infra). However, the nuclearity of the product having less hindered TmMe in the solid state was not yet identified as  $Tm^{Ph}FeCl$  or  $[Tm^{Me}Fe(\mu-Cl)]_2$  due to the lack of the solid-state structure. The fast atom bombardment mass spectrometry (FABMS) spectrum of (Tm<sup>Me</sup>FeCl)<sub>n</sub> (n = 1 or 2) in CH<sub>2</sub>Cl<sub>2</sub> exhibited a characteristic signal, the isotope pattern of which matches well with that calculated for  $[Tm^{Me}Fe]^+$  (m/z = 406.9). Whereas this indicates the formation of the monomeric complex TmMeFeCl in solution, we presume this Tm<sup>Me</sup>Fe complex to be the dimeric structure in the solid state because the color of the CH<sub>2</sub>Cl<sub>2</sub> solution (deep green) is different from that in the solid state (green). Such a color change is also found for the dimeric nickel complex  $[Tm^{Me}Ni(\mu-Cl)]_2$ , as described below.

The yields of  $\text{Tm}^{\text{R}}\text{FeCl}$  (or  $[\text{Tm}^{\text{Me}}\text{Fe}(\mu-\text{Cl})]_2$ ) are typically higher than 80% based on the  $\text{Tm}^{\text{R}}$  anions (25% and above, based on FeCl<sub>2</sub>). They are moderately stable toward air and moisture in the solid state, but unstable in solution. Regardless of the substituents on the imidazole rings, products are soluble in dichloromethane and THF, but sparingly soluble in toluene, ether, and hexane. The color of the product dramatically varies according to the substituents on the Tm<sup>R</sup> ligands. For instance, Tm<sup>tBu</sup>FeCl is light brown, Tm<sup>Ph</sup>FeCl is dark green, and Tm<sup>Ar</sup>FeCl is dark yellow. It seems likely that the substituent on the thioimidazolyl unit modifies the electron-donating ability. The representation of the tetrahedral Tm<sup>R</sup>FeCl closely parallels the Tp complexes and may thus provide an entry to various derivatives analogous to the Tp chemistry.



The cobalt and nickel complexes, Tm<sup>R</sup>CoCl and Tm<sup>R</sup>NiCl, were also synthesized by a similar procedure, whereas the preparation of Tm<sup>R</sup>MnCl was achieved by a 1:1 reaction between MnCl<sub>2</sub> and the Tm<sup>R</sup> anion in methanol. All manganese complexes are colorless, but the colors of the cobalt and nickel complexes change because of the substituents on the mercaptoimidazolyl group, for instance, TmtBu-CoCl (green), TmArCoCl (light blue), TmPhNiCl (green), and Tm<sup>Ar</sup>NiCl (greenish brown). The Tm<sup>Me</sup> complexes of Mn and Ni were isolated as the dimeric form,  $[Tm^{Me}M(\mu-Cl)]_2$ (M = Mn, Ni). The bulkiness of the substituent on the imidazole ring likely results in the difference in nuclearity, whereas the analogous cobalt(II) complex TmMeCoCl is reported to be monomeric.<sup>9b</sup> The yields for the Mn, Co, and Ni complexes are satisfactory and typically higher than 50% based on the added Tm<sup>R</sup> anions (89–12% based on MCl<sub>2</sub>), with exceptions for the Tm<sup>Me</sup> and Tm<sup>tBu</sup> complexes of nickel. The yield of  $[\text{Tm}^{Me}\text{Ni}(\mu\text{-}\text{Cl})]_2$  was very low due to the dominant formation of the sandwich complex  $\text{Tm}^{Me}_2\text{Ni}$ ,<sup>10</sup> which precipitates out from the reaction mixture. In contrast,  $[\text{Tm}^{Me}\text{Ni}(\mu\text{-}\text{Br})]_2$  was obtained in 71% yield (based on NaTm<sup>Me</sup>) by a similar procedure using NiBr<sub>2</sub> instead of NiCl<sub>2</sub>. In the mass spectra, all the  $[\text{Tm}^{Me}\text{M}(\mu\text{-}\text{Cl})]_2$  and  $\text{Tm}^R$ -MCl complexes exhibited cationic signals corresponding to the  $[\text{Tm}^R\text{M}]^+$  species. The monomeric form  $\text{Tm}^{Me}\text{MCl}$  is presumably generated in solution for the dimeric complexes  $[\text{Tm}^{Me}\text{M}(\mu\text{-}\text{Cl})]_2$ . Indeed, the solution color for  $[\text{Tm}^{Me}\text{Ni}(\mu\text{-}\text{Cl})]_2$  (deep green) differs from that in the solid state (green).

The reaction of NiCl<sub>2</sub> with the Tm<sup>tBu</sup> anion did not afford the corresponding adduct but instead a nickelaboratrane complex of Ni(I), {B(timi<sup>tBu</sup>)<sub>3</sub>}NiCl. During the formation



of the nickelaboratrane complex, activation of the B–H bond accompanied by formal reduction of the metal center to Ni-(I) took place to give a five-coordinate complex having a direct Ni–B dative bond. This is the first nickelaboratrane complex, whereas the related metallaboratrane complexes of Ru, Os, Co, Ir, Rh, and Pt have recently been synthesized by Hill and Rabinovich.<sup>9a,12</sup> A small amount of the *tert*butylthioimidazole (Htimi<sup>1Bu</sup>) complex, (Htimi<sup>1Bu</sup>)<sub>2</sub>NiCl<sub>2</sub>, was also isolated as well from this reaction, which probably came from the degradated Tm<sup>1Bu</sup> anion prior to use. Indeed, (Htimi<sup>1Bu</sup>)<sub>2</sub>NiCl<sub>2</sub> was alternatively prepared in 75% yield by the reaction of NiCl<sub>2</sub> with 2 equiv of Htimi<sup>1Bu</sup>.



Treatment of monomeric Tm<sup>R</sup>MCl with NaI provided an excellent preparative route to the corresponding iodide analogues, Tm<sup>R</sup>MI, whereas the reaction of MI<sub>2</sub> with the alkaline metal salt of Tm<sup>R</sup> affords multiple products that could not be separated. The halide exchange successfully proceeded for the mononuclear, tetrahedral complexes Tm<sup>R</sup>-

<sup>(12) (</sup>a) Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38, 2759. (b) Foreman, M. R. St. -J.; Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Organometallics 2003, 22, 4446. (c) Foreman, M. R. St. -J.; Hill, A. F.; White, A. J. P.; Williams, D. J. Organometallics 2004, 23, 913. (d) Crossley, I. R.; Hill, A. F. Organometallics 2004, 23, 5656. (e) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2005, 24, 1062. (f) Crossley, I. R.; Foreman, M. R. St. -J.; Hill, A. F.; Williams, D. J. Chem. Commun. 2005, 221. (g) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2005, 24, 4083. (h) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2005, 24, 4083. (h) Crossley, I. R.; Hill, A. F.; Willis, A. C. Organometallics 2006, 23, 289.

| Table 1. | Properties | and Spectral | Data for | Complexes |
|----------|------------|--------------|----------|-----------|
|----------|------------|--------------|----------|-----------|

|                                                           |                 | yield based                             |           |                                                             |                                                          |
|-----------------------------------------------------------|-----------------|-----------------------------------------|-----------|-------------------------------------------------------------|----------------------------------------------------------|
|                                                           |                 | on [Tm <sup>R</sup> ] <sup>-</sup>      | IR        |                                                             | mass spectrum                                            |
| compound                                                  | color           | (based on $MCl_2$ ) <sup><i>a</i></sup> | $(B-H)^a$ | UV-vis $(\epsilon)^a$                                       | $(CH_2Cl_2)^b$                                           |
| Tm <sup>Me</sup> FeCl                                     | green           | 78 (26)                                 | 2438      | 264 (18.6), 306 (6.9, sh), 406 (2.9),<br>614 (1.3)          | 406.9 ([M] <sup>+</sup> – Cl)                            |
| Tm <sup>tBu</sup> FeCl                                    | light brown     | 94 (94)                                 | 2408      | 276 (1.0), 357 (0.26, sh), 421 (0.08, sh)                   | 568.2 ([M], 10%),<br>533.1 ([M] <sup>+</sup> – Cl, 100%) |
| Tm <sup>Ph</sup> FeCl                                     | dark green      | 86 (86)                                 | 2431      | 361 (1.7, sh), 446 (0.93, sh), 646 (0.69)                   | $593.1 ([M]^+ - Cl)$                                     |
| Tm <sup>Ar</sup> FeCl                                     | brown           | 99 (25)                                 | 2409      | 285 (1.5, sh), 345 (0.32, sh)                               | 880.5 ([M], 80%),                                        |
| TmMeMm(u C1)]                                             | aalaalaaa       | 54 (54)                                 | 2201      | 261(27.2)                                                   | $405.5 ([M]^{+} - CI, 100\%)$                            |
| $[1 \text{III}^{\text{IIII}}(\mu - CI)]_2$<br>TentBuMa Cl | colorless       | 34 (34)<br>80 (80)                      | 2591      | 201(27.2)<br>260(22.0)                                      | $400.3 (1/2[M]^+ - CI)$                                  |
| Tm <sup>Ph</sup> MnCl                                     | colorless       | 09 (09)<br>25 (25)                      | 2411      | 209(22.0)                                                   | $552.1 ([M]^+ - CI)$                                     |
| Tm <sup>Ar</sup> MnCl                                     | colorless       | 33 (33)<br>86 (86)                      | 2420      | 200 (10.7)                                                  | $392.2 ([M]^+ - CI)$                                     |
| Tm <sup>Me</sup> CoCl                                     | coloriess       | 80 (80)<br>27 (12)                      | 2415      | 2/1 (20.0)<br>271 (4.2) = 607 (1.2)                         | $644.3 ([M]^+ - CI)$                                     |
| TIII <sup>III</sup> CoCl                                  | green           | 37 (12)<br>77 (77)                      | 2410      | 5/1(4.2), 09/(1.2)<br>260 (2.4), 665 (0.06), 701 (1.2)      | $410.1 ([M]^+ - CI)$                                     |
| Imacoci                                                   | green           | // (//)                                 | 2410      | 738 (1.0)                                                   | $505.5([M]^{+} - CI)$                                    |
| Tm <sup>Ph</sup> CoCl                                     | green           | 59 (20)                                 | 2418      | 279 (7.9), 371 (2.2), 663 (0.64),<br>702 (0.85), 740 (0.63) | 596.2 ([M] <sup>+</sup> – Cl)                            |
| Tm <sup>Ar</sup> CoCl                                     | light blue      | 55 (18)                                 | 2440      | 369 (0.35), 665 (0.09), 701 (0.14),<br>738 (0.10)           | 848.5 ([M] <sup>+</sup> - Cl)                            |
| $[Tm^{Me}Ni(\mu-Cl)]_2$                                   | green           | 18 (3.5)                                | 2387      | 267 (12.5), 331 (4.6), 378 (4.3),<br>424 (4.2)              | 409.1 (1/2[M] <sup>+</sup> – Cl)                         |
| $[\text{Tm}^{\text{Me}}\text{Ni}(\mu-\text{Br})]_2$       | brown           | 71 (71)                                 | 2440      | 330 (7.6), 363 (7.1, sh), 426 (6.7, sh),<br>731 (4.6, sh)   | 409.1 (1/2[M] <sup>+</sup> – Br)                         |
| Tm <sup>Ph</sup> NiCl                                     | green           | 55 (19)                                 | 2431      | 392(3.9), 640(0.45), 730(0.38, sh)                          | 595.2 ( $[M]^+ - CI$ )                                   |
| Tm <sup>Ar</sup> NiCl                                     | vellowish green | 79 (20)                                 | 2439      | 284(2.6), 384(0.67), 450(0.19, sh)                          | 882.4 ([M] <sup>+</sup> , 10%)                           |
| ini inci                                                  | jeno mon green  | (20)                                    | 2.09      |                                                             | $847.4 ([M]^+ - Cl. 100\%)$                              |
| TmtBuFeI                                                  | brown           | 93 <sup>c</sup>                         | 2424      | 286 (29.5), 361 (10.7)                                      | $534.3 ([M]^+ - I)$                                      |
| Tm <sup>Ph</sup> FeI                                      | green           | 64 <sup>c</sup>                         | 2431      | 290 (16.9), 446 (4.8, sh), 646 (2.1)                        | 593.2 $(M^{+} - I)$                                      |
| Tm <sup>Ar</sup> FeI                                      | vellow          | 55 <sup>c</sup>                         | 2424      | 341 (4.1)                                                   | 845.4 ([M] <sup>+</sup> – I)                             |
| Tm <sup>tBu</sup> MnI                                     | colorless       | 95 <sup>c</sup>                         | 2414      | 274 (19.4)                                                  | 532.3 $([M]^+ - I)$                                      |
| Tm <sup>Ph</sup> MnI                                      | colorless       | 93 <sup>c</sup>                         | 2422      | 278 (13.2)                                                  | $592.2 ([M]^+ - I)$                                      |
| Tm <sup>Ar</sup> MnI                                      | colorless       | $76^c$                                  | 2435      | 275 (28.5)                                                  | $844.5 ([M]^+ - I)$                                      |
| Tm <sup>tBu</sup> CoI                                     | light yellow    | 93 <sup>c</sup>                         | 2411      | 393 (2.5, sh), 695 (0.78), 740 (0.91, sh),                  | 536.3 $([M]^+ - I)$                                      |
|                                                           | 6 ,             |                                         |           | 758 (0.98)                                                  |                                                          |
| Tm <sup>Ph</sup> CoI                                      | green           | 46 <sup>c</sup>                         | 2436      | 393 (2.5, sh), 694 (0.65), 730 (0.86),<br>761 (1.0)         | 596.2 ([M] <sup>+</sup> – I)                             |
| Tm <sup>Ar</sup> CoI                                      | vellow          | 75 <sup>c</sup>                         | 2436      | 269 (17.2), 406 (0.92), 759 (0.11)                          | $848.5 ([M]^+ - I)$                                      |
| Tm <sup>Ph</sup> NiI                                      | orange          | 86 <sup>c</sup>                         | 2413      | 411(4.8), 699(0.45), 784(0.35  sh)                          | $595.2 ([M]^+ - I)$                                      |
| Tm <sup>Ar</sup> NiI                                      | orange          | 69 <sup>c</sup>                         | 2435      | 273 (32.2), 402 (4.8)                                       | $848.5 ([M]^+ - I)$                                      |
| {B(timi <sup>tBu</sup> ) <sub>3</sub> }NiCl               | green           | 69 (69)                                 | 2.00      | 342 (4.0), 459 (1.9), 612 (0.40)                            | $534.2 ([M]^+ - CI)$                                     |
|                                                           | 0               | ,                                       |           | · // ··· // · // · ·//                                      |                                                          |

<sup>*a*</sup> Yields, %. IR, cm<sup>-1</sup>.  $\lambda_{max}$ , nm ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>), in CH<sub>2</sub>Cl<sub>2</sub>, rt. <sup>*b*</sup> FABMS (*m*/*z*) with a stream of high energy Xe gas. 3-Nitrobenzyl alcohol was used as the matrix. <sup>*c*</sup> Yields based on the corresponding Tm<sup>R</sup>MCl.

MCl (R = 'Bu, Ph, Ar, M = Fe, Mn, Co, Ni) having a terminal chloride but did not occur for the Tm<sup>Me</sup> complexes  $[Tm^{Me}M(\mu-Cl)]_2$  (M = Mn, Ni). The exchange of the halide also led to a color change for the Fe, Co, and Ni compounds. For instance, Tm<sup>Ph</sup>NiX is green for X = Cl and orange for X = I.

In the IR spectra, the Tm<sup>R</sup>MX complexes exhibited characteristic bands for the Tm<sup>R</sup> ligand,  $\nu$ (B–H), as summarized in Table 1. The range for the B–H band (2387–2440 cm<sup>-1</sup>) is similar to that for the  $\kappa^3$ -Tp complexes,<sup>1</sup> indicating that B–H–M interactions do not exist. A slight shift of the  $\nu$ (B–H) band to a lower frequency was found from 2478 cm<sup>-1</sup> for NaTm<sup>Me</sup> to 2387–2438 cm<sup>-1</sup> for [Tm<sup>Me</sup>M( $\mu$ -Cl)]<sub>2</sub> and 2409–2440 cm<sup>-1</sup> for Tm<sup>R</sup>MX. This can be attributed to the enhancement of the anionic charge at the coordinated sulfur atoms, which reduces the negative charge at B–H.

Structures of the Tm<sup>R</sup>MX Complexes. The X-ray structure analyses were carried out for  $[Tm^{Me}M(\mu-Cl)]_2$  (M = Mn, Ni),  $[Tm^{Me}Ni(\mu-Br)]_2$ ,  $Tm^{tBu}MCl$  (M = Fe, Co),  $Tm^{Ph}-MCl$  (M = Mn, Fe, Co, Ni),  $Tm^{Ar}MCl$  (M = Mn, Fe, Co, Ni),  $Tm^{tBu}Fel$ ,  $Tm^{Ph}MI$  (M = Mn, Co, Ni), and  $Tm^{Ar}MI$  (M

= Fe, Co, Ni). Because the molecular structures of the Mn, Fe, Co, Ni complexes are very similar, the perspective views of only one of each Tm<sup>R</sup> complex are shown in Figure 1, and the selected bond lengths and angles are listed in Tables 2 and 3, respectively. In the case of Tm<sup>Me</sup>, a dimeric structure featuring a trigonal bipyramidal (Mn) or square pyramidal (Ni) geometry is formed with an inversion center at the midpoint between the two metals. The shorter axial Ni-S distance (2.3212(8) Å for the Cl complex) than the basal Ni-S distances (2.4026(8) and 2.3468(8) Å for Cl complex) is typical for square pyramidal complexes. The shorter metal-sulfur distance also leads to the longer S=C bond as a result of the back-donation from the metal to the thioimidazol group. This is also the case for the trigonal bipyramidal Mn complex, with longer Mn-S(axial)/C=S(equatorial) and shorter Mn-S(equatorial)/C=S(axial) bonds. The other Tm<sup>R</sup>  $(R = {}^{t}Bu, Ph, Ar)$  complexes adopt a mononuclear tetrahedral geometry having an ideal  $C_3$  axis running through the B, M, and X atoms. All the Tm<sup>R</sup> ligands are bound to metals in a  $\kappa^3$ -fashion, forming eight-membered metallacycles consisting of the metal, two mercaptoimidazolyl groups, and boron. This leads to larger S-M-S bite angles (around 105° for Tm<sup>R</sup>-



Figure 1. Molecular structures of  $[Tm^{Me}Mn(\mu-Cl)]_2$  (top, left),  $Tm^{tBu}CoCl$  (top, right),  $Tm^{Ph}NiCl$  (bottom, left), and  $Tm^{Ar}FeCl$  (bottom, right).

Table 2. Selected Bond Distances (Å) for the Dinuclear Complexes [Tm<sup>Me</sup>Mn(µ-Cl)]<sub>2</sub>, [Tm<sup>Me</sup>Ni(µ-Cl)]<sub>2</sub>, and [Tm<sup>Me</sup>Ni(µ-Br)]<sub>2</sub>

|                                      | M-S (ax.), M-S (eq or basal) | M-Cl (Br)            | C=S (ax.), C=S (eq or basal) |
|--------------------------------------|------------------------------|----------------------|------------------------------|
| (Tm <sup>Me</sup> MnCl) <sub>2</sub> | 2.5698(6), 2.477(av)         | 2.4149(6)            | 1.707(2), 1.719 (av)         |
| (Tm <sup>Me</sup> NiCl) <sub>2</sub> | 2.3212(8), 2.3747 (av)       | 2.3818(9), 2.4129(7) | 1.723(3), 1.720 (av)         |
| (Tm <sup>Me</sup> NiBr) <sub>2</sub> | 2.3116(6), 2.3665 (av)       | 2.5192(4), 2.5684(4) | 1.722(3), 1.717 (av)         |

**Table 3.** Selected Bond Distances (Å) and Angles (deg) for Monomeric  $\text{Tm}^{R}MX$  (R = 'Bu, Ph; Ar = 2,6-<sup>j</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; M = Mn, Fe, Co, Ni; X = Cl, I)

| М  | Х  | R               | M-S         | M-X        | C=S        | S-M-S       | S-M-X       |
|----|----|-----------------|-------------|------------|------------|-------------|-------------|
| Mn | Cl | Ph              | 2.454(2)    | 2.326(2)   | 1.719(4)   | 103.53(5)   | 114.91(4)   |
| Mn | Cl | Ar              | 2.435(3)    | 2.295(4)   | 1.710(9)   | 105.43(8)   | 113.26(7)   |
| Fe | Cl | Ph              | 2.385(1)    | 2.255(3)   | 1.713(5)   | 104.76(4)   | 113.85(4)   |
| Fe | Cl | Ar              | 2.3798 (av) | 2.2381(6)  | 1.712 (av) | 104.91 (av) | 113.70 (av) |
| Co | Cl | <sup>t</sup> Bu | 2.3331(7)   | 2.220(2)   | 1.723(4)   | 105.26(3)   | 113.41(2)   |
| Co | Cl | Ph              | 2.327(1)    | 2.252(2)   | 1.715(4)   | 107.42(4)   | 111.45(4)   |
| Co | Cl | Ar              | 2.312(1)    | 2.242(2)   | 1.705(3)   | 108.22(3)   | 110.70(3)   |
| Ni | Cl | Ph              | 2.3000(7)   | 2.235(1)   | 1.716(3)   | 104.47(3)   | 114.10(2)   |
| Ni | Cl | Ar              | 2.2866(8)   | 2.216(1)   | 1.712(3)   | 105.14(2)   | 113.51(2)   |
| Mn | Ι  | Ph              | 2.437(2)    | 2.626(2)   | 1.707(6)   | 104.38(6)   | 114.18(5)   |
| Fe | Ι  | Ar              | 2.366 (av)  | 2.556(1)   | 1.711 (av) | 106.22 (av) | 112.53 (av) |
| Co | Ι  | Ph              | 2.3071(9)   | 2.5789(9)  | 1.725(3)   | 108.55(3)   | 110.38(3)   |
| Co | Ι  | Ar              | 2.298(1)    | 2.542(1)   | 1.714(4)   | 109.57(3)   | 109.38(3)   |
| Ni | Ι  | Ar              | 2.2847 (av) | 2.515 (av) | 1.712 (av) | 105.25 (av) | 113.32 (av) |
| Fe | Cl | <sup>t</sup> Bu | 2.3883(7)   | 2.232(1)   | 1.730(2)   | 102.69(2)   | 115.61(2)   |
| Fe | Ι  | <sup>t</sup> Bu | 2.370(1)    | 2.573(1)   | 1.731(4)   | 104.27(5)   | 114.28(4)   |
| Ni | Ι  | Ph              | 2.2780(9)   | 2.545(1)   | 1.710(4)   | 105.08(4)   | 113.57(3)   |

MCl) than the N–M–N angles for the six-membered metallacycles in the Tp complexes (ca. 90°). A larger S–M–S bite angle steers the substituents on Tm<sup>R</sup> toward the metal center, and this facilitates the formation of mono-Tm complexes. Indeed, the reaction of MCl<sub>2</sub> with the Tm<sup>Me</sup> anion can afford the chloride-bridged dimer [Tm<sup>Me</sup>M( $\mu$ -Cl)]<sub>2</sub> or monomeric Tm<sup>Me</sup>CoCl, whereas the Tp<sup>Me</sup> analogue is not available. The M–S and M–Cl distances follow the order of the ion radii, Mn > Fe > Co > Ni. Although Tm<sup>R</sup>MCl and [Tm<sup>Me</sup>M( $\mu$ -Cl)]<sub>2</sub> complexes comprise various numbers of d-electrons ranging from d<sup>5</sup> Mn(II) to d<sup>8</sup> Ni(II), there is no notable difference in the C=S distances. Similarly, the exchange of the halogen or the Tm<sup>R</sup> substituents has almost no influence on these bonds. These results indicate that the

back-donation from the metal to the thioimidazol group is not significant during the interaction between the metals and the  $Tm^R$  ligands, and thus ligation of the C=S group is expected to be labile.

Structure of the Nickelaboratarane Complex. The molecular geometry of  $\{B(timi^{tBu})_3\}$ NiCl is illustrated in Figure 2, which exhibits a trigonal bipyramidal arrangement around the nickel with a direct Ni–B bond (2.108(4) Å). The nickel–boron linkage is compared with those observed in the metallaboratarane complexes of Ru, Os, Co, Rh, and Ir,<sup>9a,12</sup> the most closely aligned example of which is the cobaltaboratarane complex (Co–B, 2.132(4) Å).<sup>9a</sup> The boron atom is tetrahedrally coordinated with angles in the range of 107.6(3)–110.8(3)°, and this boron is considered to act as a Lewis acid, engaged in a dative bond from nickel to boron. Whereas the S–Ni–Cl angles in Tm<sup>R</sup>NiCl (113.52-(2)–114.00(3)°) deviate only slightly from the ideal tetrahedral value, the corresponding values in the nickelaborat-



**Figure 2.** Molecular structure of  $\{B(timi^{Bu})_3\}$ NiCl. Selected bond distances (Å) and angles (deg): Ni–Cl 2.355(1), Ni–S(1) 2.259(2), Ni–S(2) 2.223(1), Ni–S(3) 2.267(1), Ni–B 2.108(4), B–Ni–S(1) 87.1(1), B–Ni–S(2) 87.7(1), B–Ni–S(3) 88.9(1), Cl–Ni–S(1) 93.76(4), Cl–Ni–S(2) 91.24(4), Cl–Ni–S(3) 91.38(4), S(1)–Ni–S(2) 137.77(5), S(1)–Ni–S(3) 103.61(5), S(2)–Ni–S(3) 118.17(5).

#### Mono{hydrotris(mercaptoimidazolyl)borato} Complexes

arane complex decrease to  $91.24(4)-93.76(4)^{\circ}$ . These values are in agreement with the trigonal bipyramidal arrangement at the nickel, but three equatorial sulfur atoms are not arranged in an ideal trigonal manner, with the S-Ni-S angles ranging  $103.61(5)-137.77(5)^{\circ}$ .

**Formation of Tm<sup>R</sup>MCl from Tm<sup>R</sup><sub>2</sub>M and MCl<sub>2</sub>.** In the synthesis of  $(Tm^RMCl)_n$  (n = 1, 2), the use of excess MCl<sub>2</sub> toward the Tm<sup>R</sup> anion and the prolonged reaction time was found to be important. Therefore, we suggested that the sandwich complex,  $Tm^R_2M$ , would be converted to  $(Tm^R-MCl)_n$  (n = 1, 2) in the presence of excess MCl<sub>2</sub>.



Treatment of the known sandwich complex, Tm<sup>Ph</sup><sub>2</sub>Fe,<sup>10</sup> with excess FeCl<sub>2</sub> at room temperature led to a gradual color change from dark green to green over the period of 12 h. After removal of the excess FeCl<sub>2</sub>, Tm<sup>Ph</sup>FeCl was obtained as a green powder in 80% yield. Taking this result into account, we propose that the initial reaction mixture of the Tm<sup>R</sup> anion and excess MCl<sub>2</sub> includes both Tm<sup>R</sup>MCl and Tm<sup>R</sup><sub>2</sub>M. The sandwich complex Tm<sup>R</sup><sub>2</sub>M gradually reacts with excess MCl<sub>2</sub> to form Tm<sup>R</sup>MCl (Scheme 1). This hypothesis is also in agreement with the dominant formation of Tm<sup>Me</sup><sub>2</sub>-Ni in the reaction of NaTm<sup>Me</sup> with 5 equiv of NiCl<sub>2</sub>. The formed Tm<sup>Me</sup><sub>2</sub>Ni complex is sparingly soluble in common organic solvents, and this prevents it from reacting with excess NiCl<sub>2</sub> to form [Tm<sup>Me</sup>Ni(μ-Cl)]<sub>2</sub>.

The reaction of TmR2M with MCl2 requires the facile dissociation of the C=S and B-H groups followed by transfer of the ligand between the metal centers. As mentioned above, the C=S distance is not affected by the variety of the metals or the halides on the metals, indicating that the coordinated C=S groups would be labile. The flexibility of an eight-membered metallacycle would also be important for the ligand transfer. Although the liberation of the M–N or M–H–B interaction in the transition metal Tp complexes is known, the ligand transfer reaction from Tp<sub>2</sub>M to the metal halides has not appeared to date. The sixmembered metallacycle in the Tp<sub>2</sub>M complexes is less flexible, and the dissociated pyrazolyl group remains in the coordination sphere, whereas the eight-membered rings in the Tm<sup>R</sup> complexes are flexible enough to let the liberated thioimidazolyl group interact with the external metal ions. This hypothesis is supported by the fact that TmtBuCoBr is in equlibrium with the dimeric [TmtBu2Co2Br]+ species, which has been crystallographically identified as the PF<sub>6</sub> salt.<sup>9a</sup> Such a dinuclear species with bridging between the Tm<sup>R</sup> ligands is a possible intermediate during the reaction of Tm<sup>R</sup><sub>2</sub>M with

Scheme 1



MCl<sub>2</sub>. The ligand redistribution reaction has been recently demonstrated for the Tm<sup>Et</sup> complexes.<sup>13</sup>

**General Procedures.** All reactions and the manipulations of the transition metal complexes were performed under a nitrogen atmosphere using standard Schlenk techniques. Solvents were dried, degassed, and distilled from sodium/ benzophenone ketyl (hexane, ether, THF, toluene), from CaH<sub>2</sub> (CH<sub>2</sub>Cl<sub>2</sub>) or from Mg turnings (MeOH) under nitrogen, except for CHCl<sub>3</sub> (used as purchased).

The <sup>1</sup>H NMR spectra were acquired using a Varian INOVA-500 spectrometer. The spectra were referenced to the residual proton resonance of CDCl<sub>3</sub>. The infrared spectra were recorded using a Perkin-Elmer 2000 Fourier transform (FT) IR spectrometer or a JASCO A3 spectrometer. Elemental analyses for C, H, N, and S were performed using a LECO CHNS-932 elemental analyzer where the crystalline samples were sealed in silver capsules under a nitrogen atmosphere. Fast atom bombardment (FAB) mass spectra were obtained on a JEOL JMS-LCMATE mass spectrometer under a stream of high energy Xe gas, where 3-nitrobenzyl alcohol was used as the matrix. UV-vis spectra were measured using a JASCO V560 spectrometer. X-ray diffraction data were collected using a Rigaku AFC7R/Mercury charge-coupled device (CCD) system or a Rigaku AFC7R/ADSC Quantum 1 CCD system equipped with a rotating anode using graphitemonochromated Mo Ka radiation. Transition metal halides and the other reagents were purchased and used without further purification. The following compounds were prepared according to the literature procedures: NaTm<sup>Me,4b</sup> LiTm<sup>tBu,7d</sup> and LiTmPh.7a Repeated attempts to obtain satisfactory elemental analysis for  $(Tm^{Me}FeCl)_n$  (n = 1 or 2),  $[Tm^{Me}M$ - $(\mu$ -Cl)]<sub>2</sub> (M = Mn, Co, Ni), Tm<sup>Ph</sup>MCl (M = Fe, Mn, Co, Ni), Tm<sup>tBu</sup>MnCl, Tm<sup>Ar</sup>MCl (M = Co, Ni), Tm<sup>Ph</sup>MI (M = Co, Ni), {B(timit<sup>Bu</sup>)<sub>3</sub>}NiCl, and (Htimit<sup>Bu</sup>)<sub>2</sub>NiCl<sub>2</sub>, even with the use of single crystals, were unsuccessful to fit within the standards, probably due to the contamination of a small amount of crystal solvent. The crystals used for the elemental analysis were ground down in a glovebox and left under reduced pressure prior to sealing in silver capsules.

Synthesis of LiTm<sup>Ar</sup> (Ar = 2,6-iPr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>). A mixture of 2,6-diisopropylphenylthiocyanate (29.6 g, 135 mmol) and NH<sub>2</sub>CH<sub>2</sub>CH(OEt)<sub>2</sub> (18.0 g, 135 mmol) in toluene (60 mL) was stirred at room temperature for 3 h. After the addition of concentrated HCl (6.3 mL), the reaction mixture was refluxed for 12 h to afford a brown solid. The solid was suspended in water (100 mL), and the solution was neutralized with 0.2 M NaOH. The solid was dissolved into CHCl<sub>3</sub>,

 <sup>(13)</sup> Bailey, P. J.; Dawson, A.; McCormack, C.; Moggach, S. A.; Oswald,
 I. D. H.; Parsons, S.; Rankin, D. W. H.; Turner, A. *Inorg. Chem.* 2005, 44, 8884–8898.

and the organic extracts were dried over Na<sub>2</sub>SO<sub>4</sub>; then the solvent was removed under reduced pressure to give a white crystalline solid. The vacuum-dried 2-mercapto-1-(2,6-di-isopropylphenyl)imidazole (11.9 g, 34%) is sufficiently pure to be used in the following step. <sup>1</sup>H NMR (CDCl<sub>3</sub>, rt,  $\delta$ ): 1.11 (d, J = 7.0 Hz, 6H, <sup>i</sup>Pr), 1.28 (d, J = 7.0 Hz, 6H, <sup>i</sup>Pr), 2.58 (sep, J = 7.0 Hz, <sup>i</sup>Pr), 6.64 (d, J = 2.0 Hz, 1H, CH), 6.85 (d, J = 2.0 Hz, 1H, CH), 7.27 (d, J = 3.0 Hz, 2H, *m*-Ph), 7.45 (t, J = 3.0 Hz, 1H, *p*-Ph).

To a toluene solution (90 mL) of 2-mercapto-1-(2,6diisopropylphenyl)imidazole (10.25 g, 39.4 mmol) was added LiBH<sub>4</sub> (0.286 g, 13.2 mmol), and the mixture was refluxed under argon for 12 h. The resulting white solid was collected under air and then washed with ether and dried under a vacuum to give LiTm<sup>Ar</sup> (7.19 g, 77%) as a white solid. <sup>1</sup>H NMR (CDCl<sub>3</sub>, rt,  $\delta$ ): 1.06 (d, J = 6.5 Hz, 18H, <sup>i</sup>Pr), 1.16 (d, J = 6.5 Hz, 18 H, <sup>i</sup>Pr), 2.56 (sep, J = 6.5 Hz, 3H, <sup>i</sup>Pr), 6.41 (d, J = 2.0 Hz, 1H, CH), 6.68 (d, J = 2.0 Hz, 1H, CH), 7.20 (d, J = 2.5 Hz, 2H, *m*-Ph), 7.39 (t, J = 2.5 Hz, *p*-Ph). IR (KBr, cm<sup>-1</sup>): 2397 (B–H). Anal. Calcd for C<sub>45</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BLi: C, 67.82; H, 7.34; N, 10.55; S, 12.07. Found: C, 67.78; H, 7.40; N, 10.47; S, 11.96.

Synthesis of  $(\text{Tm}^{\text{Me}}\text{FeCl})_n$  (n = 1 or 2). To a stirred suspension of NaTm<sup>Me</sup> (0.300 g, 0.80 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was added anhydrous FeCl<sub>2</sub> (0.304 g, 2.40 mmol) at room temperature, and the mixture was then allowed to stir for 4 days. After the suspension was centrifuged to remove the NaCl and excess FeCl<sub>2</sub>, the solvent was removed under reduced pressure to afford a green solid. The green solid was repeatedly washed with hexane, giving rise to  $(\text{Tm}^{\text{Me}}\text{-FeCl})_n$  (n = 1 or 2) as a green powder (0.276 g, 78% based on  $[\text{Tm}^{\text{Me}}]^-$ , 26% based on FeCl<sub>2</sub>). A green crystalline powder was obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane. IR (KBr, cm<sup>-1</sup>): 2438 (BH), 1558, 1460, 1377, 1203, 681. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), m/z: 406.9 ( $[\text{M}]^+$  – Cl). UV– vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{\text{max}}$ , nm): ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 614 (1.3), 406 (2.9), 306 (6.9), 264 (18.6).

Synthesis of TmtBuFeCl. A 100 mL flask was charged with FeCl<sub>2</sub> (0.077 g, 0.610 mmol) and LiTm<sup>tBu</sup> (0.300 g, 0.610 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was added. The resultant dark yellow suspension was stirred for 4 days at ambient temperature. After the suspension was centrifuged to remove LiCl and a small amount of unreacted FeCl<sub>2</sub> and LiTm<sup>tBu</sup>, the solvent was removed under reduced pressure to afford a light brown powder. This solid was repeatedly washed with hexane, giving rise to Tm<sup>iBu</sup>FeCl as a light brown powder (0.330 g, 94%). Light brown crystals were recrystallized from THF/hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2408 (BH), 1567, 1417, 1361, 1195, 687. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), m/z: 568.2 ([M]<sup>+</sup>), 533.1 ([M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{\text{max}}$ , nm) ( $\epsilon$ ,  $\times 10^3$  M<sup>-1</sup>cm<sup>-1</sup>): 421 (0.08), 357 (0.26), 276 (1.0). Anal. Calcd for C<sub>21</sub>H<sub>34</sub>N<sub>6</sub>S<sub>3</sub>BFeCl: C, 44.34; H, 6.02; N, 14.77; S, 16.91. Found: C, 44.34; H, 6.34; N, 14.63; S. 17.15.

Synthesis of Tm<sup>Ph</sup>FeCl. The reaction of anhydrous FeCl<sub>2</sub> (0.070 g, 0.551 mmol) with LiTm<sup>Ph</sup> (0.300 g, 0.551 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (60 mL) for 4 days afforded Tm<sup>Ph</sup>FeCl as a dark green powder (0.299 g, 86%). Green crystals were obtained

from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2431 (BH), 1596, 1498, 1366, 1189, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m*/*z*: 593.1 ([M]<sup>+</sup> – Cl). UV– vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{\text{max}}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 646 (0.69), 446 (0.93), 361 (1.7).

Synthesis of Tm<sup>Ar</sup>FeCl. This compound was prepared by the method for Tm<sup>1Bu</sup>FeCl. LiTm<sup>Ar</sup> (0.300 g, 0.376 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL) was added to a CH<sub>2</sub>Cl<sub>2</sub> suspension (20 mL) of anhydrous FeCl<sub>2</sub> (0.190 g, 1.50 mmol) at room temperature for 4 days. Tm<sup>Ar</sup>FeCl (0.330 g, 99% based on [Tm<sup>Ar</sup>]<sup>-</sup>, 25% based on FeCl<sub>2</sub>) crystals were grown by layering hexane onto a THF solution at room temperature. IR (KBr, cm<sup>-1</sup>): 2409 (BH), 1552, 1468, 1370, 1183, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 880.5 ([M]<sup>+</sup>), 845.5 ([M]<sup>+</sup> – Cl). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 354 (0.32), 285 (1.5). Anal. Calcd for C<sub>45</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BFeCl: C, 61.33; H, 6.63; N, 9.54; S, 10.92. Found: C, 61.20; H, 6.88; N, 9.11; S, 11.40.

Synthesis of  $[\text{Tm}^{\text{Me}}\text{Mn}(\mu\text{-Cl})]_2$ . To a stirred solution of NaTm<sup>Me</sup> (1.00 g, 2.67 mmol) in MeOH (40 mL) was added MnCl<sub>2</sub>·4H<sub>2</sub>O (0.529 g, 2.67 mmol) at room temperature, and the mixture was allowed to stir for 1 h. After removal of the solvent, the product was extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL) and the solution was centrifuged. The solvent was removed under reduced pressure, and the residue was washed repeatedly with hexane, giving rise to  $[\text{Tm}^{\text{Me}}\text{Mn}(\mu\text{-Cl})]_2$  as a white powder (0.633 g, 54%). Colorless crystals were obtained from a CH<sub>2</sub>-Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2391 (BH), 1562, 1459, 1378, 1205, 681. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 406.5 (1/2[M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{\text{max}}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 261 (27.2).

**Synthesis of Tm<sup>iBu</sup>MnCl.** A procedure similar to that for the case of  $[\text{Tm}^{\text{Me}}\text{Mn}(\mu\text{-Cl})]_2$  was used. LiTm<sup>tBu</sup> (0.227 g, 0.505 mmol) was added to MnCl<sub>2</sub>·4H<sub>2</sub>O (0.100 g, 0.505 mmol) in MeOH (20 mL), and the mixture was stirred at room temperature for 3 days. Tm<sup>tBu</sup>MnCl was isolated as a white powder (0.254 g, 89%). A colorless crystalline solid was obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2411 (BH), 1567, 1481, 1361, 1195, 688. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 532.1 ([M]<sup>+</sup> – Cl). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 269 (22.0).

**Synthesis of Tm<sup>Ph</sup>MnCl.** Synthesis was as in the case of  $[\text{Tm}^{\text{Me}}\text{Mn}(\mu\text{-Cl})]_2$ . To a MeOH suspension (10 mL) of LiTm<sup>Ph</sup> (0.275 g, 0.505 mmol) was added MnCl<sub>2</sub>·4H<sub>2</sub>O (0.100 g, 0.505 mmol) in MeOH (10 mL) at room temperature for 4 days. Tm<sup>Ph</sup>MnCl was isolated as a white powder (0.110 g, 35%). Colorless crystals were obtained from a CH<sub>2</sub>-Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2420 (BH), 1596, 1498, 1363, 1187, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 592.2 ([M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 280 (16.7).

**Synthesis of Tm<sup>Ar</sup>MnCl.** The same procedure as in the case of  $[\text{Tm}^{\text{Me}}\text{Mn}(\mu\text{-Cl})]_2$  was used. To a MeOH solution (10 mL) of LiTm<sup>Ar</sup> (0.500 g, 0.627 mmol) was added MnCl<sub>2</sub>· 4H<sub>2</sub>O (0.124 g, 0.627 mmol) in MeOH (10 mL) at room temperature for 4 days. Tm<sup>Ar</sup>MnCl was isolated as a white powder (0.472 g, 86%). Colorless crystals were obtained

from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2413 (BH), 1556, 1469, 1363, 1186, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 844.5 ([M]<sup>+</sup> – Cl). UV– vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 271 (28.6). Anal. Calcd for C<sub>45</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BMnCl: C, 61.39; H, 6.64; N, 9.55; S, 10.93. Found: C, 61.44; H, 6.51; N, 9.52; S, 10.78.

Synthesis of Tm<sup>Me</sup>CoCl. This compound has been reported.<sup>9b</sup> The reaction of anhydrous CoCl<sub>2</sub> (0.205 g, 1.60 mmol) with LiTm<sup>Me</sup> (0.200 g, 0.534 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) for 4 days afforded Tm<sup>Me</sup>CoCl as a light green powder (0.089 g, 37% based on [Tm<sup>Me</sup>]<sup>-</sup>, 12% based on CoCl<sub>2</sub>). A green crystalline solid was obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane. IR (KBr, cm<sup>-1</sup>): 2410 (BH), 1562, 1462, 1381, 1203, 683. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 410.1 ([M]<sup>+</sup> – Cl). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 697 (1.2), 371 (4.2).

**Synthesis of Tm<sup>tBu</sup>CoCl.** This is a known compound.<sup>9a</sup> Addition of LiTm<sup>tBu</sup> (0.200 g, 0.407 mmol) to anhydrous CoCl<sub>2</sub> (0.052 g, 0.407 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL) was stirred at room temperature for 4 days. Tm<sup>tBu</sup>CoCl was isolated as a green powder (0.180 g, 77%). Green crystals were recrystallized from THF/hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2410 (BH), 1565, 1481, 1361, 1193, 683. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 563.3 ([M]<sup>+</sup> – Cl). UV–vis (CH<sub>2</sub>-Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 738 (1.0), 701 (1.3), 665 (0.96), 369 (3.4). Anal. Calcd for C<sub>21</sub>H<sub>34</sub>N<sub>6</sub>S<sub>3</sub>BCoCl: C, 44.10; H, 5.99; N, 14.69; S, 16.82. Found: C, 43.72; H, 5.90; N, 14.63; S, 16.41.

**Synthesis of Tm<sup>Ph</sup>CoCl.** Tm<sup>Ph</sup>CoCl was prepared by a procedure similar to that employed for Tm<sup>tBu</sup>FeCl. To a CH<sub>2</sub>-Cl<sub>2</sub> suspension (10 mL) of LiTm<sup>Ph</sup> (0.210 g, 0.385 mmol) was added CoCl<sub>2</sub> (0.150 g, 1.16 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) at room temperature for 4 days. Tm<sup>Ph</sup>CoCl was isolated as a dark green powder (0.143 g, 59% based on [Tm<sup>Ph</sup>]<sup>-</sup>, 20% based on CoCl<sub>2</sub>). Green crystals were obtained from a CH<sub>2</sub>-Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2418 (BH), 1596, 1498, 1367, 1190, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 596.2 ([M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>-Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 740 (0.63), 702 (0.85), 663 (0.64), 371 (2.2), 279 (7.9).

**Synthesis of Tm**<sup>Ar</sup>**CoCl.** A similar procedure as that for Tm<sup>IBu</sup>FeCl was used. The reaction of anhydrous CoCl<sub>2</sub> (0.300 g, 2.31 mmol) with LiTm<sup>Ar</sup> (0.614 g, 0.770 mmol) in CH<sub>2</sub>-Cl<sub>2</sub> (30 mL) for 4 days afforded Tm<sup>Ar</sup>CoCl as a light blue powder (0.375 g, 55% based on [Tm<sup>Ar</sup>]<sup>-</sup>, 18% based on CoCl<sub>2</sub>). Blue crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2440 (BH), 1558, 1471, 1369, 1183, 690. FABMS (CH<sub>2</sub>-Cl<sub>2</sub>), *m*/*z*: 848.5 ([M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , × 10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 738 (0.10), 701 (0.14), 665 (0.09), 369 (0.35).

**Synthesis of** [Tm<sup>Me</sup>Ni( $\mu$ -Cl)]<sub>2</sub>. This compound was prepared using a procedure similar to that adopted for [Tm<sup>Me</sup>-Mn( $\mu$ -Cl)]<sub>2</sub>. To a CH<sub>2</sub>Cl<sub>2</sub> solution (20 mL) of NaTm<sup>Me</sup> (0.300 g, 0.801 mmol) was added anhydrous NiCl<sub>2</sub> (0.572 g, 4.15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) at room temperature for 4 days. [Tm<sup>Me</sup>Ni( $\mu$ -Cl)]<sub>2</sub> was isolated as a green powder (0.065 g, 18% based on [Tm<sup>Me</sup>]<sup>-</sup>, 3.5% based on NiCl<sub>2</sub>). Green crystals

were obtained from a CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>CN solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2387 (BH), 1560, 1458, 1373, 1207, 683. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m*/*z*: 409.1 (1/2[M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 424 (4.2), 378 (4.3), 331 (4.6), 267 (12.5).

**Synthesis of [Tm<sup>Me</sup>Ni**( $\mu$ -**Br**)]<sub>2</sub>. A procedure similar to that for the case of [Tm<sup>Me</sup>Mn( $\mu$ -Cl)]<sub>2</sub> was used. The reaction of anhydrous NiBr<sub>2</sub> (2.40 g, 10.7 mmol) with NaTm<sup>Me</sup> (4.00 g, 10.7 mmol) in MeOH (100 mL) for 1 h afforded [Tm<sup>Me</sup>-Ni( $\mu$ -Br)]<sub>2</sub> as a dark brown powder (3.70 g, 71%). Brown crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2440 (BH), 1560, 1461, 1376, 1210. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 409.1 (1/ 2[M]<sup>+</sup> - Br). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 731 (4.6), 426 (6.7), 363 (7.1), 330 (7.6). Anal. Calcd for C<sub>24</sub>H<sub>32</sub>N<sub>12</sub>S<sub>6</sub>B<sub>2</sub>Ni<sub>2</sub>Br<sub>2</sub>: C, 29.42; H, 3.29; N, 17.15; S, 19.67. Found: C, 29.66; H, 2.97; N, 17.37; S, 19.89.

Synthesis of Tm<sup>Ph</sup>NiCl. This compound was prepared using the same procedure described above for Tm<sup>tBu</sup>FeCl. Addition of LiTm<sup>Ph</sup> (0.300 g, 0.551 mmol) to anhydrous NiCl<sub>2</sub> (0.393 g, 1.65 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) was stirred at room temperature for 4 days. Tm<sup>Ph</sup>NiCl was isolated as a green powder (0.193 g, 55% based on [Tm<sup>Ph</sup>]<sup>-</sup>, 19% based on NiCl<sub>2</sub>). Green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2431 (BH), 1596, 1498, 1364, 1189, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 595.2 ([M]<sup>+</sup> – Cl). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 730 (0.38), 640 (0.45), 392 (3.9).

**Synthesis of Tm**<sup>Ar</sup>**NiCl.** Synthesis was as in the case of Tm<sup>IBu</sup>FeCl. To a CH<sub>2</sub>Cl<sub>2</sub> suspension (10 mL) of LiTm<sup>Ar</sup> (4.00 g, 5.02 mmol) was added NiCl<sub>2</sub> (4.77 g, 20.1 mmol) in CH<sub>2</sub>-Cl<sub>2</sub> (20 mL) at room temperature for 4 days. Tm<sup>Ar</sup>NiCl was isolated as a yellowish green powder (3.52 g, 79% based on [Tm<sup>Ar</sup>]<sup>-</sup>, 20% based on NiCl<sub>2</sub>). Yellowish green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2439 (BH), 1550, 1470, 1371, 1190, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 882.4 ([M]<sup>+</sup>), 847.4 ([M]<sup>+</sup> - Cl). UV-vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>-cm<sup>-1</sup>): 450 (0.19), 384 (0.67), 284 (2.6).

Synthesis of Tm<sup>tBu</sup>FeI. To a stirred solution of Tm<sup>tBu</sup>-FeCl (0.150 g, 0.284 mmol) in THF (20 mL) was added NaI (0.047 g, 0.312 mmol) at room temperature, and the mixture was allowed to stir for 3 h. The solution immediately turned to a reddish brown suspension. After it was centrifuged to remove NaCl, the solvent was removed under reduced pressure to afford a brown solid. The brown solid was washed repeatedly with hexane and ether to afford TmtBu-FeI as a brown powder (0.175 g, 93%). Brown crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2424 (BH), 1565, 1481, 1361, 1195, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), m/z: 534.3 ([M]<sup>+</sup> – I). UV– vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 361 (10.7), 286 (29.5). Anal. Calcd for C<sub>21</sub>H<sub>34</sub>N<sub>6</sub>S<sub>3</sub>BFeI: C, 38.20; H, 5.19; N, 12.73; S, 14.57. Found: C, 38.09; H, 5.32; N, 12.63; S, 14.08.

Synthesis of  $Tm^{Ph}FeI$ . This compound was prepared by the method for  $Tm^{tBu}FeI$ . To a THF solution (10 mL) of NaI (0.098 g, 0.655 mmol) was added  $Tm^{Ph}FeC1$  (0.412 g,

0.655 mmol) in THF (20 mL) at room temperature for 3 h. Tm<sup>Ph</sup>FeI was isolated as a dark green powder (0.304 g, 64%). Green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2431 (BH), 1556, 1496, 1359, 1189, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 593.2 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 646 (2.1), 446 (4.8), 290 (16.9). Anal. Calcd for C<sub>27</sub>H<sub>22</sub>N<sub>6</sub>S<sub>3</sub>BFeI: C, 45.02; H, 3.08; N, 11.67; S, 13.36. Found: C, 44.75; H, 3.09; N, 11.68; S, 13.03.

**Synthesis of Tm<sup>Ar</sup>FeI.** The same procedure as in the case Tm<sup>tBu</sup>FeI was used. To a THF suspension (10 mL) of NaI (0.034 g, 0.227 mmol) was added Tm<sup>Ar</sup>/FeCl (0.200 g, 0.227 mmol) in THF (20 mL) at room temperature for 3 h. Tm<sup>Ar</sup>-FeI was isolated as a dark yellow powder (0.122 g, 55%). Yellow crystals were recrystallized from THF/hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2424 (BH), 1553, 1470, 1366, 1184, 689. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 845.4 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 341 (4.1). Anal. Calcd for C<sub>45</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BFeI: C, 55.56; H, 6.01; N, 8.64; S, 9.89. Found: C, 55.33; H, 6.05; N, 8.39; S, 9.61.

**Synthesis of Tm<sup>tBu</sup>MnI.** Tm<sup>tBu</sup>MnI was prepared by a procedure similar to that employed for Tm<sup>tBu</sup>FeI. Addition of NaI (0.053 g, 0.353 mmol) to Tm<sup>tBu</sup>MnCl (0.200 g, 0.352 mmol) in THF (20 mL) was stirred at room temperature for 1 day. Tm<sup>tBu</sup>MnI was isolated as a white powder (0.220 g, 95%). Colorless crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2414 (BH), 1567, 1481, 1361, 1195, 686. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 532.3 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 274 (19.4). Anal. Calcd for C<sub>21</sub>H<sub>34</sub>N<sub>6</sub>S<sub>3</sub>BMnI: C, 38.25; H, 5.20; N, 12.75; S, 14.59. Found: C, 38.12; H, 5.29; N, 12.46; S, 14.86.

**Synthesis of Tm<sup>Ph</sup>MnI.** A similar procedure as that for Tm<sup>IBu</sup>FeI was used. The reaction of Tm<sup>Ph</sup>MnCl (0.218 g, 0.384 mmol) with NaI (0.058 g, 0.384 mmol) in THF (20 mL) for 1 day afforded Tm<sup>Ph</sup>MnI as a white powder (0.257 g, 93%). Colorless crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2422 (BH), 1594, 1498, 1367, 1189, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 592.2 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 278 (13.2). Anal. Calcd for C<sub>27</sub>H<sub>22</sub>N<sub>6</sub>S<sub>3</sub>BMnI: C, 45.08; H, 3.08; N, 11.68; S, 13.37. Found: C, 44.79; H, 3.27; N, 11.56; S, 12.90.

Synthesis of Tm<sup>Ar</sup>MnI. This compound was prepared using a procedure similar to that adopted for Tm<sup>1Bu</sup>FeI. To a THF solution (10 mL) of NaI (0.125 g, 0.831 mmol) was added Tm<sup>Ar</sup>/MnCl (0.472 g, 0.536 mmol) in THF (10 mL) at room temperature for 1 day. Tm<sup>Ar</sup>MnI was isolated as a white powder (0.395 g, 76%). Colorless crystals were recrystallized from THF/hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2435 (BH), 1560, 1471, 1369, 1187, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 844.5 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>-Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 275 (28.5). Anal. Calcd for C4<sub>5</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BMnI: C, 55.62; H, 6.02; N, 8.65; S, 9.90. Found: C, 55.73; H, 6.36; N, 8.54; S, 9.61.

**Synthesis of Tm<sup>tBu</sup>CoI.** This compound was prepared using the same procedure described above for Tm<sup>tBu</sup>FeI. Addition of NaI (0.052 g, 0.350 mmol) to Tm<sup>tBu</sup>CoCl (0.200

g, 0.350 mmol) in THF (30 mL) was stirred at room temperature for 3 h. Tm<sup>tBu</sup>CoI was isolated as a light yellow powder (0.216 g, 93%). IR (KBr, cm<sup>-1</sup>): 2411 (BH), 1595, 1498, 1363, 1186, 692. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 536.3 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 758 (0.98), 740 (0.91), 695 (0.78), 393 (2.5). Anal. Calcd for C<sub>21</sub>H<sub>34</sub>N<sub>6</sub>S<sub>3</sub>BCoI: C, 38.02; H, 5.17; N, 12.67; S, 14.50. Found: C, 37.85; H, 5.36; N, 12.31; S, 14.29.

**Synthesis of Tm**<sup>Ph</sup>**CoI.** The same procedure as in the case of Tm<sup>tBu</sup>FeI was used. To a THF suspension (10 mL) of NaI (0.034 g, 0.226 mmol) was added Tm<sup>Ph</sup>CoCl (0.143 g, 0.226 mmol) in THF (20 mL) at room temperature for 3 h. Tm<sup>Ph</sup>CoI was isolated as a green powder (0.075 g, 46%). Green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2436 (BH), 1595, 1498, 1366, 1190, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 596.2 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 761 (1.0), 730 (0.86), 694 (0.65), 393 nm (2.5).

**Synthesis of Tm**<sup>Ar</sup>**CoI.** A similar procedure as that for Tm<sup>tBu</sup>FeI was used. The reaction of Tm<sup>Ar</sup>CoCl (0.164 g, 0.185 mmol) with NaI (0.028 g, 0.185 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (40 mL) for 3 h afforded Tm<sup>Ar</sup>CoI as a light yellowish green powder (0.136 g, 75%). Yellowish green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2436 (BH), 1553, 1470, 1366, 1185, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 848.5 ([M]<sup>+</sup> – I). UV– vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 759 (0.11), 406 (0.92), 269 (17.2). Anal. Calcd for C<sub>45</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BCoI: C, 59.63; H, 7.55; N, 7.32; S, 8.38. Found: C, 59.43; H, 7.57; N, 7.06; S, 7.89.

Synthesis of Tm<sup>Ph</sup>NiI. Synthesis was as in the case of Tm<sup>Hb</sup>uFeI. Addition of NaI (0.052 g, 0.348 mmol) to Tm<sup>Ph</sup>-NiCl (0.200 g, 0.317 mmol) in THF (60 mL) was stirred at room temperature for 3 h. Tm<sup>Ph</sup>NiI was isolated as an orange powder (0.198 g, 86%). Orange crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2413 (BH), 1554, 1469, 1367, 1183, 690. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 595.2 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>-Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 784 (0.35), 699 (0.45), 411 (4.8).

Synthesis of Tm<sup>Ar</sup>NiI. This compound was prepared by the method for Tm<sup>tBu</sup>FeI. To a THF solution (10 mL) of NaI (0.034 g, 0.226 mmol) was added Tm<sup>Ar</sup>NiCl (0.200 g, 0.226 mmol) in THF (10 mL) at room temperature for 3 h. Tm<sup>Ar</sup>NiI was isolated as an orange brown powder (0.153 g, 69%). Orange crystals were recrystallized from THF/hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 2435 (BH), 1551, 1471, 1369, 1187, 689. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 848.5 ([M]<sup>+</sup> – I). UV–vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 402 (4.8), 273 (32.2). Anal. Calcd for C<sub>45</sub>H<sub>58</sub>N<sub>6</sub>S<sub>3</sub>BNiI: C, 55.40; H, 5.99; N, 8.61; S, 9.86. Found: C, 55.47; H, 6.01; N, 8.37; S, 9.47.

Formation of  $\{B(timi^{tBu})_3\}$ NiCl from NiCl<sub>2</sub> and LiTm<sup>tBu</sup>. To a stirred solution of LiTm<sup>tBu</sup> (0.200 g, 0.412 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (25 mL) was added anhydrous NiCl<sub>2</sub> (0.053 g, 0.412 mmol) at room temperature, and the mixture was allowed to stir for 2 days. The solution immediately turned

# Mono{hydrotris(mercaptoimidazolyl)borato} Complexes

| Table 4. | Crystallographic | Data for the | Complexes | Refined by | / TEXSAN or | Crystals |
|----------|------------------|--------------|-----------|------------|-------------|----------|
|----------|------------------|--------------|-----------|------------|-------------|----------|

|                                          | $[Tm^{Me}Mn(\mu-Cl)]_2$                                            | Tm <sup>Ph</sup> MnC                                             | 1•3CH <sub>2</sub> Cl <sub>2</sub>        | Tm                      | ArMnCl•4                           | 4.5CH <sub>2</sub> Cl <sub>2</sub>                  | Tm <sup>Ph</sup> FeCl•3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CH <sub>2</sub> Cl <sub>2</sub>                                 | Tm <sup>Ar</sup>                  | FeCl $\cdot$ 0.5(C <sub>4</sub> H <sub>8</sub> O)                    |
|------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|-------------------------|------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------|
| formula                                  | C12H16N6S3ClMn                                                     | C <sub>27</sub> H <sub>22</sub> N <sub>6</sub> S <sub>3</sub> BC | ClMn•3CH <sub>2</sub> Cl <sub>2</sub>     | C45H58                  | N <sub>6</sub> S <sub>3</sub> BCIN | An•4.5CH <sub>2</sub> Cl <sub>2</sub>               | C <sub>27</sub> H <sub>22</sub> N <sub>6</sub> S <sub>3</sub> BClH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe•3CH <sub>2</sub> Cl <sub>2</sub>                             | C <sub>45</sub> H <sub>58</sub> N | <sub>6</sub> S <sub>3</sub> BClFe•0.5C <sub>4</sub> H <sub>8</sub> O |
| fw<br>crustal system                     | 441.68<br>monoclinic                                               | 882.69                                                           |                                           | 1260.50                 |                                    |                                                     | 883.60<br>trigonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | 917.34                            |                                                                      |
| space group                              | $P2_1/c$                                                           | R3                                                               |                                           | P3c1                    | L                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | $P\overline{1}$                   |                                                                      |
| a (Å)                                    | 10.087(2)                                                          | 15.083(8)                                                        |                                           | 19.501                  | (4)                                |                                                     | 15.0294(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 | 9.877(1)                          |                                                                      |
| b (Å)                                    | 10.001(2)                                                          |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 13.615(2                          | 2)                                                                   |
| c(A)                                     | 19.205(5)                                                          | 29.75(2)                                                         |                                           | 19.687(                 | (4)                                |                                                     | 29.929(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | 18.340(2                          | 2)                                                                   |
| $\alpha$ (deg) $\beta$ (deg)             | 103 160(3)                                                         |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 95.185(2                          | 3)<br>L)                                                             |
| $\delta$ (deg)                           | 105.109(5)                                                         |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 93.703(1<br>97.082(2              | 2)                                                                   |
| $V(Å^3)$                                 | 1886.5(7)                                                          | 5861(5)                                                          |                                           | 6483.5(                 | (2)                                |                                                     | 5854.7(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | 2421.7(5                          | 5)                                                                   |
| Ζ                                        | 4                                                                  | 6                                                                |                                           | 4                       |                                    |                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | 2                                 |                                                                      |
| $D_{\text{calcd}}$ (g/cm <sup>3</sup> )  | 1.555                                                              | 1.500                                                            |                                           | 1.291                   |                                    |                                                     | 1.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 1.258                             |                                                                      |
| $\mu$ (cm <sup>-1</sup> )                | 900                                                                | 10.07                                                            |                                           | 7.48                    |                                    |                                                     | 2760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | 5.35<br>972                       |                                                                      |
| max $2\theta$ (deg)                      | 55.0                                                               | 62.3                                                             |                                           | 55.0                    |                                    |                                                     | 55.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | 55.1                              |                                                                      |
| no. of reflections                       |                                                                    |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                   |                                                                      |
| collected                                | 14854                                                              | 17571                                                            |                                           | 51205                   |                                    |                                                     | 21228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 10839                             |                                                                      |
| indep                                    | 4301<br>$4288 [L > 0 \sigma(D)]$                                   | 3836<br>$2418 [I > \sigma(I)$                                    | 1                                         | 4966<br>1502 [ <i>I</i> | $> \sigma(D)$                      |                                                     | 2999<br>2955 [ $I > 0\sigma(D)$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | 10391                             | $l > 0\sigma(D)$                                                     |
| no. of variables                         | 217                                                                | 149                                                              | 1                                         | 205                     | × 0(I)]                            |                                                     | 145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | 534                               | × 00(I)]                                                             |
| GOF indicator <sup>a</sup>               | 1.00                                                               | 2.09                                                             |                                           | 1.31                    |                                    |                                                     | 2.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | 1.53                              |                                                                      |
| $R^b$                                    | 0.038                                                              | 0.057                                                            |                                           | 0.067                   |                                    |                                                     | 0.089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 0.053                             |                                                                      |
| $Rw^c$                                   | 0.044                                                              | 0.083                                                            |                                           | 0.096                   |                                    |                                                     | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 0.059                             |                                                                      |
|                                          | TmtBuCoCl•1.                                                       | 5C <sub>4</sub> H <sub>8</sub> O                                 | Tm <sup>Ph</sup> CoCl•                    | 3CH <sub>2</sub> Cl     | 2                                  | Tm <sup>Ar</sup> CoCl•4                             | .5CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [Tm <sup>Me</sup> Ni(µ-                                         | Cl)]2                             | [Tm <sup>Me</sup> Ni(µ-Br)] <sub>2</sub>                             |
| formula                                  | C <sub>21</sub> H <sub>34</sub> N <sub>6</sub> S <sub>3</sub> BClC | 0•1.5C <sub>4</sub> H <sub>8</sub> O                             | C27H22N6S3BC1                             | Co•3CH                  | H <sub>2</sub> Cl <sub>2</sub>     | C45H58N6S3BC10                                      | Co•4.5CH <sub>2</sub> Cl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>12</sub> H <sub>16</sub> N <sub>6</sub> S <sub>3</sub> B | BClNi                             | C12H16N6S3BBrNi                                                      |
| fw                                       | 680.08                                                             |                                                                  | 886.69                                    |                         |                                    | 1264.55                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 445.44                                                          |                                   | 489.89                                                               |
| crystal system                           | trigonal                                                           |                                                                  | trigonal                                  |                         |                                    | trigonal                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | monoclinic                                                      |                                   | monoclinic                                                           |
| space group $a(\dot{A})$                 | R3c                                                                |                                                                  | R3                                        |                         |                                    | P3c1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P2_1/n$                                                        |                                   | $P2_1/n$<br>0.7024(7)                                                |
| $h(\mathbf{A})$                          | 13.409(3)                                                          |                                                                  | 13.020(1)                                 |                         |                                    | 19.3212(4)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.022(5)                                                       |                                   | 9.7934(7)                                                            |
| c (Å)                                    | 64.02(1)                                                           |                                                                  | 29.712(3)                                 |                         |                                    | 19.4927(4)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.899(6)                                                       |                                   | 14.8919(2)                                                           |
| α (deg)                                  |                                                                    |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                   |                                                                      |
| $\beta$ (deg)<br>$\gamma$ (deg)          |                                                                    |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102.916(5)                                                      |                                   | 102.9534(5)                                                          |
| $V(Å^3)$                                 | 10058(4)                                                           |                                                                  | 5809.6(9)                                 |                         |                                    | 6433.0(2)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1829(1)                                                         |                                   | 1871.2(1)                                                            |
| Z                                        | 12                                                                 |                                                                  | 6                                         |                         |                                    | 4                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                               |                                   | 4                                                                    |
| $D_{\text{calcd}}$ (g/cm <sup>-3</sup> ) | 1.347<br>8.108                                                     |                                                                  | 1.521                                     |                         |                                    | 8.15                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.017                                                           |                                   | 1.739                                                                |
| $F_{000}$                                | 4308                                                               |                                                                  | 2694                                      |                         |                                    | 2616                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 912                                                             |                                   | 984                                                                  |
| max $2\theta$ (deg)                      | 55.0                                                               |                                                                  | 55.0                                      |                         |                                    | 55.0                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55.0                                                            |                                   | 55.1                                                                 |
| no. of reflections                       |                                                                    |                                                                  |                                           |                         |                                    |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                   |                                                                      |
| collected                                | 25587                                                              |                                                                  | 15187                                     |                         |                                    | 75986                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14089                                                           |                                   | 4026                                                                 |
| no of observations                       | $2570 [I > 0\sigma(I)]$                                            |                                                                  | 2349<br>2896 [ $I > 0\sigma(I)$           | 1                       |                                    | $4717 [I > 0\sigma(I)]$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3365 [I > 3a                                                    | r( <i>I</i> )]                    | $3498 [I > 3\sigma(I)]$                                              |
| no. of variables                         | 120                                                                |                                                                  | 145                                       | 1                       |                                    | 205                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 217                                                             | (1)]                              | 217                                                                  |
| GOF indicator <sup>a</sup>               | 0.861                                                              |                                                                  | 2.05                                      |                         |                                    | 1.88                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.38                                                            |                                   | 1.11                                                                 |
| $R^b$                                    | 0.062                                                              |                                                                  | 0.089                                     |                         |                                    | 0.086                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.035                                                           |                                   | 0.030                                                                |
| KW <sup>e</sup>                          | 0.097                                                              |                                                                  | 0.100                                     |                         |                                    | 0.091                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.047                                                           |                                   | 0.039                                                                |
|                                          | Tm <sup>Ph</sup> NiCl•3CH <sub>2</sub> C                           | Cl <sub>2</sub> Tr                                               | n <sup>Ar</sup> NiCl•4.5CH <sub>2</sub> C | Cl <sub>2</sub>         | Tm <sup>P</sup>                    | hMnI•3CH <sub>2</sub> Cl <sub>2</sub>               | Tm <sup>Ar</sup> FeI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •0.5C <sub>4</sub> H <sub>8</sub> O                             | Т                                 | m <sup>Ph</sup> CoI•3CH <sub>2</sub> Cl <sub>2</sub>                 |
| formula                                  | $C_{27}H_{22}N_6S_3BClNi{\boldsymbol{\cdot}} 3C$                   | CH <sub>2</sub> Cl <sub>2</sub> C <sub>45</sub> H <sub>58</sub>  | N <sub>6</sub> S <sub>3</sub> BClNi•4.5C  | $CH_2Cl_2$              | $C_{27}H_{22}N$                    | <sub>6</sub> S <sub>3</sub> BMnI·3CH <sub>2</sub> C | $C_{12}$ $C_{45}H_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_4E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_3E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E_{58}N_6S_5E$ | FeI·0.5C <sub>4</sub> H <sub>8</sub> C                          | O C <sub>27</sub> H <sub>2</sub>  | $_{22}N_6S_3BCoI \cdot 3CH_2Cl_2$                                    |
| fw                                       | 886.45                                                             | 1264.3                                                           | 32                                        |                         | 968.09                             |                                                     | 1008.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 978.1                             | 4                                                                    |
| space group                              | trigonal<br>R3                                                     | P3c1                                                             | 11                                        |                         | trigonal                           |                                                     | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 | trigon<br>R3                      | 181                                                                  |
| a (Å)                                    | 14.973(4)                                                          | 19.522                                                           | 20(5)                                     |                         | 15.052(2                           | 2)                                                  | 10.167(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | 15.01                             | 0(1)                                                                 |
| $b(\mathbf{A})$<br>$c(\mathbf{A})$       | 29 775(8)                                                          | 19.667                                                           | (3)                                       |                         | 30 392(4                           | b                                                   | 13.54/(7)<br>18 242(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 | 30.25                             | 2(4)                                                                 |
| $\alpha$ (deg)                           | 2).115(0)                                                          | 19.007                                                           | 0(5)                                      |                         | 50.572(-                           | ,                                                   | 94.51(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 | 50.25                             | 2(4)                                                                 |
| $\beta$ (deg)                            |                                                                    |                                                                  |                                           |                         |                                    |                                                     | 95.393(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                                   |                                                                      |
| $\gamma$ (deg)                           | 5500 (0)                                                           |                                                                  |                                           |                         | 50 50 (1)                          |                                                     | 97.788(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | 5000                              |                                                                      |
| V (A <sup>3</sup> )<br>7                 | 5/80.(3)                                                           | 6391.3                                                           | 5(2)                                      |                         | 5962(1)                            |                                                     | 2467(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 | 5902(                             | (1)                                                                  |
| $D_{\text{colord}}$ (g/cm <sup>3</sup> ) | 1 528                                                              | 1 294                                                            |                                           |                         | 1 617                              |                                                     | 1 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 1 651                             |                                                                      |
| $\mu$ (cm <sup>-1</sup> )                | 11.82                                                              | 8.42                                                             |                                           |                         | 17.00                              |                                                     | 10.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 18.18                             |                                                                      |
| $F_{000}$                                | 2700                                                               | 2620                                                             |                                           |                         | 2862                               |                                                     | 1044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | 2910                              |                                                                      |
| max $2\theta$ (deg)                      | 55.0                                                               | 54.9                                                             |                                           |                         | 54.9                               |                                                     | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | 55.0                              |                                                                      |
| collected                                | 15348                                                              | 9467                                                             |                                           |                         | 16242                              |                                                     | 19787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 15054                             | 1                                                                    |
| indep                                    | 2935                                                               | 4956                                                             |                                           |                         | 3047                               | 0.000                                               | 10787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (10.3                                                           | 3001                              | FT. 0 (73)                                                           |
| no. of observations                      | 2932 $[I > 0\sigma(I)]$                                            | 3898 [                                                           | $I \geq 3\sigma(I)$ ]                     |                         | 1611 [ <i>I</i> :                  | > 30(1)]                                            | 10679 [I > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\sigma(I)$ ]                                                   | 2997                              | $[I \ge 0\sigma(I)]$                                                 |
| GOF indicator <sup>a</sup>               | 1.34                                                               | 4.31                                                             |                                           |                         | 1.14                               |                                                     | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | 145                               |                                                                      |
| $R^b$                                    | 0.057                                                              | 0.062                                                            |                                           |                         | 0.052                              |                                                     | 0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 0.067                             |                                                                      |
| $Rw^c$                                   | 0.085                                                              | 0.086                                                            |                                           |                         | 0.074                              |                                                     | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 | 0.067                             |                                                                      |

|                                         | $Tm^{Ar}CoI \cdot 4.5CH_2Cl_2$            | $Tm^{Ar}NiI \cdot 0.5C_4H_8O$ | (HtimitBu)2NiCl2        | $\{B(timi^{tBu})_3\}NiCl {\boldsymbol \cdot} 2CH_2Cl_2$ |
|-----------------------------------------|-------------------------------------------|-------------------------------|-------------------------|---------------------------------------------------------|
| formula                                 | $C_{45}H_{58}N_6S_3BClCo$ •4.5 $CH_2Cl_2$ | C45H58N6S3INi+0.5C4H8O        | C14H22N4S2Cl2Ni         | C21H33N6S3BClNi•2CH2Cl2                                 |
| fw                                      | 1356.00                                   | 1011.64                       | 442.10                  | 741.55                                                  |
| crystal system                          | trigonal                                  | triclinic                     | monoclinic              | monoclinic                                              |
| space group                             | $P\overline{3}c1$                         | $P\overline{1}$               | C2/c                    | $P2_1/n$                                                |
| a (Å)                                   | 19.5001(5)                                | 10.183(7)                     | 16.76(1)                | 13.935(6)                                               |
| b (Å)                                   |                                           | 13.571(7)                     | 8.575(5)                | 15.718(6)                                               |
| <i>c</i> (Å)                            | 20.0779(8)                                | 18.114(9)                     | 16.70(1)                | 15.801(7)                                               |
| α (deg)                                 |                                           | 94.90(1)                      |                         |                                                         |
| $\beta$ (deg)                           |                                           | 95.120(8)                     | 125.169(6)              | 107.145(5)                                              |
| $\gamma$ (deg)                          |                                           | 98.155(9)                     |                         |                                                         |
| $V(Å^3)$                                | 6611.8(4)                                 | 2456.0(1)                     | 1961(2)                 | 3307(2)                                                 |
| Ζ                                       | 4                                         | 2                             | 4                       | 4                                                       |
| $D_{\text{calcd}}$ (g/cm <sup>3</sup> ) | 1.362                                     | 1.368                         | 1.497                   | 1.489                                                   |
| $\mu ({\rm cm}^{-1})$                   | 12.20                                     | 11.90                         | 14.77                   | 12.05                                                   |
| $F_{000}$                               | 2760                                      | 1048                          | 920                     | 1536                                                    |
| max $2\theta$ (deg)                     | 55.0                                      | 55.0                          | 55.0                    | 55.0                                                    |
| no. of reflections                      |                                           |                               |                         |                                                         |
| collected                               | 49946                                     | 20092                         | 7734                    | 24948                                                   |
| indep                                   | 5019                                      | 10794                         | 2223                    | 7483                                                    |
| no. of observations                     | $5014 [I > 0\sigma(I)]$                   | $10588 [I > 0\sigma(I)]$      | 2198 $[I > 0\sigma(I)]$ | $5256 [I > 0\sigma(I)]$                                 |
| no. of variables                        | 205                                       | 533                           | 105                     | 352                                                     |
| GOF indicator <sup>a</sup>              | 1.80                                      | 1.13                          | 0.95                    | 1.83                                                    |
| $R^b$                                   | 0.081                                     | 0.044                         | 0.032                   | 0.050                                                   |
| Rw <sup>c</sup>                         | 0.098                                     | 0.048                         | 0.043                   | 0.075                                                   |
|                                         |                                           |                               |                         |                                                         |

<sup>*a*</sup> GOF =  $[\Sigma w(|F_o| - |F_c|)^2/(N_o - N_p)]^{1/2}$ , where  $N_o$  and  $N_p$  denote the number of data and parameters. <sup>*b*</sup>  $R = \Sigma ||F_o| - |F_c|/\Sigma |F_o|$  (observed reflections). <sup>*c*</sup>  $Rw = [\{\Sigma w(|F_o| - |F_c|)^2/\Sigma w F_o^2]^{1/2}$  (observed reflections).

to a green suspension. After it was centrifuged to remove LiCl (and unreacted NiCl<sub>2</sub>), the solvent was removed under reduced pressure to afford a dark green solid, which was washed repeatedly with hexane to yield {B(timi<sup>IBu</sup>)<sub>3</sub>}NiCl as a green powder (0.162 g, 69%). Green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 1560, 1452, 1371, 1192, 683. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 534.2 ([M]<sup>+</sup> – Cl). UV–vis (CH<sub>2</sub>-Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 612 (0.40), 459 (1.9), 342 (4.0). In this reaction, a small amount of (Htimi<sup>IBu</sup>)<sub>2</sub>-NiCl<sub>2</sub> was also obtained as green crystals. This was identified by comparison of the spectral data with the authentic sample prepared from the reaction of NiCl<sub>2</sub> and Htimi<sup>IBu</sup>.

**Reaction of NiCl<sub>2</sub> with** *tert*-**Butyl Thioimidazole** (**Htimi**<sup>tBu</sup>). A 100 mL flask was charged with NiCl<sub>2</sub> (0.020 g, 0.159 mmol) and Htimi<sup>tBu</sup> (0.050 g, 0.319 mmol), and CH<sub>2</sub>Cl<sub>2</sub> (25 mL) was added. The resultant green suspension was stirred for 1 day at ambient temperature. After the suspension was centrifuged to remove a small amount of unreacted NiCl<sub>2</sub>, the solvent was removed under reduced pressure to afford a light green powder. This solid was repeatedly washed with hexane, giving rise to (Htimi<sup>tBu</sup>)<sub>2</sub>-NiCl<sub>2</sub> as a light green powder (0.053 g, 75%). Green crystals were obtained from a CH<sub>2</sub>Cl<sub>2</sub> solution layered onto hexane at room temperature. IR (KBr, cm<sup>-1</sup>): 3347 (NH), 1571, 1471, 1453, 1372, 1322, 1216, 684. FABMS (CH<sub>2</sub>Cl<sub>2</sub>), *m/z*: 405.1 ([M]<sup>+</sup> – Cl). UV– vis (CH<sub>2</sub>Cl<sub>2</sub>, rt;  $\lambda_{max}$ , nm) ( $\epsilon$ , ×10<sup>3</sup> M<sup>-1</sup>cm<sup>-1</sup>): 432 (1.0), 342 (3.6), 319 (2.2), 267 nm (20.6).

**Reaction of Tm**<sup>Ph</sup><sub>2</sub>**Fe with FeCl**<sub>2</sub>. To a CH<sub>2</sub>Cl<sub>2</sub> solution (50 mL) of Tm<sup>Ph</sup><sub>2</sub>Fe (0.594 g, 0.525 mmol) was added anhydrous FeCl<sub>2</sub> (1.33 g, 10.5 mmol), and the suspension was stirred for 12 h. After centrifugation to remove excess FeCl<sub>2</sub>, the solvent was removed under reduced pressure. The green residue was washed repeatedly with hexane and ether to give a dark green powder of Tm<sup>Ph</sup>FeCl (0.525 g, 80%), which was identified by means of an infrared spectrum and

| Table 5. | Crystallographic | Data | for the | Complexes | Refined | by |
|----------|------------------|------|---------|-----------|---------|----|
| SHELX-97 | 7                |      |         |           |         |    |

|                                         | TmtBuFeCl+1.5C4H8O                                                                                         | Tm <sup>tBu</sup> FeI                                              | Tm <sup>Ph</sup> NiI·3CH <sub>2</sub> Cl <sub>2</sub>                                                  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| formula                                 | C <sub>21</sub> H <sub>34</sub> N <sub>6</sub> S <sub>3</sub> BClFe•<br>1.5C <sub>4</sub> H <sub>8</sub> O | C <sub>21</sub> H <sub>34</sub> N <sub>6</sub> S <sub>3</sub> BFeI | C <sub>27</sub> H <sub>22</sub> N <sub>6</sub> S <sub>3</sub> INi•<br>3CH <sub>2</sub> Cl <sub>2</sub> |
| fw                                      | 675.98                                                                                                     | 660.28                                                             | 977.90                                                                                                 |
| crystal system                          | trigonal                                                                                                   | trigonal                                                           | trigonal                                                                                               |
| space group                             | R3c                                                                                                        | $R\overline{3}c$                                                   | RĪ                                                                                                     |
| a (Å)                                   | 13.4412(5)                                                                                                 | 13.486(3)                                                          | 14.897(7)                                                                                              |
| c (Å)                                   | 64.368(3)                                                                                                  | 66.72(1)                                                           | 30.34(1)                                                                                               |
| $V(Å^3)$                                | 10071.1(7)                                                                                                 | 10519(5)                                                           | 5842(5)                                                                                                |
| Z                                       | 12                                                                                                         | 12                                                                 | 6                                                                                                      |
| $D_{\text{calcd}}$ (g/cm <sup>3</sup> ) | 1.337                                                                                                      | 1.251                                                              | 1.668                                                                                                  |
| $\mu$ (cm <sup>-1</sup> )               | 7.47                                                                                                       | 15.06                                                              | 18.94                                                                                                  |
| F <sub>000</sub>                        | 4284                                                                                                       | 4008                                                               | 2916                                                                                                   |
| max $2\theta$ (deg)                     | 55.0                                                                                                       | 55.0                                                               | 55.0                                                                                                   |
| no. of reflections                      |                                                                                                            |                                                                    |                                                                                                        |
| collected                               | 25445                                                                                                      | 26518                                                              | 14999                                                                                                  |
| indep                                   | 2576                                                                                                       | 2699                                                               | 2992                                                                                                   |
| no. of observations                     | 2576                                                                                                       | 2699                                                               | 2992                                                                                                   |
| no. of<br>variables                     | 119                                                                                                        | 101                                                                | 149                                                                                                    |
| GOF indicator <sup>a</sup>              | 2.11                                                                                                       | 2.38                                                               | 1.38                                                                                                   |
| $R^b$                                   | 0.066                                                                                                      | 0.085                                                              | 0.078                                                                                                  |
| $wR2^c$                                 | 0.242                                                                                                      | 0.293                                                              | 0.203 <sup>c</sup>                                                                                     |

<sup>*a*</sup> GOF =  $[\Sigma w(|F_o^2| - |F_c^2|)^2/(N_o - N_p)]^{1/2}$ , where  $N_o$  and  $N_p$  denote the number of data and parameters. <sup>*b*</sup>  $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o| (I > 0\sigma(I)).^c wR2$ =  $[\{\Sigma w(F_o^2 - F_c^2)^2\}/\Sigma w(F_o^2)^2]^{1/2}$  (all data).

X-ray fluorescence microanalysis. It was also identified by a crystallographic study using dark green crystals obtained from  $CH_2Cl_2$  and hexane.

**X-ray Crystal Structure Determination.** Crystal data and refinement parameters for the structurally characterized complexes are summarized in Table 4. Single crystals were coated with oil (Immersion Oil, type B: Code 1248, Cargille Laboratories, Inc.) and mounted on loops. Diffraction data were collected at -80 °C under a cold nitrogen stream on a Rigaku AFC7R/Mercury CCD system or a Rigaku AFC7R/ ADSC Quantum 1 CCD system by using graphite-mono-chromated Mo K $\alpha$  radiation ( $\lambda = 0.710$  690 Å). Four preliminary data frames were measured at  $\omega = 0$ , 30, 60,

and 90°, each with a 0.5° increment of  $\omega$ , to assess the crystal quality and preliminary unit cell parameters. The intensity images were also measured at  $0.5^{\circ}$  intervals of  $\omega$ . The frame data were integrated using an MSC d\*TREK program package (Quantum 1 CCD) or a Rigaku CrystalClear program package (Mercury CCD), and the data sets were corrected for absorption using a REQAB program. The calculations were performed with a TEXSAN program package for [Tm<sup>Me</sup>Mn(µ-Cl)]<sub>2</sub>, Tm<sup>Ph</sup>MnCl·3CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>-MnCl+4.5CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ph</sup>FeCl+3CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>FeCl+0.5C<sub>4</sub>H<sub>8</sub>O,  $Tm^{Ph}CoCl \cdot 3CH_2Cl_2$ ,  $Tm^{Ar}CoCl \cdot 4.5CH_2Cl_2$ ,  $[Tm^{Me}Ni(\mu - Cl)]_2$ , [Tm<sup>Me</sup>Ni(*u*-Br)]<sub>2</sub>, Tm<sup>Ar</sup>NiCl•4.5CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ph</sup>MnI•3CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>FeI•0.5C<sub>4</sub>H<sub>8</sub>O, Tm<sup>Ph</sup>CoI•3CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>CoI•4.5CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>NiI·0.5C<sub>4</sub>H<sub>8</sub>O, (Htimi<sup>tBu</sup>)<sub>2</sub>NiCl<sub>2</sub>, and {B(timi<sup>tBu</sup>)<sub>3</sub>}NiCl· 2CH<sub>2</sub>Cl<sub>2</sub>. The structures were solved by a direct method (SIR92 or SHELX-97) or Patterson methods (DIRDIF94 PATTY) and were refined by full-matrix least-squares (TEXSAN) on |F|. Tm<sup>tBu</sup>FeCl·1.5C<sub>4</sub>H<sub>8</sub>O, Tm<sup>tBu</sup>CoCl· 1.5C4H8O, TmPhNiCl·3CH2Cl2, TmtBuFeI, and TmPhNil· 3CH<sub>2</sub>Cl<sub>2</sub> were studied using a CrystalStructure crystallographic software package and were solved by direct methods using SHELXS-97. The structures of TmtBuCoCl-1.5C4H8O and Tm<sup>Ph</sup>NiCl·3CH<sub>2</sub>Cl<sub>2</sub> were refined by full-matrix leastsquares (Crystals) on |F|. TmtBuFeCl·1.5C4H8O, TmtBuFeI, and  $\text{Tm}^{\text{Ph}}\text{NiI}$ ·3CH<sub>2</sub>Cl<sub>2</sub> were refined on  $|F^2|$  by the full-matrix least-squares method using SHELXS-97. Anisotropic refinement was applied to all non-hydrogen atoms except for the disordered crystal solvents, and all hydrogen atoms except for B-H were put at the calculated positions. The crystal solvent CH<sub>2</sub>Cl<sub>2</sub> was disordered in Tm<sup>Ph</sup>NiCl·3CH<sub>2</sub>Cl<sub>2</sub> (one of the chloride atoms of CH2Cl2, over two positions with 8:2 occupancy factors), Tm<sup>Ph</sup>MnI·3CH<sub>2</sub>Cl<sub>2</sub> (over two positions of chloride with 6:4 occupancy factors), and Tm<sup>Ph</sup>NiI· 3CH<sub>2</sub>Cl<sub>2</sub> (one of the chloride atoms of CH<sub>2</sub>Cl<sub>2</sub>, over three

positions with 5:3:2 occupancy factors). As for Tm<sup>Ph</sup>NiCl· 3CH<sub>2</sub>Cl<sub>2</sub> and Tm<sup>Ph</sup>NiI·3CH<sub>2</sub>Cl<sub>2</sub>, anisotropic refinement could not assign hydrogen atoms on CH<sub>2</sub>Cl<sub>2</sub>. A residual density observed in the TmPh complexes of Mn, Fe, and Co was most likely attributed to the disordered CH<sub>2</sub>Cl<sub>2</sub> over six positions. It was not easy to determine and was not assigned any atoms. Tm<sup>Ar</sup>MnCl·4.5CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>CoCl·4.5CH<sub>2</sub>Cl<sub>2</sub>, Tm<sup>Ar</sup>NiCl•4.5CH<sub>2</sub>Cl<sub>2</sub>, and Tm<sup>Ar</sup>CoI•4.5CH<sub>2</sub>Cl<sub>2</sub> contained two kinds of CH<sub>2</sub>Cl<sub>2</sub> (1.0 and 0.5 occupancy factors) as a crystal solvent, and no hydrogen atoms were assigned on 0.5CH<sub>2</sub>-Cl<sub>2</sub>. Tm<sup>tBu</sup>FeI included residual density, but it was hard to assign any atoms. The crystal solvent THF in TmtBuFeCl·  $1.5C_4H_8O$ ,  $Tm^{Ar}FeCl \cdot 0.5(C_4H_8O)$ ,  $Tm^{tBu}CoCl \cdot 1.5C_4H_8O$ ,  $Tm^{Ar}FeI \cdot 0.5(C_4H_8O)$ , and  $Tm^{Ar}NiI \cdot 0.5(C_4H_8O)$  was disordered over two positions with 1:1 occupancy factors. The THF solvents in TmtBuCoCl 1.5C4H8O and TmArFeI 0.5-(C<sub>4</sub>H<sub>8</sub>O) were refined as a rigid group. The iodide ligand in Tm<sup>Ar</sup>NiI·0.5(C<sub>4</sub>H<sub>8</sub>O) was disordered over two close positions with 9:1 occupancy factors. Additional data are available as Supporting Information.

Acknowledgment. This research is supported by a Grantin-Aid for Scientific Research (No. 14078211 and 17036020) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

**Supporting Information Available:** X-ray crystallographic information files (CIF) for the structures of  $[Tm^{Me}M(\mu-Cl)]_2$  (M = Mn, Ni),  $[Tm^{Me}Ni(\mu-Br)]_2$ ,  $Tm^{tBu}MCl$  (M = Fe, Co),  $Tm^{Ph}MCl$  (M = Mn, Fe, Co, Ni),  $Tm^{Ar}MCl$  (M = Mn, Fe, Co, Ni),  $Tm^{tBu}$ -FeI,  $Tm^{Ph}MI$  (M = Mn, Co, Ni),  $Tm^{Ar}MI$  (M = Fe, Co, Ni),  $\{B(timi^{tBu})_3\}$ NiCl, and (Htimi^{tBu})\_2NiCl\_2. This material is available free of charge via the Internet at http://pubs.acs.org.

