Inorg. Chem. 2006, 45, 10873–10881

Probing Crystal Structures and Transformation Reactions of Ammonium Molybdates by ¹⁴N MAS NMR Spectroscopy

Anders R. Hove,[†] Henrik Bildsøe,[†] Jørgen Skibsted,[†] Michael Brorson,[‡] and Hans J. Jakobsen^{*,†}

Instrument Centre for Solid-State NMR Spectroscopy, Department of Chemistry, University of Aarhus, DK-8000 Aarhus C, Denmark, and Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Lyngby, Denmark

Received June 30, 2006

The unique high-resolution feature offered by ¹⁴N magic-angle spinning (MAS) NMR spectroscopy of ammonium ions has been used to characterize the crystal structures of various ammonium molybdates by their ¹⁴N quadrupole coupling parameters, i.e., C_Q , the quadrupole coupling constant, and η_Q , the asymmetry parameter. Two polymorphs of diammonium monomolybdate, (NH₄)₂MoO₄, recently structurally characterized by single-crystal X-ray diffraction (XRD) and named *m*S60 and *m*P60, show distinct but different ¹⁴N MAS NMR spectra from each of which two sets of characteristic ¹⁴N C_Q and η_Q values have been obtained. Similarly, the well-characterized ammonium polymolybdates (NH₄)₂Mo₂O₇, (NH₄)₆Mo₇O₂₄•4H₂O, and (NH₄)₆Mo₈O₂₇•4H₂O also give rise to distinct and characteristic ¹⁴N MAS NMR spectra. In particular, it is noted that simulation of the experimental (NH₄)₆Mo₇O₂₄•4H₂O spectrum requires an iterative fit with six independent NH₄+ sites. For the slow spinning frequencies employed ($\nu_r = 1500-$ 3000 Hz), all ¹⁴N MAS NMR fingerprints are shown to be an efficient tool in qualitative and quantitative assessment of the decomposition of (NH₄)₂MoO₄ in humid air. Finally, by a combination of the ¹⁴N and ⁹⁵Mo MAS NMR experiments performed here, it has become clear that a recent report of the ⁹⁵Mo MAS spectra and data for the *m*S60 and *m*P60 polymorphs of (NH₄)₂MoO₄ are erroneous because the sample examined had decomposed to (NH₄)₂Mo₂O₇.

1. Introduction

Ammonium molybdates play key roles in the industrial chemistry of molybdenum, either as intermediates or as endproducts.¹ Technical grade MoO₃, typically obtained by roasting of MoS₂-containing ores, is purified by extraction with aqueous ammonia, whereby a solution containing MoO_4^{2-} ions is obtained. By large-scale evaporative crystallization such solutions do not give (NH₄)₂MoO₄, i.e., the monomolybdate,² but rather the dimolybdate (NH₄)₂Mo₂O₇, from which pure MoO₃ may be obtained by calcination.¹ $(NH_4)_2Mo_2O_7$ contains anions that are infinite chains of interlinked MoO₄ tetrahedra and MoO₆ octahedra,^{3,4} and the compound is insoluble in water. The easily soluble compound $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ is obtained by crystallization from *neutral* aqueous solution and contains a discrete polyanion of seven interlinked MoO₆ octahedra.⁵ Particularly, in the older literature, the term "ammonium molybdate" is often used to identify any member of this family of compounds, i.e., no distinction is made between the monomolybdate $(NH_4)_2MoO_4$, the dimolybdate $(NH_4)_2Mo_2O_7$, and the heptamolybdate $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$. A primary use of these compounds is the manufacture of heterogeneous catalysts for hydrodesulfurization of mineral oil, ammoxidation of propene to acrylonitrile and selective oxidation of methanol to formaldehyde. The ammonium octamolybdate, $(NH_4)_4$ -

^{*} To whom correspondence should be addressed. Tel: +45 8942 3842. Fax: +45 8619 6199. E-mail: hja@chem.au.dk.

[†] University of Aarhus.

[‡] Haldor Topsøe A/S.

Sebenik, R. F.; Burkin, A. R.; Dorfler, R. R.; Laferty, J. M.; Leichtfried, G.; Meyer-Grünow, H.; Mitchell, P. C. H.; Vukasovich, M. S.; Church, D. A.; van Riper, G. G.; Thielke, S. A.; Gilliland, J. C. Molybdenum and Molybdenum Compounds. In *Ullmann's Encyclopedia of Industrial Chemistry*, 5th ed.; Elvers, B., Hawkins, S., Schulz, G., Eds.; VCH: Weinheim, Germany, 1990; A16, pp 655–698.

⁽²⁾ Dittmann, M.; Schweda, E. Z. Anorg. Allg. Chem. 1998, 624, 2033– 2037.

⁽³⁾ Armour, A. W.; Drew, M. G. B.; Mitchell, P. C. H. J. Chem. Soc., Dalton Trans. 1975, 1493–1496.

⁽⁴⁾ Knöpnadel, I.; Hartl, H.; Hunnius, W.-D.; Fuchs, J. Angew. Chem. 1974, 86, 894.

⁽⁵⁾ Evans, H. T.; Gatehouse, B. M.; Leverett, P. J. Chem. Soc. Dalton 1975, 505–514.

Mo₈O₂₆, is used as a smoke- and flame-retarding additive to plastics. In addition to the compounds already mentioned, many more, sometimes poorly characterized, ammonium molybdate materials are known.^{6,7} They contain various discrete or polymeric polymolybdate anions. The whole class of compounds has been the subject of extensive studies, and in this context X-ray crystallography⁸ and IR and Raman spectroscopy have been particularly useful techniques.^{6,7} From an NMR point of view, solid-state ⁹⁵Mo magic-angle spinning (MAS) and partly also static powder NMR spectroscopy have been extensively applied in the characterization of ammonium and alkylammonium molybdates,^{9–14} employing the central transition ($1/2 \leftrightarrow -1/2$) of the ⁹⁵Mo (I =5/2) quadrupolar nucleus. A recent report has taken advantage of the ultrahigh magnetic fields now available.¹⁵

In a recent ¹⁴N MAS NMR study of ammonium/alkylammonium ions in selected salts, this technique has demonstrated its strong capabilities to determine and characterize the number of different ammonium sites in the asymmetric unit by their ¹⁴N quadrupole coupling parameters, i.e., the quadrupole coupling constant (C_0) and asymmetry parameter (η_0) .¹⁶ These findings prompted an investigation of ammonium molybdates employing ¹⁴N MAS NMR as a supplement/alternative to the previously reported 95Mo MAS NMR characterization. Here we report some exciting results from a detailed ¹⁴N MAS NMR investigation aimed at characterization of the crystal structures of the most important ammonium molybdates by the ¹⁴N quadrupole coupling parameters (C_0 and η_0). The optimized fitting of simulated to experimental spectra, i.e., the procedure used to obtain these parameters, shows that the distinct features provided by the experimental ¹⁴N MAS NMR spectra can actually serve as very convincing fingerprints in the identification of the different ammonium molybdates. In particular, we note that the two polymorphic structures of (NH₄)₂MoO₄, recently synthesized and characterized by single-crystal XRD,² show distinctively different ¹⁴N MAS NMR spectra (fingerprints). Moreover, it will be shown that this fingerprint feature of the ¹⁴N MAS NMR spectra can serve as a useful analytical tool in following the well-known¹⁷ decomposition reactions of (NH₄)₂MoO₄. These reactions may occur in ordinary

- (6) Tytko, K.-H.; Glemser, O. Adv. Inorg. Chem. Radiochem. 1976, 19, 239–315.
- (7) Tytko, K.-H.; Fleischmann, W.-D.; Gras, D.; Warkentin, E. Gmelin Handbook of Inorg. Chem., Molybdenum, Supplement; Springer-Verlag: Berlin, 1985; Vol. B4, pp 1–27.
- (8) Böschen, I.; Buss, B.; Krebs, B. Acta Crystallogr. 1974, B30, 48-56.
- (9) Mastikhin, V. M.; Lapina, O. B.; Maximovskaya, R. I. Chem. Phys. Lett. 1988, 148, 413–416.
- (10) Edwards, J. C.; Zubieta, J.; Shaikh, S. N.; Chen, Q.; Bank, S.; Ellis, P. D. Inorg. Chem. **1990**, 29, 3381–3393.
- (11) Edwards, J. C.; Adams, R. D.; Ellis, P. D. J. Am. Chem. Soc. 1990, 112, 8349–8364.
- (12) Edwards, J. C.; Ellis, P. D. Magn. Reson. Chem. 1990, 28, 59–67; Langmuir 1991, 7, 2117–2134.
- (13) Han, O. H.; Lin, C. Y.; Haller, G. L. Catal. Lett. 1992, 14, 1-9.
- (14) Han, O. H.; Lin, C. Y.; Sustache, N.; McMillan, M.; Caruthers, J. D.; Zilm, K. W.; Haller, G. L. Appl. Catal. A **1993**, 98, 195–210.
- (15) de Lacaillerie, J.-B. D.; Barberon, F.; Romanenko, K. V.; Lapina, O. B.; Pollès, L. L.; Gautier, R.; Gan, Z. J. Phys. Chem. B 2005, 109, 14033–14042.
- (16) Jakobsen, H. J.; Hove, A. R.; Hazell, R. G.; Bildsøe, H.; Skibsted, J. Magn. Reson. Chem. 2006, 44, 348–356.

humid air where (NH₄)₂MoO₄ transforms to (NH₄)₂Mo₂O₇ and/or (NH₄)₆Mo₇O₂₄•4H₂O, a transformation which can be monitored qualitatively and quantitatively by ¹⁴N MAS NMR fingerprints. This is illustrated here for both the *m*S60 and *m*P60 polymorphs of (NH₄)₂MoO₄. This decomposition of (NH₄)₂MoO₄ appears to be a quite troublesome reaction, judged both from our own experience in the course of this research and from the literature, as will be appropriately discussed during this work. Finally, for some of the ammonium molybdates, a comparison of their ¹⁴N MAS NMR fingerprints with the corresponding ⁹⁵Mo MAS NMR spectra will be performed.

2. Experimental

Materials. Most samples of diammonium monomolybdate, (NH₄)₂MoO₄, originate from Aldrich and have been purchased over a period of at least 15 years. The oldest Aldrich sample of (NH₄)₂-MoO₄ (mono-1) was purchased about 16 years ago, while two recent samples of (NH₄)₂MoO₄ (mono-2 and mono-3) were purchased just prior to the present study. Attempts have also been made to synthesize both polymorphic structures mS60 and mP60 of (NH₄)₂-MoO₄ following the two quite similar procedures recently described.² However, in our hands both procedures resulted in the isolation of pure mS60 (NH₄)₂MoO₄ (mono-4), as confirmed by the powder XRD pattern. Ammonium dimolybdate and heptamolybdate (i.e., (NH₄)₂Mo₂O₇, (NH₄)₆Mo₇O₂₄·4H₂O) were purchased commercially. Hexaammonium octamolybdate, (NH₄)₆Mo₈O₂₇. 4H₂O, was obtained as a single pure phase⁸ according to powder XRD by stirring a mixture of 31.4 mmol of MoO₃ and 94.3 mmol of (NH₄)₂Mo₂O₇ (corresponding to the Mo ratio 1:6) in 100 mL of water at 60 °C for 1 day. All commercial samples were used as received.

¹⁴N and ⁹⁵Mo MAS NMR experiments were performed at 43.33 and 39.09 MHz, respectively, on a Varian Unity INOVA-600 spectrometer equipped with a 14.1 T widebore magnet. A Varian/ Chemagnetics broadband low- γ frequency 7.5 mm T3 CP/MAS probe based on transmission-line-tuning technology was used. This probe has a maximum spinning frequency of 7 kHz, and the rotor speed is stabilized to <0.2 Hz using the Varian/Chemagnetics MASspeed controller. The magic angle of $\theta = 54.736^{\circ}$ was adjusted to the highest possible precision (i.e., $\Delta \theta < \pm 0.003^{\circ}$) employing either the ¹⁴N MAS NMR spectrum of Pb(NO₃)₂¹⁸ or of the ammonium ions for the actual sample. The FWHM (full width at half-maximum) of the spinning sidebands (ssb's) for the ammonium ions can be narrowed down to between 0.45 and 0.60 ppm (i.e., 19 and 25 Hz) during this adjustment for the samples studied. The ¹⁴N chemical shifts are referenced to the narrow resonance (FWHM ≈ 0.3 ppm) for an external sample of solid NH₄Cl being a primary reference (0 ppm). All other experimental setups were performed as reported elsewhere.¹⁹ Acquisition of the ¹⁴N MAS NMR spectra employed single-pulse excitation, a flip angle of $\sim 25^{\circ}$, i.e., $\tau_{p} = 2$ μs ($\tau_p^{90} = 6.5 \,\mu s$), a spectral width of 500 kHz, spinning frequencies mostly of 1500 or 3000 Hz, and a repetition delay usually ranging from 2 to 8 s; however, for (NH₄)₆Mo₇O₂₄•4H₂O, a delay of 16 s

- (18) Giavani, T.; Bildsøe, H.; Skibsted, J.; Jakobsen, H. J. Chem. Phys. Lett. 2003, 377, 426–432.
- (19) Giavani, T.; Bildsøe, H.; Skibsted, J.; Jakobsen, H. J. J. Magn. Reson. 2004, 166, 262–272.

⁽¹⁷⁾ Flachsbart, I.; Hinz, I.; Jehn, H.; Keller-Rudek, H.; Kirschstein, G.; Schröder, F.; Swars, K. *Gmelin Handbuch der Anorganischen Chemie, Molybdän, Ergänzungsband Teil B1*; Springer-Verlag: Berlin, 1975; p 225.

Crystal Structures and Reactions of Ammonium Molybdates

is required. ¹H decoupling during acquisition was applied to all spectra recorded for spinning frequencies $v_r \leq 3000$ Hz. This narrowed the FWHM of the individual ssb's by \sim 50% in comparison to the spectrum without decoupling. Because several types of standard low-pass/band-pass filters cause severe intensity distortion in the wings for the spectra of large width as recently shown,19 1H decoupling was performed using two homemade inseries 600 MHz traps in the observe line. The 95Mo MAS NMR experiments used spinning frequencies in the range $v_r = 2000 -$ 6000 Hz and the spectra are referenced to an external sample of 2.0 M Na₂MoO₄ in water. From the ⁹⁵Mo MAS NMR experiments performed at the slow spinning frequencies, it was observed that ⁹⁵Mo CSA values in the range of $\delta_{\sigma} = -45$ to -80 ppm should be included in the fitting of the experimental spectra. The CSA values are also observed to improve the fit of the manifold of ssb's for the ⁹⁵Mo satellite ($\pm 3/2 \leftrightarrow \pm 1/2$) transitions.

All spectra were analyzed by computer simulation/iterative fitting on a Sun Microsystem Ultra 5 workstation using the STARS solidstate NMR software package developed in our laboratory and incorporated into the Varian VNMR software.²⁰ Several new features have been incorporated into the STARS software in order to fully appreciate the effects of many experimental factors associated with ¹⁴N MAS NMR, as also recently discussed.¹⁶ In particular, we note that our present version of STARS simultaneously handles up to six different nuclear sites in an iterative fit to the experimental spectrum. The quadrupolar coupling parameters employed in the simulations using STARS are related to the principal elements of the electric-field gradient tensor (**V**) by

$$C_Q = \frac{eQV_{zz}}{h} \tag{1}$$

$$\eta_{\mathcal{Q}} = \frac{V_{yy} - V_{xx}}{V_{zz}} \tag{2}$$

where the principal tensor elements are defined by

$$V_{xx} + V_{yy} + V_{zz} = 0 \quad |V_{zz}| \ge |V_{xx}| \ge |V_{yy}| \tag{3}$$

Because of the negligibly small nitrogen CSA apparent from the ¹⁴N MAS spectra of the ammonium ions studied here and also observed in the ¹⁵N CP/MAS NMR spectra for a few of the samples, i.e., δ_{σ} (¹⁵N) = $|\delta_{zz} - \delta_{iso}| < 10$ ppm (or the span of the chemical shift tensor $|\Omega| = |\delta_{zz} - \delta_{xx}| < 15$ ppm), the effect of the ¹⁴N CSA on the appearance of the ¹⁴N MAS NMR spectra can be neglected and has not been considered in the analysis of the spectra.

The ⁹⁵Mo CSA parameters determined and used by STARS (δ_{σ} , η_s) are related to the principal elements of the chemical shift tensor by $\delta_{\sigma} = \delta_{iso} - \delta_{zz}$, $\eta_s = (\delta_{xx} - \delta_{yy})/\delta_{\sigma}$, $\delta_{iso} = (\delta_{xx} + \delta_{yy} + \delta_{zz})/3$ where $|\delta_{zz} - \delta_{iso}| \ge |\delta_{xx} - \delta_{iso}| \ge |\delta_{yy} - \delta_{iso}|$.

3. Results and Discussion

Diammonium Monomolybdate, $(NH_2)_2MoO_4$, *mS60*, and *mP60* Polymorphs. Quite recent single-crystal XRD studies² have shown that $(NH_2)_2MoO_4$ exists in two polymorphic, monoclinic forms, space groups C2/m (No. 12) and $P2_1/n$ (No. 14). Each of their unit cells contains 60 atoms, and therefore, the two polymorphs have been denoted *mS60* and *mP60*, respectively.² The two structures differ by their

Figure 1. Experimental (a) and simulated (b, c, and d) ¹⁴N MAS NMR spectra (43.33 MHz at 14.1 T) of the in-house-synthesized *m*S60 polymorph of (NH₄)₂MoO₄ (*mono-4*). (a) Experimental spectrum acquired for $v_r = 1500$ Hz and 20 000 scans. (b) Simulated spectrum based on the optimized/ iteratively fitted parameters for the two NH₄⁺ sites (1:0.97) to the experimental spectrum in (a). (c) and (d) Simulated spectra corresponding to the individual parameters for each of the two NH₄⁺ sites in Table 1. The insets show expansions of the isotropic resonances for the corresponding spectra.

lattice constants and in the arrangements of the ammonium ions relative to the MoO_4^{2-} tetrahedra (i.e., different hydrogenbonding patterns). Since the two polymorphs cannot be distinguished by their IR spectra,² it is of interest to investigate the potential possibilities of ¹⁴N MAS NMR spectroscopy.¹⁶

A ¹⁴N MAS NMR spectrum of the pure polymorph *m*S60 (*mono-4*), synthesized and identified by powder XRD in our laboratories, is shown in Figure 1a. Using our experience from recent ¹⁴N MAS NMR studies of ammonium salts, the spectrum has been recorded employing an appropriate slow spinning frequency (i.e., $v_r = 1500$ Hz), so as to benefit from the more detailed features exhibited by the envelope of the

⁽²⁰⁾ STARS is available as part of the VNMR software from Varian, Inc. and has been developed and upgraded in our laboratory: Jakobsen, H. J.; Skibsted, J.; Bildsøe, H.; Nielsen, N. C. J. Magn. Reson. 1989, 85, 173–180.

Table 1. ¹⁴N Isotropic Chemical Shift (δ_{iso}) and Quadrupolar Coupling Parameters (C_Q , η_Q) Determined from ¹⁴N MAS NMR of Some Ammonium Molybdates^{*a*}

•				
compound	sites ^b	$\delta_{ m iso}$ (ppm)	$C_Q(\mathrm{kHz})$	$\eta_{ m Q}$
(NH ₄) ₂ MoO ₄ mS60	N(1)	-17.4	145.0	0.09
	N(2)	-20.5	152.1	0.72
(NH ₄) ₂ MoO ₄ mP60	N(1)	-22.2	144.4	0.89
	N(2)	-16.6	77.5	0.48
(NH ₄) ₂ Mo ₂ O ₇	N(1)	-17.9	251.7	0.91
	N(2)	-16.2	216.5	0.84
(NH ₄) ₆ Mo ₇ O ₂₄ •4H ₂ O	N(1)	-24.3	122.9	0.92
	N(2)	-14.0	147.7	0.66
	N(3)	-15.8	245.4	0.17
	N(4)	-17.5	145.8	0.90
	N(5)	-24.5	115.8	1.00
	N(6)	-13.6	99.3	0.23
(NH ₄) ₆ Mo ₈ O ₂₇ •4H ₂ O	N(1)	-17.2	129.6	0.57
	N(2)	-16.4	161.6	0.58
	N(3)	-15.8	150.0	0.50

^{*a*} The δ_{iso} values (relative to an external sample of solid NH₄Cl) have an error limit of ± 0.1 ppm and include corrections for the second-order quadrupolar shifts, which are in the range of 0.26–3.23 ppm for the samples studied here at 43.33 MHz (14.17). The C_Q values have error limits better than ± 3 kHz and the error limits for η_Q are better than ± 0.03 . ^{*b*} It is noted that the numbering of the nitrogen sites has no relationship to that used for the N atoms used in the reported crystal structures.

ssb intensities at slow spinning speeds.¹⁶ The spectrum shows two well-resolved envelopes of ssb's in accordance with the two crystallographically different NH_4^+ sites of the *m*S60 crystal structure (C2/m). Combined two-site optimized fitting (STARS) of the ssb intensities for the two ¹⁴N manifolds of ssb's leads to the ¹⁴N quadrupole coupling (C_0 and η_0) parameters and δ_{iso} values summarized in Table 1. The simulated spectrum (Figure 1b) corresponding to these parameters shows an excellent agreement with the experimental spectrum (Figure 1a). The simulated spectra corresponding to the individual N(1) and N(2) site are displayed in Figure 1c and d, respectively. It is noted that while the C_0 values for the N(1) and N(2) site are very similar ($C_0 =$ 145.0 and 152.1 kHz, respectively), the asymmetry parameters for these sites differ substantially ($\eta_0 = 0.09$ and 0.72, respectively). Although the N-H distances in both polymorphs (mS60 and mP60), determined from their crystal structures,² are associated with large uncertainties, a tentative assignment of the two widely different ¹⁴N η_0 parameters for the *m*S60 polymorph to the two crystallographic NH_4^+ sites has been attempted. Inspection of the crystal structures² show that the crystallographic N(2) site for the mS60 polymorph along with both the N(1) and N(2) sites for mP60 (all exhibiting $\eta_0 \ge 0.5$) are located in channels allowing dynamic motions for the NH_4^+ ions. In contrast, the N(1)site for *m*S60 is sandwiched between neighboring MoO_4^{2-} tetrahedra resulting in restricted motion for the N(1) NH_4^+ ions because of a more distinct hydrogen-bonding network. Thus, the NH₄⁺ ion exhibiting $\eta_0 = 0.09$ in mS60 is tentatively assigned to the crystallographic N(1) site.

By recent purchase of a sample of $(NH_4)_2MOO_4$ from Aldrich (*mono-2*), it was hoped that this sample would contain at least a mixture (about 1:1) of the *m*S60 and *m*P60 polymorphs as recently observed by other researchers for a $(NH_4)_2MOO_4$ sample purchased from Aldrich and used in a high-field ⁹⁵Mo MAS NMR investigation.¹⁵ However, pow-

Figure 2. Experimental (a) and simulated (b) ¹⁴N MAS NMR spectra (43.33 MHz) of the pure *m*P60 polymorph of (NH₄)₂MoO₄ (*mono*-2) purchased as (NH₄)₂MoO₄ from Aldrich. (a) Experimental spectrum acquired for $\nu_r = 1500$ Hz and 40 000 scans. (b) Simulated spectrum corresponding to the optimized/iteratively fitted parameters (Table 1) for the two NH₄⁺ sites (1:1) to the experimental spectrum in (a). The insets show expansions of the isotropic resonances for the corresponding spectra.

der XRD proved this (NH₄)₂MoO₄ sample (mono-2) to be the pure *m*P60 polymorph. The ¹⁴N MAS NMR spectrum of mP60 (mono-2) displays two well-resolved manifolds of ssb's (Figure 2) in agreement with the number of independent NH_4^+ sites in its crystal structure $(P2_1/n)$.² Since the overall appearances of the ¹⁴N MAS NMR envelopes for the manifolds of ssb's for the two polymorphs differ widely, they may, contrary to their IR spectra,² serve as distinct fingerprints for the mS60 and mP60 polymorphs. The ¹⁴N C_0 and η_0 values for mP60 (Table 1), resulting from twosite iterative fitting of simulated to the experimental ssb intensities (and also used for the simulated spectrum in Figure 2b), clearly reflect the different fingerprints observed in the ¹⁴N MAS NMR spectra for mS60 and mP60. For the N(1) site in *m*P60, the quadrupole coupling parameters ($C_Q =$ 144.4 kHz, $\eta_Q = 0.89$) are quite similar to those for the N(2) site in mS60, whereas C_Q (=77.5 kHz) for the N(2) site in mP60 is by coincidence exactly half the value for C_Q (=145.0 kHz) for the N(1) site in mS60. The distinctly different fingerprints for the two mS60 and mP60 polymorphs of (NH₄)₂MoO₄ illustrate that ¹⁴N MAS NMR is an effective tool for structural insights to ammonium salts.

Before presenting ¹⁴N MAS NMR as a probe in studies of transformation reactions for the two (NH₄)₂MoO₄ polymorphs, the ¹⁴N MAS NMR results and data obtained for some polynuclear ammonium molybdates will be discussed.

Diammonium Dimolybdate, (NH₄)₂Mo₂O₇. The ¹⁴N MAS NMR spectrum of (NH₄)₂Mo₂O₇ recorded for a spinning frequency $\nu_r = 1500$ Hz shows a manifold of ssb's for which each ssb throughout almost the entire spectrum is partly resolved into two resonances (Figure 3a). A two-site iterative fit to this spectrum gives the optimized quadrupole

Crystal Structures and Reactions of Ammonium Molybdates

Figure 3. Experimental (a) and simulated (b) ¹⁴N MAS NMR spectra (43.33 MHz) of an analytically pure (commercial) sample of diammonium dimolybdate, (NH₄)₂Mo₂O₇. (a) Experimental spectrum acquired for v_r = 1500 Hz and 35 000 scans. (b) Simulated spectrum corresponding to the optimized parameters (Table 1) for the two NH₄⁺ sites (1:1). The insets show expansions of the isotropic resonances for the corresponding spectra.

coupling parameters summarized in Table 1 and the corresponding simulated spectrum displayed in Figure 3b. The quadrupole coupling constants for the two NH₄⁺ sites are of quite similar magnitude ($C_Q = 251.7$ and 216.5 kHz) and both larger than the values for the *m*S60 and *m*P60 polymorphs of the monomolybdate. The same statements hold for the corresponding asymmetry parameters which both approach the limit of 1 and altogether indicate quite similar environments for the two NH₄⁺ sites. The ¹⁴N MAS NMR results are in accordance with the crystal structure reported for (NH₄)₂Mo₂O₇.^{3,4}

Hexaammonium Heptamolybdate, (NH₄)₆Mo₇O₂₄·4H₂O. The ¹⁴N MAS NMR spectrum of (NH₄)₆Mo₇O₂₄•4H₂O obtained for a spinning frequency $v_r = 3000$ Hz (Figure 4) shows three resolved resonances for the isotropic peaks in the center of the spectrum and also for most of the ssb's in the manifold of ssb's. The crystal structure determined for $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ (monoclinic, space group $P2_1/c)^5$ shows the presence of six different NH₄⁺ sites in the asymmetric unit. In order to perform a six-site simulation/iterative fit which encompasses six different NH₄⁺ ions within the three resolved manifolds of ssb's, the strategy recently described for a two-site iterative fit to a single ¹⁴N manifold of ssb intensities (e.g., for (CH₃)₃(C₆H₅CH₂)NCl)¹⁶ has been applied. To ensure reliable intensities for all ssb's in the manifolds and thus a fully relaxed spectrum, it is observed that a relaxation delay of 16 s is required. Integration of all ssb intensities within each of the three manifolds of ssb's shows that the distribution of the six NH_4^+ sites among the three resolved isotropic resonances (Figure 4) should be 2:1:3 in the order from low to high frequency. A simultaneously full six-site iterative fitting to the experimental spectrum, assuming this distribution for the six NH₄⁺ sites and for a fixed total intensity of unity for each site, results in the six sets of $C_{\rm Q}$, $\eta_{\rm Q}$, and $\delta_{\rm iso}$ parameters listed in Table 1. The

Figure 4. Experimental (a) and simulated (b) ¹⁴N MAS NMR spectra (43.33 MHz) of analytically pure hexaammonium heptamolybdate, $(NH_4)_{6}$ -Mo₇O₂₄·4H₂O. (a) Experimental spectrum acquired for $v_r = 3000$ Hz, 10 100 scans, and a relaxation delay of 16 s. (b) Simulated spectrum corresponding to the optimized parameters (Table 1) resulting from the six NH₄⁺-site iterative fit to the experimental spectrum. The insets show expansions of the resolved isotropic resonances, which correspond to a distribution of 2:1:3 from low to high frequency for the six NH₄⁺ sites when the overall integrated intensities of the three resolved manifolds of ssb's are considered.

complete six-site simulated spectrum corresponding to these parameters is shown in Figure 4b and is in excellent agreement with the experimental spectrum. We note that the appearance of the intensities for the expansion of the three resolved isotropic resonances (~3:1:2 from the inset in Figure 4) differs from the overall integrated intensities (2:1:3) for the three manifolds of ssb's because of the difference in the C_Q , η_Q , and δ_{iso} parameters for the six sites. To our knowledge, the ¹⁴N MAS NMR spectrum of (NH₄)₆Mo₇O₂₄• 4H₂O represents the first example for a simultaneous sixsite iterative fitting to six partly overlapping manifolds of ssb's.

Hexaammonium Octamolybdate, (NH₄)₆Mo₈O₂₇·4H₂O. As the last ammonium polymolybdate, we have included (NH₄)₆Mo₈O₂₇•4H₂O in this ¹⁴N MAS investigation. The ¹⁴N MAS NMR spectrum obtained for $v_r = 1500$ Hz (Figure 5a) shows two partly resolved manifolds of ssb's with an intensity ratio of 1:2 for the low- to high-frequency manifold, respectively. This also appears in decent agreement with the relative intensities observed for the expansion of the two partly overlapping isotropic resonances shown as an inset in Figure 5. This feature observed for the ¹⁴N MAS spectrum is fully consistent with the crystal structure determined for $(NH_4)_6Mo_8O_{27}$ ·4H₂O (monoclinic, space group $P2_1/c$),⁸ which shows the presence of three different NH₄⁺ sites in the asymmetric unit. Clearly, this assumes that the highfrequency manifold of ssb's represents two NH4⁺ sites most likely characterized by two different sets of quadrupole coupling parameters. Three-site iterative fitting to the experimental spectrum (one site for the low-frequency and two sites for the high-frequency manifold of ssb's) results

Figure 5. Experimental (a) and simulated (b) ¹⁴N MAS NMR spectra (43.33 MHz) of analytically pure hexaammonium octamolybdate, (NH₄)₆-M0₈O₂₇·4H₂O. (a) Experimental spectrum acquired for $v_r = 3000$ Hz and 33 000 scans. (b) Simulated spectrum corresponding to the optimized parameters (Table 1) for the three NH₄⁺ sites (1:1:1). The insets show expansions of the two resolved isotropic resonances, for which the resonance at high-frequency corresponds to an overlap of two NH₄⁺ sites.

in the three different sets of optimized C_Q , η_Q , and δ_{iso} parameters summarized in Table 1. The complete simulated spectrum (Figure 5b) corresponding to these parameters shows an excellent agreement with the experimental spectrum. The ¹⁴N C_Q and η_Q values for the three different NH₄⁺ sites are all of quite similar magnitude with only the magnitude of C_Q for the N(1) site being slightly lower (about 20%) than for the two other sites. From the crystal structure of (NH₄)₆Mo₈O₂₇•4H₂O,⁸ it is noted that the NH₄⁺ ions along with the water molecules comprise a complex network of hydrogen bonds fixing the layers of distorted MoO₆ octahedra formed by edge and corner sharing.

Transformation Reactions of Diammonium Monomolybdate. As illustrated above, ¹⁴N MAS NMR represents a unique tool for characterization of ammonium molybdates through the variation in their ¹⁴N quadrupole coupling parameters. The variation in ¹⁴N C_Q and η_Q values gives rise to characteristic features for the individual ¹⁴N MAS NMR spectra, which serve as useful fingerprints for the ammonium molybdates. This observation became clear to us right from the outset of the present study. When recording the first ¹⁴N MAS NMR spectra for a collection of samples from our chemical stockroom, all labeled "(NH₄)₂MoO₄" or "ammonium molybdate", it was confusing to observe a series of widely different spectra, i.e., some showing minor "impuritymanifolds of ssb's" in an otherwise well-defined spectrum, and others displaying a well-defined and pure but different spectrum. Further ¹⁴N MAS NMR spectra recorded later for samples labeled analytically pure (NH₄)₂Mo₂O₇ and (NH₄)₆-Mo₇O₂₄·4H₂O (and proven as such by powder XRD), appeared to be identical to some of the impurities and welldefined spectra already obtained for the "(NH₄)₂MoO₄" stockroom samples. Decomposition of diammonium mono-

Figure 6. Experimental (a) and simulated (b) ¹⁴N MAS NMR spectra (43.33 MHz) of the same sample of $(NH_4)_2MOO_4 \ mP60$ as used in Figure 2 but after exposure to air for 7 days (see text). (a) Experimental spectrum acquired for $\nu_r = 1500 \ Hz$ and 16 000 scans. (b) Simulated spectrum based on a four NH₄⁺-site optimization to the experimental spectrum according to two NH₄⁺ sites (1:1) for $(NH_4)_2MOO_4 \ mP60$ and two NH₄⁺ sites (0.85: 0.85) for $(NH_4)_2MO_2O_7$. The resulting spectral parameters $(C_Q, \eta_Q, \text{and } \delta_{iso})$ for $(NH_4)_2MOO_4 \ mP60$ and $(NH_4)_2MO_2O_7$ are within the error limits for the data of the pure samples listed in Table 1.

molybdate, $(NH_4)_2MoO_4$, into $(NH_4)_2Mo_2O_7$ and/or $(NH_4)_6-Mo_7O_{24} \cdot 4H_2O$ is known (e.g., $2(NH_4)_2MoO_4 \rightarrow (NH_4)_2Mo_2O_7 + 2NH_3 + H_2O)$. This triggered the synthesis and search (described in the sections above) for pure samples of the recently isolated two *m*S60 and *m*P60 polymorphs of $(NH_4)_2-MoO_4$.

As a first of several examples encountered during this study on transformation reactions for (NH₄)₂MoO₄, the ¹⁴N MAS NMR spectrum of a sample of the "as-received" mono-2 mP60, which has been exposed to air in an open vial for 7 days, is illustrated in Figure 6. This clearly shows a spectrum composed of ssb manifolds for the mP60 polymorph (Figure 2) and for (NH₄)₂Mo₂O₇ (Figure 3). Foursite fitting to the experimental spectrum results in the simulated spectrum shown in Figure 6b, and the corresponding spectral parameters are within the error limits shown in Table 1 for (NH₄)₂MoO₄, mP60, and (NH₄)₂Mo₂O₇. The product composition, resulting from the transformation reaction, also follows from the fit in Figure 6b and is ~ 54 mol % of the mP60 polymorph and 46 mol % (NH₄)₂Mo₂O₇. Following this experiment, the finely crushed powder packed into the MAS rotor was spread out in a thin layer on a glass surface and left in open air (38% relative humidity) for a further 4 days, when a second/new ¹⁴N MAS NMR spectrum of the sample was recorded. This spectrum (Figure 7) shows that a complete transformation of the $(NH_4)_2MoO_4$, mP60 polymorph has occurred, resulting in a mixture dominated by (NH₄)₂Mo₂O₇ (Figure 3) and to a minor extent (NH₄)₆-Mo₇O₂₄•4H₂O (Figure 4). A quantitative iterative fit of the experimental spectrum in Figure 7a, employing the data for the di- and heptamolybdate in Table 1 and using the

Figure 7. Experimental (a) and simulated (b) ¹⁴N MAS NMR spectra (43.33 MHz) of the sample used in Figure 6 but following exposure to air as a thin layer on a glass plate for a further 4 days (see text). (a) Experimental spectrum acquired for $\nu_r = 1500$ Hz and 35 000 scans. (b) Simulation of the spectrum according to a mixture of $(NH_4)_2Mo_2O_7$ and $(NH_4)_6Mo_7O_{24}$ · 4H₂O using the parameters in Table 1 for the two NH₄⁺ sites (1:1) for $(NH_4)_2Mo_2O_7$ and the two NH₄⁺ sites at lowest frequency, N(1) and N(5) in Table 1, (0.05:0.05) for $(NH_4)_6Mo_7O_{24}$ · 4H₂O.

resonance at lowest frequency for $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (corresponding to two NH_4^+ sites) for the quantification, is illustrated in Figure 7b. This shows that under the particular conditions described above the originally pure *m*P60 polymorph has transformed into a mixture of about 95 mol % $(NH_4)_2Mo_2O_7$ and 5 mol % $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$.

Regarding the mS60 polymorph of $(NH_4)_2MoO_4$, the following examples (spectra not shown) illustrate the transformation reactions observed for this polymorph during this investigation. (i) Following storage of the pure, finely crushed powder of mS60 (mono-4), used to obtain the spectrum in Figure 1, for about 3 months in a small closed container, a new ¹⁴N MAS NMR spectrum recorded for this sample showed it to be identical to that for $(NH_4)_2Mo_2O_7$ in Figure 3; this has also been verified by ⁹⁵Mo MAS NMR (vide infra). (ii) Overnight storage of a pure mS60 powder sample on a glass plate in the humid atmosphere (100% relative humidity, 20 °C, closed desiccator), mS60 transforms completely into (NH₄)₂Mo₂O₇ as seen from the fingerprint ¹⁴N MAS NMR spectrum. (iii) The very old $(NH_4)_2MoO_4$ mono-1 sample from Aldrich has been stored in a small closed container in the form of big lumps. Powdering some of this sample followed by recording its ¹⁴N MAS spectrum shows mono-1 to be the mS60 polymorph with a minor impurity of the dimolybdate (NH₄)₂Mo₂O₇ (about 10 mol % from an iterative fit). Therefore, on the basis of our own experience, it is recommended that both polymorphs of (NH₄)₂MoO₄ are stored in the smallest possible, tightly closed container under dry air and preferably in the form of large lumps rather than as a fine powder.

The spectra and examples presented in this section clearly demonstrate that the fingerprint ¹⁴N MAS NMR spectra of

Figure 8. Experimental (a) and simulated (b) ⁹⁵Mo MAS NMR spectra (39.09 MHz at 14.1 T) of the in-house-synthesized (NH₄)₂MoO₄ *m*S60 polymorph (*mono*-4). (a) Experimental spectrum of the central and satellite transitions acquired for $v_r = 6000$ Hz and 17 000 scans. (b) Simulated spectrum corresponding to the optimized ⁹⁵Mo C_Q and η_Q parameters in Table 2 and including a chemical shift anisotropy of $\delta_\sigma = -48$ ppm (see text and Table 2). The insets show expansions of the lineshapes for the central transition in the corresponding spectra.

the ammonium mono- and polymolybdates serve extremely useful tools to study, identify, and quantify the transformation reactions and reaction products for the *m*S60 and *m*P60 polymorphs of $(NH_4)_2MoO_4$. However, it is emphasized that the aim of the present investigation has not been a detailed study of these transformation reactions, which seem to be very sensitive to the environmental conditions and which may also differ for the individual two polymorphs under the same conditions. Rather, the purpose has been the presentation of fingerprint ¹⁴N MAS NMR spectroscopy as new and efficient tool in such studies.

⁹⁵Mo MAS NMR Spectroscopy. Following the isolation, identification, and characterization by ¹⁴N MAS NMR of the *m*S60 and *m*P60 polymorphs of (NH₄)₂MoO₄, it is of further interest to characterize these polymorphs by their ⁹⁵Mo quadrupole coupling parameters employing ⁹⁵Mo MAS NMR.

The ⁹⁵Mo MAS NMR spectrum recorded at 14.1 T (39.09 MHz) for the in-house-synthesized and pure *m*S60 polymorph (*mono-4*) is shown in Figure 8a and illustrates both the central and almost the complete satellite transition spectrum for this spin I = 5/2 nucleus. An optimized and simultaneous fit to these transitions results in the ⁹⁵Mo C_Q , η_Q , and δ_{iso} values summarized in Table 2 and the simulated spectra shown in Figure 8b. Similarly, a corresponding ⁹⁵Mo MAS NMR spectrum of the pure *m*P60 polymorph is shown in Figure 9a along with the simulated spectrum (Figure 9b) corresponding to the optimized C_Q , η_Q , and δ_{iso} parameters

Table 2. ⁹⁵Mo Isotropic Chemical Shift (δ_{iso}), Chemical Shift Anisotropy (δ_{σ}), and Quadrupole Coupling Parameters (C_Q , η_Q) Determined from ⁹⁵Mo MAS NMR of Diammonium Monomolybdate (Two Polymorphs) and Dimolybdate^{*a*}

		-			
compound	sites	$\delta_{ m iso}$ (ppm)	δ_{sb} (ppm)	C _Q (MHz)	$\eta_{ m Q}$
(NH ₄) ₂ MoO ₄ <i>m</i> S60		-23.6	-48	1.20 ± 0.02	0.44 ± 0.02
(NH ₄) ₂ MoO ₄ mP60		-26.3	-80	1.45 ± 0.02	0.82 ± 0.02
(NH4)2M02O7	Mo(1)	30.2		3.12 ± 0.10	0.88 ± 0.04
	Mo(2)	-19.8		2.61 ± 0.10	0.32 ± 0.04

^{*a*} The δ_{iso} values (relative to 2.0 M Na₂MoO₄) have an error limit of ± 0.5 ppm and include corrections for the second-order quadrupolar shifts, which are in the range from -6.1 to -48.1 ppm for the central transition for the three samples studied here at 39.09 MHz (14.1 T). ^{*b*} The δ_{σ} values are determined from the ssb intensities observed for the central transitions at slow spinning frequencies ($\nu_r = 2000-3000$ Hz) at 39.09 MHz and have an error limit of ± 10 ppm. Because of the small δ_{σ} values, compared to the lower limit for the spinning frequencies required at 39.09 MHz, a value for η_{σ} could only be determined for the *mS60* polymorph, i.e., $\eta_{\sigma} = 0.70 \pm 0.15$. The determined δ_{σ} values improves the iterative fit for the manifold of ssb's for the observed satellite ($\pm 3/2 \leftrightarrow \pm 1/2$) transitions in Figures 8 and 9. ^{*c*} Not determined.

Figure 9. Experimental (a) and simulated (b) ⁹⁵Mo MAS NMR spectra (39.09 MHz at 14.1 T) of the pure *m*P60 polymorph of (NH₄)₂MoO₄ (*mono-***2**) purchased as (NH₄)₂MoO₄ from Aldrich. (a) Experimental spectrum of the central and satellite transitions acquired for $v_r = 6000$ Hz and 32 000 scans. (b) Simulated spectrum corresponding to the optimized ⁹⁵Mo C_Q and η_Q parameters (Table 2) and a chemical shift anisotropy of $\delta_{\sigma} = -80$ ppm (see text and Table 2). The insets show expansions of the lineshapes for the central transition in the corresponding spectra.

given in Table 2. It is noted that the slight asymmetry observed for the intensities within the manifold of ssb's with respect to the central transition for the experimental spectra in both Figures 8 and 9 can be taken care of in the simulations by introducing the 95 Mo CSAs determined at slower spinning frequencies, as demonstrated earlier in a 95 Mo MAS NMR study of Mo(CO)₆.²¹ This also improves the rms errors of the fits. Most importantly, it is found that

Figure 10. Experimental (a) and simulated (b) 95 Mo MAS NMR spectra for the central transition of a commercial, analytically pure sample of (NH₄)₂-Mo₂O₇ at 39.09 MHz. (a) Experimental spectrum acquired for $\nu_r = 6000$ Hz and 2200 scans. (b) Simulated spectrum corresponding to the optimized parameters in Table 2 for the two Mo sites (1:1) in (NH₄)₂Mo₂O₇. (c) Simulated 95 Mo MAS NMR spectrum at 54.2 MHz for the central transition using the same parameters as for the simulation in (b) (see text).

with or without inclusion of 95Mo CSAs in the iterative fitting of these spectra does not influence the values determined for the ⁹⁵Mo C_0 and η_0 parameters. The quadrupole coupling constants for the (NH₄)₂MoO₄ mS60 and mP60 polymorphs $(C_0 = 1.20 \text{ and } 1.45 \text{ MHz}, \text{ respectively})$ are of quite similar magnitude but very much smaller than the values $C_Q = 2.6$ and 3.21 MHz, respectively, recently determined from a highfield (19.6 T, 54.2 MHz) ⁹⁵Mo MAS NMR spectrum of a sample reported to be a mixture of the mS60 and mP60polymorphs¹⁵ (in an approximate 1:1 ratio estimated from the published spectrum). Considering the transformation reactions, described and observed above from the fingerprint ¹⁴N MAS NMR spectra, for (NH₄)₂MoO₄ decomposing into $(NH_4)_2Mo_2O_7$ or a mixture of $(NH_4)_2Mo_2O_7$ and $(NH_4)_6$ -Mo₇O₂₄•4H₂O, it was decided to record the ⁹⁵Mo MAS NMR spectrum for the pure commercial sample of (NH₄)₂Mo₂O₇ and for one of our mS60 (NH₄)₂MoO₄ samples that has transformed completely into (NH₄)₂Mo₂O₇ (vide supra). The 39.09 MHz ⁹⁵Mo MAS NMR spectrum of the central transition for the commercial (NH₄)₂Mo₂O₇ sample is displayed in Figure 10a. The spectrum for the product resulting from the transformation of mS60 is exactly identical and is not shown. STARS fitting of the spectrum in Figure 10a requires two different molybdenum sites, which is in accordance with the reported crystal structure for (NH₄)₂-Mo₂O₇.^{3,4} The two sets of optimized ⁹⁵Mo C_Q , η_Q , and δ_{iso} values for (NH₄)₂Mo₂O₇ are summarized in Table 2, and the

⁽²¹⁾ Vosegaard, T.; Skibsted, J.; Jakobsen, H. J. J. Phys. Chem. A 1999, 103, 9144–9149.

Crystal Structures and Reactions of Ammonium Molybdates

corresponding simulated spectrum is shown in Figure 10b. The two sets of ⁹⁵Mo quadrupole coupling parameters are very similar to those determined from the high-field (54.2 MHz) ⁹⁵Mo MAS NMR study of the "quoted" mixture of *m*S60 and *m*P60 polymorphs. Indeed, using the ⁹⁵Mo data determined in this study for (NH₄)₂Mo₂O₇ (Table 2) in a simulation of the appearance for the ⁹⁵Mo MAS NMR spectrum observed at 54.2 MHz gives a spectrum (Figure 10c) very similar to that for the "claimed" *m*S60 and *m*P60 mixture of polymorphs and published in ref 15. Thus, it is without doubt that the author's original commercial sample of (NH₄)₂MoO₄ had transformed into (NH₄)₂Mo₂O₇ before their ⁹⁵Mo MAS NMR spectrum had been recorded.

4. Conclusions

¹⁴N MAS NMR spectroscopy applied to ammonium ions at the slow and stable spinning frequencies in the range v_r = 1500-3000 Hz is shown to be a unique method for structural characterization of various ammonium molybdates. The two polymorphs *m*S60 and *m*P60 of (NH₄)₂MoO₄, recently synthesized and structurally characterized by singlecrystal XRD, are easily distinguished by their ¹⁴N MAS NMR spectra which can be used as fingerprints of their crystal structures. This also holds for the ammonium polymolybdates investigated here. These ¹⁴N MAS NMR fingerprints are an efficient tool in studies of the decomposition for the two polymorphs of $(NH_4)_2MoO_4$ both qualitatively and quantitatively. It is noted that the appearances of these ¹⁴N ssb manifolds are generally independent of the magnetic field strength employed for the acquisition of the spectra, which emphasize their use as fingerprints.

Acknowledgment. The use of the facilities at the Instrument Centre for Solid-State NMR Spectroscopy, University of Aarhus, sponsored by the Danish Natural Science Research Council, the Danish Technical Science Research Council, Teknologistyrelsen, Carlsbergfondet, and Direktør Ib Henriksens Fond is acknowledged.

IC061197K