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Dinuclear [(TPA)CoII(CA2-)CoII(TPA)](BF4)2‚2MeOH (1) [TPA ) tris-
(2-pyridylmethyl)amine] and [(TPA)CoII(CA•3-)CoII(TPA)](BF4)‚2Et2O
(2) with a bridging chloranilate radical ligand formed by reduction
of 1 are crystallographically and magnetically characterized. 1 has
shown a weak antiferromagnetic coupling within the CoII dimer
[J/kB ) −0.65 K (−0.45 cm-1)], while 2 has a 2 orders of magnitude
stronger antiferromagnetic interaction between the CoII ion and a
radical [J/kB ) −75 K (52 cm-1)].

Molecule-based materials containing organic radicals have
attracted considerable interest for the development of organic-
based magnets1 as well as valence tautomerism2 and mixed-
valence materials.3 Metal complexes with 1,4-dihydroxy-
benzoquinonediide, chloranilate (CA2-), ligands have been
widely studied because they are good building blocks to
make extended network structures because they can coor-
dinate in a bis-bidentate manner.4 However, metal com-
pounds with the CA ligand as a radical, and consequently
their spin-coupling ability, have yet to be described, although
two dinuclear CoIII complexes with the DHBQ•3- (DHBQ
) deprotonated 2,5-dihydroxy-1,4-benzoquinone) radical
have recently been reported.5 Herein, we report the formation
of [(TPA)CoII(CA2-)CoII(TPA)](BF4)2‚2MeOH (1) [TPA )
tris(2-pyridylmethyl)amine] and its monoreduced species

[(TPA)CoII(CA•3-)CoII(TPA)](BF4)‚2Et2O (2), revealing that
the CA•3- trianion radical strongly spin couples with two
high-spinS ) 3/2 CoII ions.

1 was prepared from the reaction of Co(BF4)2, TPA, and
CA in an inert-atmosphere glovebox.6 Dark-red2 was pre-
pared by the one-electron reduction of1 with CoCp2.7 Com-
pound2 can be formulated as either mixed-valent [(TPA)CoI-
(CA2-)CoII(TPA)]+ or [(TPA)CoII(CA•3-)CoII(TPA)]+ con-
taining CA•3-. In the cyclic voltammogram, the reduction
potential (E1/2) from 1 to 2 was at-1.04 V vs Fc/Fc+ couple;
thus,1 can be reduced to2 easily by CoCp2 (CoCp2/CoCp2

+,
E1/2 ) -1.33 V).

Red-brown block-shaped crystals of1 and2 suitable for
X-ray crystal analysis were obtained by allowing the reaction
mixture to stand for several days without agitation or via
diffusion with diethyl ether. The structures of the cations of
1 and2 (Figure 1)8 display a distorted octahedral geometry
by coordinating with the four N atoms of TPA and the two
O atoms of CA in the cis positions. Both1 and2 possess
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an MeCN solution (5 mL) of CoCp2 (8.3 mg, 0.044 mmol) in a drybox
(<1 ppm O2). The color turned dark red. The solution was stirred for
1 h at room temperature. Red-brown block-shaped crystals of2 were
obtained by solvent diffusion of diethyl ether into the reaction mixture
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washed with MeCN, and dried in vacuo (yield: 40 mg, 80%). FT-IR
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103). This compound is very sensitive to air.
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crystallographic centers of symmetry, and average Co-O
and Co-N bond distances are 2.106(2) and 2.134(2) Å and
2.072(1) and 2.137(1) Å for1 and2, respectively. Interest-
ingly, the average Co-L bond lengths are very similar to
each other [Co-Lav ) 2.122(1) Å for1 and 2.115(1) Å for
2] and indicate that the oxidation state of the Co ion in2 is
2+,asistheCoionin1.Thus,the[(TPA)CoI(CA2-)CoII(TPA)]+

formulation for2 can be excluded. Furthermore, the average
C-O bond distance [1.256(3) Å] of1 is shorter than that of
2 [1.293(1) Å], while the C19-C20 bonds of1 are longer
than those of2 by 0.054 Å. The significant difference is
attributed to the reduction of CA2- to CA•3- by CoCp2.
Additionally, the very strong peak at 1526 cm-1 for 1 shifts
to 1442 cm-1 upon reduction, indicating that CA2- in 1 is
reduced to CA•3- in 2, and a metal-centered reduction does
not occur.

The pyridyl groups of TPA ligands in1 and2 are involved
in offsetπ-π-stacking interactions9 between the CoII dimers,
in which both complexes give rise to 1-D supramolecular
network structures.

While several metal(II/III) dimers with bridged CA2- have
been reported,4,10 however, this is the first example with the
radical bridging the two spin-bearing metal sites. Thus, the

magnetic properties of the [(TPA)CoII(CA•3-)CoII(TPA)]+

cation were characterized to ascertain the spin coupling (J)
between CoII and CA•3- as well as for the presence of valence
tautomerism and/or spin-crossover behavior(s).

Variable-temperature 2-300 K magnetic susceptibility,ø,
measurements on solid samples of1 and 2 have been
performed on a SQUID magnetometer (external field 1000
Oe). For complex1, at room temperature, the effective
moment,µeff [)(8øT)1/2], is 6.26µB/Co2, andµeff(T) decreases
monotonically with decreasing temperature to 5.38µB at 3
K (Figure 2), indicating a very weak antiferromagnetic
interaction within the CoII(CA2-)CoII unit. ø(T) for 1 was
fit to an analytical expression, eq 1 (H ) -2JS1‚S2), for a
coupledS ) 3/2 dimer.11 The best fit hadJ/kB of -0.65 K
(-0.45 cm-1), g ) 2.24,θ ) -0.1 K, and the temperature-
independent paramagnetism, TIP) 4 × 10-4 emu mol-1.12

The weak interaction can be attributed to a long distance
between the CoII ions (8.089 Å)

where

Complex2 has a room temperatureµeff of 6.20 µB/Co2;
µeff(T) decreases slightly with a decrease in the temperature
to 6.17µB at 160 K, then gradually increases to a maximum
of 6.63 µB at 32 K, and again decreases to 5.56µB at 2 K
(Figure 2), indicating a strong antiferromagnetic interaction
within the three-spin-site CoII(CA•3-)CoII unit. ø(T) for 2 was
fit to eq 2 [H ) -2J(S1‚S2 + S2‚S3)] for a linear three-spin
system withS1 ) S3 ) 3/2 andS2 ) 1/2.13 The best fit had
J/kB of -75 K (-52 cm-1), g ) 2.36,θ ) -2.6 K, and TIP
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Figure 1. Structure of the monocation [(TPA)CoII(CA•3-)CoII(TPA)]+ in
crystals of2. The atoms are represented by 30% probable thermal ellipsoids.
That of the dication in crystals of1 is similar and not shown. H atoms,
solvent, and [BF4]- are omitted for clarity. Relevant distances (Å) and angles
(deg): for1, Co-O1 2.030(2), Co-O2 2.277(3), Co-N1 2.110(3), Co-
N2 2.239(3), Co-N3 2.080(3), Co-N4 2.108(3), C19-O1 1.266(4), C20-
O2 1.246(4), C19-C20 1.527(5), C19-C21 1.372(5), C20-C21a 1.409(5),
C21-Cl1 1.729(4), O1-Co-O2 74.29(9), N1-Co-N2 76.09(11), N2-
Co-N3 77.61(11), N2-Co-N4 75.81(12); for2, Co-O1 1.978(2), Co-
O2 2.166(2), Co-N1 2.085(2), Co-N2 2.262(2), Co-N3 2.090(2), Co-
N4 2.109(2), C19-O1 1.304(3), C20-O2 1.282(2), C19-C20 1.473(3),
C19-C21 1.386(3), C20-C21a 1.400(3), C21-Cl1 1.743(2), O1-Co-
O2 79.62(7), N1-Co-N2 77.43(9), N2-Co-N3 76.06(8), N2-Co-N4
77.20(9).

Figure 2. µeff(T) for 1 (×) and 2 (+). The solid lines are the best-fit
curves to eqs 1 and 2, respectively.

ø ) [Ng2µB
2/kB(T - θ)]F(T) + TIP (1)

F(T) ) [2 exp(2J/kBT) + 10 exp(6J/kBT) +
28 exp(12J/kBT)]/[1 + 3 exp(2J/kBT) + 5 exp(6J/kBT) +

7 exp(12J/kBT)]
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) 4 × 10-4 emu mol-1.12 The strong antiferromagnetic
interaction is attributed to the overlap of the singly occupied
molecularπ* orbital of CA•3- and the t2g orbitals of the CoII

ion. This interaction is 2 orders of magnitude stronger than
the weak antiferromagnetic interaction (-0.65 K) between
the CoII ions

where

In conclusion, [(TPA)CoII(CA•3-)CoII(TPA)]+ possessing
S ) 1/2 CA•3- has been characterized, and the presence of
CA•3- enhances the spin coupling between theS ) 3/2 CoII

centers by 2 orders of magnitude. Further studies on the
magnetism and fabrication of new molecule-based materials
containing different oxidation states exhibiting valence
tautomerism and spin crossover are ongoing.
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ø ) {Ng2µB
2/kB(T - θ)}F(T) + TIP (2)

F(T) ) [84 + 35 exp(-J/kBT) + 10 exp(-2J/kBT) +
exp(-3J/kBT) + exp(-5J/kBT) + 10 exp(-6J/kBT) +

35 exp(-7J/kBT)]/[16 + 12 exp(-J/kBT) +
8 exp(-2J/kBT) + 4 exp(-3J/kBT) + 4 exp(-5J/kBT) +

8 exp(-6J/kBT) + 12 exp(-7J/kBT)]
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