

Magnetic Properties of BiMnO₃ Studied with Dc and Ac Magnetization and Specific Heat

Alexei A. Belik* and Eiji Takayama-Muromachi

Advanced Nano Materials Laboratory (ANML), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

Received July 26, 2006

Magnetic and specific heat measurements were performed in a single-phased powder BiMnO₃ sample prepared at 6 GPa and 1383 K. The imaginary part of the ac susceptibilities showed strong frequency dependence below the ferromagnetic Curie temperature of 98 K. The relaxation measurements revealed time-dependent magnetic properties below 98 K. These data indicate the appearance of a "spin-glass-like" state in BiMnO₃. Specific heat measurements showed the existence of ferromagnetic spin waves. However, no simple term $C_{\rm m} \propto T^{3/2}$ was found indicating an unconventional behavior of the magnetic specific heat. The Debye temperature was estimated to be 410 K using isostructural compounds BiScO₃ and BiCrO₃.

Introduction

Multiferroic materials have received renewal interest in recent years.¹⁻³ In multiferroic systems, two or all three of (anti)ferroelectricity, (anti)ferromagnetism, and ferroelasticity are observed in the same phase.⁴ Such systems are rare in nature but potentially studied with interest in wide technological applications.^{1–3}

BiMnO₃ has been extensively studied as a multiferroic material.⁵⁻²⁵ Thin film samples of BiMnO₃ showed promis-

- (1) (a) Eerenstein, W.; Mathur, N. D.; Scott, J. F. Nature (London) 2006, 442, 759. (b) Khomskii, D. I. J. Magn. Magn. Mater. 2006, 306, 1.
- (2) Fiebig, M. J. Phys. D: Appl. Phys. 2005, 38, R123. (3) Hill, N. A. Annu. Rev. Mater. Res. 2002, 32, 1.
- (4) Hill, N. A. J. Phys. Chem. B 2000, 104, 6694.
- (5) Tomashpol'skii, Y. Y.; Zubova, E. V.; Burdina, K. P.; Venevtsev, Y. N. Inorg. Mater. 1967, 3, 1861.
- (6) Sugawara, F.; Iiida, S.; Syono, Y.; Akimoto, S. J. Phys. Soc. Jpn. 1968, 25, 1553.
- (7) Atou, T.; Chiba, H.; Ohoyama, K.; Yamaguchi, Y.; Syono, Y. J. Solid State Chem. 1999, 145, 639.
- (8) Seshadri, R.; Hill, N. A. Chem. Mater. 2001, 13, 2892.
- (9) Moreira dos Santos, A.; Cheetham, A. K.; Atou, T.; Syono, Y.; Yamaguchi, Y.; Ohoyama, K.; Chiba, H.; Rao, C. N. R. *Phys. Rev. B* 2002, 66, 064425.
- (10) dos Santos, A. M.; Parashar, S.; Raju, A. R.; Zhao, Y. S.; Cheetham, A. K.; Rao, C. N. R. Solid State Commun. 2002, 122, 49.
- (11) Kimura, T.; Kawamoto, S.; Yamada, I.; Azuma, M.; Takano, M.; Tokura, Y. Phys. Rev. B 2003, 67, 180401(R).
- (12) Shishidou, T.; Mikamo, N.; Uratani, Y.; Ishii, F.; Oguchi, T. J. Phys.: Condens. Matter 2004, 16, S5677.
- (13) Sharan, A.; An, I.; Chen, C.; Collins, R. W.; Lettieri, J.; Jia, Y. F.; Schlom, D. G.; Gopalan, V. Appl. Phys. Lett. 2003, 83, 5169.
- (14) Sharan, A.; Lettieri, J.; Jia, Y.; Tian, W.; Pan, X.; Schlom, D. G.; Gopalan, V. Phys. Rev. B 2004, 69, 214109.

10224 Inorganic Chemistry, Vol. 45, No. 25, 2006

ing results for practical applications.¹³⁻¹⁸ BiMnO₃ is a wellestablished ferromagnet below $T_{\rm M} = 99-103$ K.^{6,9,11,19,20} It is believed to crystallize in monoclinic space group C2 at room temperature (RT) with lattice parameters of a = 9.5323Å, b = 5.6064 Å, c = 9.8535 Å, and $\beta = 110.667^{\circ}$.⁷ BiMnO₃ undergoes two high-temperature phase transitions at 470 and 770 K.^{6,11,19–21} The phase transition at 470 K is monoclinicto-monoclinic phase transition without any detectable change in the symmetry.^{11,21} The phase transition at 770 K is monoclinic-to-orthorhombic.¹¹ Below $T_{\rm M}$, the three-dimensional (3D) magnetic structure is realized with the magnetic moments of Mn^{3+} parallel to the *b* axis.⁹ No change of the

- (15) dos Santos, A. F. M.; Cheetham, A. K.; Tian, W.; Pan, X. Q.; Jia, Y. F.; Murphy, N. J.; Lettieri, J.; Schlom, D. G. Appl. Phys. Lett. 2004, 84.91.
- (16) Son, J. Y.; Kim, B. G.; Kim, C. H.; Cho, J. H. Appl. Phys. Lett. 2004, 84, 4971.
- (17) Gajek, M.; Bibes, M.; Barthelemy, A.; Bouzehouane, K.; Fusil, S.; Varela, M.; Fontcuberta, J.; Fert, A. Phys. Rev. B 2005, 72, 020406.
- (18) Eerenstein, W.; Morrison, F. D.; Scott, J. F.; Mathur, N. D. Appl. Phys. Lett. 2005, 87, 101906.
- (19) Chi, Z. H.; Xiao, C. J.; Feng, S. M.; Li, F. Y.; Jin, C. Q.; Wang, X. H.; Chen, R. Z.; Li, L. T. J. Appl. Phys. 2005, 98, 103519.
 (20) Montanari, E.; Righi, L.; Calestani, G.; Migliori, A.; Gilioli, E.;
- Bolzoni, F. Chem. Mater. 2005, 17, 1765.
- (21) Montanari, E.; Calestani, G.; Migliori, A.; Dapiaggi, M.; Bolzoni, F.; Cabassi, R.; Gilioli, E. Chem. Mater. 2005, 17, 6457.
- (22) Yang, H.; Chi, Z. H.; Li, F. Y.; Jin, C. Q.; Yu, R. C. Phys. Rev. B 2006, 73, 024114.
- (23) Chi, Z.; Yang, H.; Li, F.; Yu, R.; Jin, C.; Wang, X.; Deng, X.; Li, L. J. Phys.: Condens. Matter 2006, 18, 4371.
- (24) Yang, C. H.; Koo, T. Y.; Lee, S. H.; Song, C.; Lee, K. B.; Jeong, Y. H. Europhys. Lett. 2006, 74, 348.
- (25) Yang, C. H.; Koo, J.; Song, C.; Koo, T. Y.; Lee, K. B.; Jeong, Y. H. Phys. Rev. B 2006, 73, 224112.

10.1021/ic061400b CCC: \$33.50 © 2006 American Chemical Society Published on Web 11/09/2006

^{*} To whom correspondence should be addressed. E-mail: Alexei.BELIK@ nims.go.jp.

Magnetic Properties of BiMnO₃

crystal symmetry was found below T_M . Despite a large number of works, the low-temperature magnetic properties of BiMnO₃ have been investigated poorly. Note that BiMnO₃ is a rare example of an insulating ferromagnet,¹¹ and a spin-wave contribution to magnetic properties is expected.

It was found recently that the structure of BiScO₃ is very close to that of BiMnO₃, but BiScO₃ crystallizes in the centrosymmetric space group C2/c.²⁶ Because there is no magnetic ions in BiScO₃, it can be used to estimate the lattice contribution in the specific heat. BiCrO₃ was reported to be isostructural with BiMnO₃.²⁷

To achieve a better understanding of the properties of $BiMnO_3$ at low temperatures we have performed dc/ac magnetic and specific heat measurements on single-phased powder samples. These measurements revealed the existence of "spin-glass-like" features, spin waves, and unconventional behavior of the magnetic specific heat.

Experimental Section

A mixture of Bi₂O₃ (99.99%) and Mn₂O₃ with an amount-ofsubstance ratio of 1:1 was placed in Au capsules and treated at 6 GPa in a belt-type high-pressure apparatus at 1383 K for 60–70 min. After heat treatment, the samples were quenched to RT, and the pressure was slowly released. The resultant samples were black powder. X-ray powder diffraction (XRD) showed that the samples were single phased. Single-phased Mn₂O₃ was prepared from a commercial MnO₂ (99.99%) by heating in air at 923 K for 24 h. Single-phased BiScO₃ was prepared from Bi₂O₃ and Sc₂O₃ (99.9%) at 6 GPa and 1413 K for 40 min,²⁶ and single-phased BiCrO₃, from Bi₂O₃ and Cr₂O₃ (99.9%) at 6 GPa and 1653 K for 120 min.²⁷ BiScO₃ was white powder, and BiCrO₃ was a khaki-green dense pellet.

Magnetic susceptibilities, $\chi = M/H$, of BiMnO₃ were measured on a SQUID magnetometer (Quantum Design, MPMS) between 2 and 350 K in applied fields of 5 \times 10⁻⁴ and 1 T (1 T = (10⁷/4 π) A m⁻¹) under both zero-field-cooled (ZFC) and field-cooled (FC) conditions. Isothermal magnetization measurements were performed between -7 and 7 T at 5 K. Frequency dependent ac susceptibility measurements at zero static magnetic field were performed with a Quantum Design PPMS instrument from 200 to 2 K at frequencies (f) of 10, 10^2 , 5×10^2 , 10^3 , 5×10^3 , and 10^4 Hz and an applied oscillating magnetic field (H_{ac}) of 5 × 10⁻⁴ T. Specific heat, C_p , of BiMnO₃, BiCrO₃, and BiScO₃ at zero static magnetic field was recorded between 2 and 300 K on cooling by a pulse relaxation method using a commercial calorimeter (Quantum Design PPMS). The C_p vs T curves of BiMnO₃ were also recorded at 0 and 9 T on heating from 2 to 300 K and on cooling from 10 to 0.4 K. No difference was found between the C_p vs T curves of BiMnO₃ measured on cooling and heating at 0 T. For the specific heat measurements, the powder samples of BiMnO₃ and BiScO₃ were cold-pressed at 1 GPa to make pellets. The thermoremanent magnetization (TRM) curve was measured at zero magnetic field on heating after cooling the sample from 150 to 2 K at 0.1 T. The time-dependent relaxation curves were measured in two modes: (1) at zero magnetic field after cooling the sample from 150 K to the desired temperature at 0.1 T (the magnetic field was set to zero

⁽²⁷⁾ Niitaka, S.; Azuma, M.; Takano, M.; Nishibori, E.; Takata, M.; Sakata, M. Solid State Ionics 2004, 172, 557.

Figure 1. (a) ZFC and FC dc magnetic susceptibility ($\chi = M/H$) curves of BiMnO₃ measured at 5 × 10⁻⁴ T. The secondary axis gives the inverse ZFC curve (circles) with the Curie–Weiss fit (line). (b) Isothermal magnetization curves at 5 K. The inset shows the curves between 0 and 1 T.

after 5 min after reaching the desired temperature); (2) at 10^{-3} T after cooling the sample from 150 K to the desired temperature at zero magnetic field.

Results and Discussion

Figure 1a shows magnetic susceptibilities of BiMnO3 between 2 and 350 K. The transition to the ferromagnetic state in BiMnO₃ is observed at $T_{\rm M} = 98$ K as determined by the peak on the ZFC $d(\chi T)/dT$ vs T curve. A very small anomaly is also observed near 114 K. The similar anomaly was reported in the literature and explained by the presence of a small amount of another perovskite-like modification of BiMnO₃.²⁰ This modification was detected by electron diffraction. Note that it cannot be detected by powder diffraction methods because its reflections overlap with the reflections of the main monoclinic phase. A pronounced irreversibility is observed between the ZFC and FC curves measured at 5×10^{-4} T. This irreversibility starts just below $T_{\rm M}$. On the other hand, the ZFC and FC curves almost coincide with each other when measured at 1 T. The inverse ZFC magnetic susceptibilities between 250 and 350 K are fit by the modified Curie-Weiss equation

$$\chi(T) = \chi_0 + \mu_{\text{eff}}^2 N(3k_{\text{B}}(T - \Theta))^{-1}$$
(1)

where χ_0 (=-2.0(3) × 10⁻⁴ cm³/mol) is the temperatureindependent term, $\mu_{\rm eff}$ (=4.913(7) $\mu_{\rm B}$) is effective magnetic moment, N is Avogadro's number, $k_{\rm B}$ is Boltzmann's constant, and Θ (=126.1(5) K) is the Weiss constant. The effective magnetic moment is close to the localized Mn³⁺ moment of 4.90 $\mu_{\rm B}$.

Figure 2. (a) Real χ' and (b) imaginary χ'' parts of the ac susceptibility as a function of temperature (at 2–200 K) at frequencies $f = 10, 100, 5 \times 10^2, 10^3, 5 \times 10^3$, and 10⁴ Hz for BiMnO₃. Measurements were performed on cooling at zero static field using an ac field with the amplitude $H_{ac} = 5 \times 10^{-4}$ T. The positions of maxima are given. The arrows show additional anomalies.

Figure 1b depicts the isothermal magnetization curves at 5 K. A very small hysteresis is observed with the coercive field (H_c) of about 3×10^{-4} T and the remnant magnetization (M_r) of about $1.3 \times 10^{-2} \mu_B/\text{Mn}^{3+}$ ion. These values are much smaller than the previously reported ones, e.g., $H_c = 0.02$ T and $M_r = 0.2 \mu_B$.^{19,23} The magnetic moment at 5 K and 7 T was about 3.9 μ_B . This value is very close to the fully aligned spin value of 4 μ_B for Mn³⁺ and the largest among the previously reported ones of about 3.6 μ_B .¹¹ Note that the first magnetization curve from 0 to 7 T is slightly different from other curves (the inset of Figure 1b). This behavior of magnetization curves was observed in other manganites exhibiting spin-glass-like features.²⁸

Figure 2 shows the ac susceptibility curves of BiMnO₃. Sharp peaks are observed at 98 K on the χ' vs T curve, while the χ'' vs T curves exhibit peaks at 94 K. The first point to note is that the imaginary parts are still observed below $T_{\rm M}$ down to 2 K. In a conventional ferromagnet, the imaginary part should have a peak at $T_{\rm M}$ and vanish above and below $T_{\rm M}$. The peak positions are almost frequency independent. However the peak intensity of χ'' vs *T* is strongly increased with increasing frequency, while the peak intensity of χ' vs T almost does not change. The second point to note is the observation of additional anomalies at 84 K on both χ' vs T and χ'' vs T curves, whose origin is not clear now, and very broad frequency-dependent features below 80 K on the χ'' vs T curves. The peaks near $T_{\rm M}$ on both χ' vs T and χ'' vs T curves signal the onset of a ferromagnetic order, whereas frequency-dependent anomalies below $T_{\rm M}$ are associated with "spin-glass-like" states. It should be noted that no anomaly is found near 114 K, where the anomaly is observed on the

dc susceptibilities. Above 120 K, the ac and dc susceptibility curves coincide with each other.

Therefore, the ac susceptibility measurements reveal the spin-glass-like anomalies in BiMnO₃ below $T_{\rm M}$. There are two possible explanations for the observed spin-glass features. The first explanation is the existence of peculiar orbital order²⁵ and ferromagnetic- and antiferromagnetic-type interactions between Mn³⁺ ions derived from the direction of the Jahn-Teller distortion.^{7,9,24,25} On the other hand, in the magnetically ordered state below $T_{\rm M}$, all the moments are aligned ferromagnetically.9 These facts produce magnetic frustration. It is known that the competition between ferromagnetic- and antiferromagnetic-type interactions is necessary to produce a spin-glass state. The second explanation is possible tiny changes of the stoichiometry of BiMnO₃. For example, spin-glass-like states were observed in LaMnO_{3+ δ} with $\delta > 0.29$ The stoichiometry changes may also explain the differences in H_c and M_r between our samples and the literature data.^{19,23} Note that, in ref 30, spin-glass-like features observed in La_{1-x}MnO₃ were explained by the domain wall pinning effects. The origin of the pinning effects was proposed to be a nonuniform distribution of rather large amount of Mn4+ ions or mild structural distortions at lower temperatures. However, this is not the case in BiMnO₃. In addition, there are differences in the ac susceptibility and relaxation curves (see below) between BiMnO₃ and La_{1-x}MnO₃.

The TRM curve (see the experimental part for the definition) as a function of temperature is given in Figure 3a. After a noticeable decrease of the TRM from 2 to about 12 K, there is a plateaulike region. Then, the TRM gradually decreases when approaching $T_{\rm M}$. The logarithmic presentation clearly demonstrates the presence of a ferromagnetic contribution below 114 K in consistence with the dc susceptibilities. Figure 3b depicts the time-dependent relaxation curves measured at 10⁻³ T. The slowest relaxation is observed at the intermediate temperatures of 50-80 K. The relaxation is hastened on increasing or decreasing temperature. The similar behavior is found when the relaxation was measured at zero magnetic field after cooling in a magnetic field of 0.1 T. The relaxation almost follows the logarithmic law below 80 K. The deviation from the logarithmic dependence is observed when approaching $T_{\rm M}$ (at 90 and 95 K). The TRM curve is in consistence with the relaxation measurements, that is, the decrease of the magnetization with temperature is fast at very low temperatures and near $T_{\rm M}$ that suggests the faster time-dependent relaxation at these temperature ranges. BiMnO3 clearly shows the time-dependent magnetic properties. This behavior was recently observed in thin-film samples of BiMnO₃ and explained by in-plane compressive strains in the film.²⁴ Our results indicate that the magnetic frustration and spin-glass-like magnetic properties are intrinsic to BiMnO3 independent of the bulk or thinfilm forms.

⁽²⁸⁾ Karmakar, S.; Taran, S.; Chaudhuri, B. K.; Sakata, H.; Sun, C. P.; Huang, C. L.; Yang, H. D. *Phys. Rev. B* 2006, 74, 104407 and references therein.

⁽²⁹⁾ Ghivelder L.; Castillo, I. A.; Gusmao, M. A.; Alonso, J. A.; Cohen, L. F. Phys. Rev. B 1999, 60, 12184.

⁽³⁰⁾ Sankar, C. R.; Joy, P. A. Phys. Rev. B 2005, 72, 024405.

Figure 3. (a) Thermoremanent magnetization (TRM) curve as a function of temperature for BiMnO₃. The TRM curve was measured at zero magnetic field on heating after cooling the sample from 150 to 2 K at 0.1 T. The secondary *y* axis gives the same curve in the logarithmic scale. (b) Relative change of magnetization in % as a function of time (relaxation). The curves were measured at 10^{-3} T after cooling the sample from 150 K to the desired temperature at zero magnetic field.

Figure 4. (a) *C* vs *T* curves between 2 and 300 K for BiMnO₃ (C_p and C_m), BiCrO₃ (C_p), and BiScO₃ (C_p) at zero magnetic field. The magnetic specific heat (C_m) was obtained by subtracting the total specific heat of BiScO₃ from that of BiMnO₃. The inset gives the ($C_p(0 \text{ T}) - C_p(9 \text{ T}))/T$ vs *T* curve of BiMnO₃. (b) *C*/*T* vs *T* curves between 2 and 300 K for BiMnO₃ (C_p at 0 and 9 T and C_m at 0 T) and BiScO₃ (C_p). The secondary axis shows the temperature dependence of the magnetic entropy S_m in BiMnO₃.

Figure 4 shows the specific heat of BiMnO₃ plotted as C_p vs T and C_p/T vs T in the temperature range of 2 and 300 K. The λ -type anomaly on the C_p vs T is observed with the maximum at 97.5 K in agreement with the previous measurements.¹¹ The lattice contribution (C_1) in BiMnO₃ is estimated using BiScO₃ containing no magnetic ions.²⁶ We also measured the C_p vs T curve of another isostructural compound, BiCrO₃, that orders antiferromagnetically at T_N = 114 K.^{6,27} In the temperature ranges of 2–50 and 180– 300 K, the C_p vs T curves of BiCrO₃ and BiScO₃ are very similar to each other (Figure 4a) indicating that BiScO₃ can give good approximation to the C_1 . The magnetic specific heat (C_m) of BiMnO₃ is obtained by subtracting the total specific heat of BiScO₃ from that of BiMnO₃. The estimated magnetic entropy

$$S_{\rm m} = \int (C_{\rm m}/T) \,\mathrm{d}T \tag{2}$$

is about 16.3 J K⁻¹ mol⁻¹ at 280 K (Figure 4b). This value is larger than the spin-only value of $R \ln(2S + 1) = R \ln 5$ = 13.4 J K⁻¹ mol⁻¹ expected for the S = 2 systems (S is spin). The expected value is reached near 135 K. It may be explained by difficulties in accurate measurements of C_p at high temperatures and also by the fact that there is a strong Jahn–Teller distortion in BiMnO₃ compared with BiScO₃ and BiCrO₃. The distortion in BiMnO₃ may have an effect on the lattice specific heat. However, if we take into account that BiMnO₃ undergoes orbital ordering at a certain temperature,²⁵ the minimum entropy change over a wide temperature range should be $R \ln 5 + R \ln 2 = 19.1$ J K⁻¹ mol⁻¹. There is a large part of the magnetic specific heat above $T_{\rm M}$ in BiMnO₃ and also above $T_{\rm N}$ in BiCrO₃ (Figure 4a) probably due to the short-range correlations.

The specific heat is analyzed in more detail below 10 K. Figure 5 depicts the C/T vs T and C/T vs T^2 curves in the temperature range of 0.4 and 10 K for BiMnO₃ (C_p and C_m) and BiScO₃ (C_p). The first feature is a large magnetic contribution to the specific heat in BiMnO₃ below 10 K which may be originated from a spin-wave contribution. According to the spin-wave theory the specific heat of a ferromagnet will be reduced on applying a magnetic field due to the suppression of the thermal excitations of the spin wave.^{31–33} The measurement at 9 T shows a noticeable reduction of the total specific heat as an almost constant shift on the C_p/T vs T curves (Figure 5). The almost constant shift retains up to about 60 K (the inset of Figure 4a). This result supports the presence of a spin-wave contribution. The second feature is a low-temperature upturn due to a Mnhyperfine contribution to the specific heat. This term is caused by the large local magnetic field at the Mn nucleus. Usually this term is represented by AT^{-2} .^{31,34} However our data cannot be fit well with this term probably because the hyperfine contribution is difficult to measure correctly by the pulse relaxation method. For this reason, in the fitting, we use the data from 1.5 to 10 K. In this temperature range,

⁽³¹⁾ de Jongh, L. J.; Miedema, A. R. Adv. Phys. 2001, 50, 947.

⁽³²⁾ Okuda, T.; Asamitsu, A.; Tomioka, Y.; Kimura, T.; Taguchi, Y.; Tokura, Y. *Phys. Rev. Lett.* **1998**, *81*, 3203.

 ⁽³³⁾ Fisher, R. A.; Bouquet, F.; Phillips, N. E.; Franck, J. P.; Zhang, G. W.; Gordon, J. E.; Marcenat, C. *Phys. Rev. B* 2001, *64*, 134425.

⁽³⁴⁾ Woodfield, B. F.; Wilson, M. L.; Byers, J. M. Phys. Rev. Lett. 1997, 78, 3201.

Figure 5. (a) C/T vs T^2 curves between 0.4 and 10 K for BiMnO₃ (C_p and C_m) and BiScO₃ (C_p). For BiMnO₃, the C_p/T curves at 0 and 9 T are given. The solid lines give the fits to eq 3 for BiScO₃ and to eq 4 for BiMnO₃; other lines are drawn for the eye. (b) C/T vs T curves between 0.4 and 10 K for BiMnO₃ and BiScO₃. The lines are drawn for the eye. The arrow marks the position of the curvature of the curves.

the data can be measured very accurately by the pulse relaxation method with a PPMS.

Below 10 K, the C_p/T vs T^2 curves of BiCrO₃ and BiScO₃ are analyzed using the expression

$$C_p = C_1 = \beta_1 T^3 + \beta_2 T^5$$
 (3)

The fitted parameters are $\beta_1 = 1.36(3) \times 10^{-4}$ J/mol K⁴ and $\beta_2 = 1.84(4) \times 10^{-6}$ J/mol K⁶ for BiScO₃ and $\beta_1 = 1.40(2) \times 10^{-4}$ J/mol K⁴ and $\beta_2 = 1.37(2) \times 10^{-6}$ J/mol K⁶ for BiCrO₃. The Debye temperature ($\Theta_D = (234N_aNk_B/\beta_1)^{1/3}$, where N_a is the number of atoms per formula unit) of BiCrO₃ and BiScO₃ obtained from the β_1 coefficient is almost the same (about 410 K). Note that a higher order lattice term proportional to T^5 is needed to fit the data in the temperature range up to 10 K (Figure 5a). This term will strongly affect the fitting results of the low-temperature data of BiMnO₃ if one will use the raw C_p data in the fitting procedure instead of the C_m data. The Debye temperature of BiCrO₃ and BiScO₃ is reasonable. For example, in La_{1-x}Sr_xMnO₃ and La_{1-x}Ca_xMnO₃, the Debye temperature was reported to be 360-500 K.^{29,32-34}

Without the reasonable estimation of the C_1 , one could also conclude that there is a large linear term (γ) in the specific heat of BiMnO₃ from the C_p/T vs T^2 curve (Figure 5a). Between 4.5 and 10 K, the C_p/T vs T^2 curve is almost linear and can be well fit by the expression

Figure 6. $C_{\rm m}/T$ vs *T* curve (circles) at zero magnetic field between 1.5 and 10 K for BiMnO₃. The fitting curves by eq 5 with different parameters are given by the lines. The fitting lines are extended below 1.5 K. Fit 4 (not shown) is impossible to distinguish from fit 3 between 1.5 and 10 K on the figure.

with the parameters of $\gamma = 0.025 \ 31(12) \ J \ K^{-2} \ mol^{-1}$ and $\beta_1 = 7.19(2) \times 10^{-4} \ J \ K^{-4} \ mol^{-1}$. However, in this case, the Debye temperature is too low (about 240 K) compared with BiScO₃. Note that large linear terms in the specific heat were found in a number of insulating manganites.^{29,35} However, the detailed explanation for large linear terms has not been put forward in many cases.

The magnetic contribution of a 3D ferromagnet to the specific heat due to spin-waves is usually represented by $B_1T^{3/2}$. However, no simple $B_1T^{3/2}$ term is found in the C_m of BiMnO₃ (Figure 6, fit 1). Therefore, the C_m/T vs *T* curve of BiMnO₃ is analyzed using the general equation

$$C_{\rm m} = B_1 T^{n_1} \exp(-\Delta/k_{\rm B}T) + B_2 T^{n_2}$$
(5)

where Δ is the anisotropy-related spin-wave gap (zero for cubic symmetry)³³ and the second term $B_2T^{n_2}$ reflects some additional contributions to the magnetic specific heat, such as a contribution from spin-glass-like states or the higher terms in series expansions of the magnetic contribution of a 3D ferromagnet.³¹ The fitting results are given in Table 1 and Figure 6. A very good agreement between the experimental and calculated $C_{\rm m}/T$ vs T curves is obtained when we allow to vary n_1 (with $\Delta = 0$ and $B_2 = 0$). However, in this case, the obtained n_1 value of 1.75 does not agree with the simple spin-wave theoretical predictions.³¹ Another rather good fit is obtained with $n_1 = 1.5$ when the second term is given by B_2T^2 . In all the cases, the introduction of the spinwave gap improves the fits. The obtained gap does not exceed 1 K. It should be noted that both C_p/T vs T and C_m/T vs T curves of BiMnO₃ show the clear curvature near 4 K. It is also interesting to note that the $C_{\rm m}/T$ vs T curve is almost linear at the temperature ranges of 1.5-4 and 4-10 K (Figures 5b and 6).

Therefore, the specific heat measurements show the presence of the spin-wave contribution at low temperatures. However, the analysis of the data reveals unconventional behavior of the magnetic specific heat, that is, the absence of a simple term $C_{\rm m} \propto T^{3/2}$. The most reasonable models are

⁽³⁵⁾ Fritsch, V.; Hemberger, J.; Eremin, M. V.; von Nidda, H. A. K.; Lichtenberg, F.; When, R.; Loidl, A. *Phys. Rev. B* 2002, 65, 212405.

Magnetic Properties of BiMnO₃

Table 1. Fitting Parameters of the Magnetic Specific Heat of $BiMnO_3$ by Eq 5 between 1.5 and 10 K

$B_1\left(\mathrm{J}/(\mathrm{mol}\;\mathrm{K}^{n_1+1})\right)$	n_1	$\Delta/k_{\rm B}~({\rm K})$	$B_2 \left(\mathrm{J}/(\mathrm{mol}\ \mathrm{K}^{n_2+1}) \right)$	n_2	R^{a}	fit^b
0.0175(4)	1.5	0	0	0	1.93×10^{-2}	fit 1
0.0220(2)	1.5	1.02(4)	0	0	9.14×10^{-4}	
0.0081(2)	1.5	0	0.00405(8)	$2 (fixed)^c$	2.56×10^{-4}	fit 2
0.0118(4)	1.5	0.46(4)	0.00294(11)	$2 (fixed)^c$	5.07×10^{-5}	fit 4
0.01141(7)	1.758(3)	0	0	0	8.82×10^{-5}	fit 3
0.0126(3)	1.719(10)	0.16(4)	0	0	5.86×10^{-5}	

 ${}^{a}R = \sum_{i=1}^{K} (C_{m}/T(T_{i}) - C_{fit}/T(T_{i}))^{2}/\sum_{i=1}^{K} (C_{m}/T(T_{i}))^{2}$, calculated for the C_{m}/T vs *T* curve, where *K* is the number of experimental points. b See Figure 6. c The least-squares refinement is unstable when n_{2} is varied. Nevertheless, the best fit is obtained for $n_{2} = 2$.

given by fits 2 and 4 (Table 1). These models assume the presence of the conventional ferromagnetic spin waves (with a possible small gap) plus contribution from spin-glass-like states. Additional experiments, such as inelastic neutron scattering, will be needed to clarify the behavior of spin waves in BiMnO₃ and study the dispersion relation.

In conclusion, the properties of multiferroic $BiMnO_3$ were studied in details by dc and ac magnetization, relaxation, and specific heat. The time- and frequency-dependent magnetic properties were observed indicating the presence of spin-glass-like features below the ferromagnetic Curie temperature of 98 K. Specific heat data revealed the presence of ferromagnetic spin waves.

Acknowledgment. We thank Dr. M. Tachibana of NIMS for valuable discussion.

Supporting Information Available: XRD patterns of BiMnO₃, BiCrO₃, and BiScO₃ (Figures S1), the M vs H curves in the vicinity of the origin (Figure S2), and the comparison of the ZFC dc susceptibilities with the ac susceptibilities (Figure S3) (PDF). This material is available free of charge via the Internet at http:// pubs.acs.org.

IC061400B