Inorg. Chem. **2006**, 45, 8859−8861

Syntheses of Highly Fluorinated 1,3,5-Triazapentadienyl Ligands and Their Use in the Isolation of Copper(I)−**Carbonyl and Copper(I)**−**Ethylene Complexes**

H. V. Rasika Dias,* Shreeyukta Singh, and Jaime A. Flores

Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019 Received September 13, 2006

Fully fluorinated triazapentadienyl ligand $[N\{(C_3F_7)C(C_6F_5)N\}_2]^$ and the related $[N{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]^-$ have been synthesized in good yield via a convenient route and used in the isolation of three- and four-coordinate copper(I)−carbon monoxide complexes. They show fairly high v_{CO} values (>2100 cm⁻¹), indicating the presence of electron-poor Cu sites. The copper(I)− ethylene adduct $[N{(C_3F_7)C(C_6F_5)N}_2]Cu(C_2H_4)$, featuring a threecoordinate Cu site, has also been synthesized using $[N{(C_3F_7)C}$ - $(C_6F_5)N$ ₂]CuNCCH₃ and C₂H₄.

Highly fluorinated ligands are of significant interest in metal coordination chemistry because they commonly improve the thermal stability, oxidative resistance, volatility, and fluorocarbon solubility of metal adducts.¹ This paper describes the chemistry of two such ligands of the 1,3,5 triazapentadienyl family. 2^{-8} In particular, we report a convenient route to the synthesis of the first *fully fluorinated* $[N{(C_3F_7)C(C_6F_5)N}_2]$ ⁻ ligand (1) and the related highly fluorinated analogue $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]^-$ (2). These 1,3,5-triazapentadienyl ligands are also closely related to the very popular 1,5-diazapentadienyl (also known as

- (2) Siedle, A. R.; Webb, R. J.; Behr, F. E.; Newmark, R. A.; Weil, D. A.; Erickson, K.; Naujok, R.; Brostrom, M.; Mueller, M.; Chou, S.-H.;
- Young, V. G., Jr. *Inorg. Chem.* **²⁰⁰³**, *⁴²*, 932-934. (3) Siedle, A. R.; Webb, R. J.; Brostrom, M.; Newmark, R. A.; Behr, F. E.; Young, V. G., Jr. *Organometallics* **²⁰⁰⁴**, *²³*, 2281-2286.
- (4) Dias, H. V. R.; Singh, S. *Inorg. Chem*. **²⁰⁰⁴**, *⁴³*, 5786-5788.
- (5) Dias, H. V. R.; Singh, S. *Inorg. Chem*. **²⁰⁰⁴**, *⁴³*, 7396-7402.
- (6) Dias, H. V. R.; Singh, S.; Cundari, T. R. Angew. *Chem., Int. Ed*. **2005**, *⁴⁴*, 4907-4910.
- (7) Dias, H. V. R.; Singh, S. *Dalton Trans*. **²⁰⁰⁶**, 1995-2000.
- (8) Other examples of fluorinated 1,3,5-triazapentadienyl systems: Hursthouse, M. B.; Mazid, M. A.; Robinson, S. D.; Sahajpal, A. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹⁴**, 3615-3620. Bottrill, M.; Goddard, R.; Green, M.; Hughes, R. P.; Lloyd, M. K.; Taylor, S. H.; Woodward, P. *J. Chem. Soc., Dalton Trans.* **¹⁹⁷⁵**, 1150-1155. Aris, D. R.; Barker, J.; Phillips, P. R.; Alcock, N. W.; Wallbridge, M. G. H. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹⁷**, 909-910. Robinson, V.; Taylor, G. E.; Woodward, P.; Bruce, M. I.; Wallis, R. C. *J. Chem. Soc., Dalton Trans.* **¹⁹⁸¹**, 1169-1173. Brown, H. C.; Schuman, P. D. *J. Org. Chem.* **¹⁹⁶³**, *²⁸*, 1122-1227.

10.1021/ic061739y CCC: \$33.50 © 2006 American Chemical Society **Inorganic Chemistry,** Vol. 45, No. 22, 2006 **8859** Published on Web 10/07/2006

 β -diketiminate, 3) ligands.⁹ However, perfluorinated ligands of the latter group have not been reported yet. $10,11$

We also show that polyfluorinated $[N{ (C_3F_7)C(C_6F_5)N}_2]^$ and $[N\{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)N\}_2]$ ⁻ are good ligands for the stabilization of carbon monoxide and ethylene adducts of Cu. Structurally characterized Cu-CO and Cu-C₂H₄ adducts of 1,3,5-triazapentadienyl or 1,5-diazapentadienyl supporting ligands are rare. $[HC{(Me)C(2,6-Me_2C_6H_3)}N_2]$ - $Cu(C_2H_4)^{12}$ and $[N{(C_3F_7)C(Dipp)N}_2]CuCO^4$ are the only such examples in the literature.

- trill, M.; Goddard, R.; Green, M.; Hughes, R. P.; Lloyd, M. K.; Taylor, S. H.; Woodward, P. J. Chem. Soc., Dalton Trans. 1975, 1150-1155. S. H.; Woodward, P. *J. Chem. Soc., Dalton Trans.* **¹⁹⁷⁵**, 1150-1155. Shreider, V. A. *Inorg. Chim. Acta* **¹⁹⁸²**, *⁶⁴*, L101-L103. Sharma, R. K.; Singh, Y.; Rai, A. K. *Main Group Met. Chem.* **²⁰⁰⁰**, *²³*, 777- 780. Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P. P. *Inorg. Chem.* **²⁰⁰²**, *⁴¹*, 3909-3916. Carey, D. T.; Cope-Eatough, E. K.; Vilaplana-Mafe, E.; Mair, F. S.; Pritchard, R. G.; Warren, J. E.; Woods, R. J. Dalton Trans. 2003, 1083-1093. G.; Warren, J. E.; Woods, R. J. *Dalton Trans.* **²⁰⁰³**, 1083-1093. Sharma, R. K.; Sharma, R. K.; Rai, A. K.; Singh, Y. *Main Group Met. Chem*. **²⁰⁰³**, *²⁶*, 59-65. Bernskoetter, W. H.; Lobkovsky, E.; Chirik, P. J. *Organometallics* **²⁰⁰⁵**, *²⁴*, 6250-6259. Hill, M. S.; Hitchcock, P. B.; Pongtavornpinyo, R. *Dalton Trans.* **²⁰⁰⁵**, 273-277. Vidovic, D.; Jones, J. N.; Moore, J. A.; Cowley, A. H. *Z. Anorg. Allg. Chem.* **²⁰⁰⁵**, *⁶³¹*, 2888-2892. Vidovic, D.; Moore, J. A.; Jones, J. N.; Cowley, A. H. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 4566-4567. Tang, L.-M.; Duan, Y.-Q.; Li, X.-F.; Li, Y.-S. *J. Organomet. Chem*. **2006**, *⁶⁹¹*, 2023-2030. Yang, Z.; Zhu, H.; Ma, X.; Chai, J.; Roesky, H. W.; He, C.; Magull, J.; Schmidt, H.-G.; Noltemeyer, M. *Inorg. Chem.* **²⁰⁰⁶**, *⁴⁵*, 1823-1827. Chiong, H. A.; Daugulis, O. *Organometallics* **²⁰⁰⁶**, *²⁵*, 4054-4057.
- (11) For Cu-CO complexes based on fluorinated 1,5-diazapentadienyl
ligands see: Laitar D S : Mathison C J N : Davis W M : Sadighi ligands, see: Laitar, D. S.; Mathison, C. J. N.; Davis, W. M.; Sadighi, J. P. *Inorg. Chem.* **²⁰⁰³**, *⁴²*, 7354-7356.
- (12) Dai, X.; Warren, T. H. *Chem. Commun*. **²⁰⁰¹**, 1998-1999.

^{*} To whom correspondence should be addressed. E-mail: dias@uta.edu. (1) Thrasher, J. S.; Strauss, S. H. *Inorganic Fluorine Chemistry: Toward the 21st Century*; ACS Symposium Series 555; American Chemical Society: Washington, DC, 1994. Fekl, U.; van Eldik, R.; Lovell, S.; Goldberg, K. I. *Organometallics* **²⁰⁰⁰**, *¹⁹*, 3535-3542 and references cited therein.

⁽⁹⁾ Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. *Chem. Re*V*.* **²⁰⁰²**, *¹⁰²*, 3031-3066. (10) Examples of partially fluorinated 1,5-diazapentadienyl systems: Bot-

COMMUNICATION

 $[N{ (C_3F_7)C(C_6F_5)N}_2]$ H was prepared by the reaction of $C_6F_5NH_2$, $C_3F_7CF=NC_4F_9$, and triethylamine in a 2:1:3 molar ratio. It was isolated as a colorless crystalline solid in good yield. It is soluble in solvents such as toluene, tetrahydrofuran (THF), CH_2Cl_2 , and Et_2O and sparingly soluble in hexane. Earlier, we and others reported the synthesis of triazapentadienes such as $[N{ (C_3F_7)C(R)N}_2]H$ (e.g., R = Dipp, Ph) from the reaction of excess primary amines with $C_3F_7CF=$ NC₄F₉.^{2,4,6} However, this route did not give satisfactory results for the triazapentadienes such as $[N\{(C_3F_7)C_7\}].$ $(C_6F_5)N_2$]H. This is perhaps due to the low basicity of $C_6F_5NH_2$. In any event, the new procedure we describe here is more *economical* and better suited for various triazapentadienes involving electron-deficient primary amines. $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]H$ was also synthesized using the newer method involving triethylamine.

Treatment of $[N{ (C_3F_7)C(C_6F_5)N}_2]H$ with Cu₂O in CH₃CN serves as a cheaper and more convenient route to introduce a Cu ion into the ligand system. The resulting $[N{(C_3F_7)C}$ - $(C_6F_5)N_2$]CuNCCH₃ is a useful precursor for various other Cu-containing derivatives. For example, the reaction of $[N{ (C_3F_7)C(C_6F_5)N}_2]$ CuNCCH₃ with carbon monoxide (1) atm) in CH_2Cl_2 leads to $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(CO)$ - $(NCCH₃)$ (Scheme 1). Interestingly, $CH₃CN$ remains bonded to the Cu^I site in the carbonyl adduct, as is evident from the spectroscopic and X-ray crystallographic data (vide infra). $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]Cu(CO)(NCCH_3)$ was also prepared from a similar route, and it also retains CH3CN. In contrast, $[N{ (C_3F_7)C(Dipp)N }_2]CuCO$ was obtained free of CH3CN.4 However, the triazapentadienyl ligand in this adduct is more electron-rich and has sterically demanding substituents on both the 2 and 6 positions of the *N*-aryl groups.

The X-ray structure of $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(CO)$ -(NCCH3) (Figure 1) shows that the Cu center is fourcoordinate and adopts a pseudotetrahedral geometry. The triazapentadienyl ligand binds to the metal center in a κ^2 fashion. The $Cu-C-O$ moiety is essentially linear with an angle of $176.68(16)$ °. The Cu–C distance is 1.8333(17) Å.

Figure 1. Molecular structure of $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(CO)(NCCH_3)$. Selected bond lengths (A) and angles (deg): Cu-C 1.8333(17), Cu-N4 2.0183(14), Cu-N1 2.0232(12), Cu-N3 2.0499(12), O-C 1.124(2); N1- Cu-N3 91.04(5), O-C-Cu 176.68(16).

Scheme 2. Synthesis of $[N{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)}N_2]CuCO$

 $[N{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)}N_2]Cu(CO)(NCCH_3)$ also features a four-coordinate Cu center (see the Supporting Information). The $Cu-C$ distance and $Cu-C-O$ angle are 1.844(4) Å and $177.1(4)^\circ$, respectively.

Three-coordinate $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N }_2]CuCO$ can be synthesized using a different route involving the Li salt $[N{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)}N_2]$ Li, CuOTf, and carbon monoxide (1 atm) in THF (Scheme 2). $[N{(C_3F_7)C(2-F,6-F_1)}]$ $(CF_3)C_6H_3$)N}₂]CuCO crystallizes in the $P2_1/n$ space group with two chemically similar molecules in the asymmetric unit (the relative orientation of the C_3F_7 groups is the only key difference between the two). It features a trigonal-planar Cu site (Figure 2) and a linear Cu - CO moiety as in $[N{ (C_3F_7)C(Dipp)N }_2]CuCO.$

The IR spectra show that the v_{CO} bands of [N $\{(\text{C}_3\text{F}_7)\text{C}_7\}$ $(C_6F_5)N_2$]Cu(CO)(NCCH₃) and [N{(C₃F₇)C(2-F,6-(CF₃)- C_6H_3)N}₂]Cu(CO)(NCCH₃) appear at 2108 and 2119 cm⁻¹, respectively. Three-coordinate $[N{(C_3F_7)C(2-F,6-(CF_3)-}$ $(C_6H_3)N\}$ ₂]CuCO has a much higher v_{CO} at 2128 cm⁻¹. Thus, the CH3CN ligand in these molecules seems to reduce the acidity at the Cu site. However, $v_{\rm CO}$ values of all of these adducts are fairly high and closer to that of the free carbon monoxide (2143 cm^{-1}) , indicating the weakly donating nature of the polyfluorinated triazapentadienyl ligands and the presence of acidic Cu sites with poor Cu \rightarrow CO π backbonding. The v_{CO} data of three-coordinate 1,3,5-triazapentadienyl and 1,5-diazapentadienyl Cu-CO adducts (*albeit* limited) indicate that triazapentadienyl ligands are weaker donors (see the Supporting Information, Table S9).

We have also synthesized a copper (I) -ethylene adduct of the 1,3,5-triazapentadienyl family. Treatment of $[N\{(C_3F_7)C-$

Figure 2. Molecular structure of $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_{2}]CuCO$. Selected bond lengths (Å) and angles (deg) of molecule **¹**: Cu1-C23 1.813(5), Cu1-N3 1.956(3), Cu1-N1 1.962(3); N3-Cu1-N1 95.74(14), $O1-C23-Cu1$ 178.4(4). Selected bond lengths (\AA) and angles (deg) of molecule **²**: Cu2-C46 1.818(5), Cu2-N6 1.952(3), Cu2-N4 1.959(3); N6-Cu2-N4 96.00(14), O2-C46-Cu2 178.3(4).

Figure 3. Molecular structure of $[N{(C_3F_7)C(C_6F_5)}N{_2}]Cu(C_2H_4)$. Selected bond lengths (Å) and angles (deg): Cu-N3 1.946(2), Cu-N1 1.955(2), Cu-C21 2.010(3), Cu-C22 2.018(3), C21-C22 1.364(4); N3-Cu-N1 96.66(9).

 (C_6F_5) N $_2$]CuNCCH₃ with ethylene (1 atm) in CH₂Cl₂ gave the corresponding $Cu-C₂H₄$ complex. The ¹H NMR spec-
trum of $N₄(C₂H₃)C₁(C₄H₃)$ in C.D. shows the trum of $[N{ (C_3F_7)C(C_6F_5)N}_2]Cu(C_2H_4)$ in C_6D_6 shows the ethylene signal at *δ* 3.27, which is significantly upfieldshifted relative to the corresponding peak of free ethylene (δ 5.24).¹³ Related diazapentadienyl system [HC{(CH₃)C- $(2.6-Me_2C_6H_3)N_2$]Cu(C₂H₄) (containing relatively electronrich ligand) displays an ethylene signal at an even more shielded region, δ 2.91.¹² The treatment of [N $\{ (C_3F_7)C_7\}$] $(C_6F_5)N_2$ [Cu(C₂H₄) with excess ethylene leads to the disappearance of the bound ethylene signal, indicating fast exchange with free ethylene on the NMR time scale. The ethylene C signal of $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(C_2H_4)$ in the 13C{¹ H} NMR spectrum is observed at *δ* 86.1. The corresponding peak in free ethylene appears at a much higher frequency (δ 123.5).¹³

The X-ray structure of $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(C_2H_4)$ (Figure 3) shows that the ethylene molecule coordinates to Cu^I in a typical η^2 fashion. The ethylene protons were located on the difference map and refined isotropically. The $C=C$

COMMUNICATION

bond distance of the coordinated ethylene $(1.364(4)$ Å) is identical with that found in $[HC{{(CH_3)C(2,6-Me_2C_6H_3)N}_2}] Cu(C₂H₄)$ [1.365(3) Å]¹² and marginally longer as compared to that of free ethylene [1.313 (exptl) and 1.333 (calcd) Å].^{14,15} The N-Cu distances of $[N{ (C_3F_7)C(C_6F_5)N}_2]$ Cu- (C_2H_4) [1.946(2) and 1.955(2) Å] are much shorter compared to those observed for $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(CO)$ - $(CH₃CN)$. This may be primarily a steric effect because the former has a three-coordinate metal site (vs a four-coordinate site in the latter). In fact, the Cu-N distances of $[N{(C_3F_7)C}$ - $(C_6F_5)N_2$]Cu(C₂H₄) are similar to those seen with threecoordinate $[N{(C_3F_7)C(Dipp)N}_2]CuCO$ and $[N{(C_3F_7)C(2-V_1)T_2}C]$ F_1 ,6-(CF_3) C_6 H₃)N $\{2\}$ CuCO featuring weakly donating ligands.

The stability of these Cu–CO and Cu– C_2H_4 adducts warrants some comment. $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(CO)$ - $(NCCH_3)$, $[N{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]CuCO$, and $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(C_2H_4)$ can be dried under reduced pressure without losing carbon monoxide or ethylene, but $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N }_2]Cu(CO)(NCCH_3)$ loses carbon monoxide somewhat easily under these conditions to give $[N{ (C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]$ CuNCCH₃. The easy loss of a ligand (in this case, carbon monoxide) in the latter compound may be a steric effect of having a bulkier triazapentadienyl ligand. The reason for the retention of CH3CN over carbon monoxide is less clear and may be the result of having a more acidic Cu center. The CH_2Cl_2 *solutions* of the Cu-CO adduct, and to a lesser degree the ethylene adduct, turn green with time when exposed to air. However, *solid* samples of these Cu - CO and Cu - C_2H_4 adducts can be handled in air for short periods without any apparent decomposition.

Overall, we describe the synthesis of two highly fluorinated, weakly donating, 1,3,5-triazapentadienyl ligands and their copper(I)-carbonyl and -ethylene complexes. $[N{C_3F_7}] C(C_6F_5)N_2$]⁻ and $[N{(C_3F_7)C(2-F,6-(CF_3)C_6H_3)N}_2]$ ⁻ do not have C-H bonds near the metal coordination site. Such ligands would be particularly suitable to support reactive metal complexes. Further studies of the coordination chemistry of these fully and partially fluorinated triazapentadienyl ligands and the catalytic applications of their metal adducts are presently underway.

Acknowledgment. This work has been supported by the Robert A. Welch Foundation (Grant Y-1289) and the National Science Foundation (Grant CHE 0314666). We are grateful to 3M for providing us with a sample of $N(C_4F_9)_3$.

Supporting Information Available: X-ray crystallographic data for $[N{(C_3F_7)C(C_6F_5)}N_2]Cu(CO)(CH_3CN)$, $[N{(C_3F_7)C(2-F,6-F_5)}N_2]Cu(CO)(CH_3CN)$ $(CF_3)C_6H_3)N_2$]Cu(CO)(NCCH₃), [N{(C₃F₇)C(2-F,6-(CF₃)C₆H₃)N}₂]-CuCO, and $[N{(C_3F_7)C(C_6F_5)N}_2]Cu(C_2H_4)$ and experimental details for free ligand and Cu complexes. This material is available free of charge via the Internet at http://pubs.acs.org.

IC061739Y

⁽¹³⁾ Dias, H. V. R.; Lu, H.-L.; Kim, H.-J.; Polach, S. A.; Goh, T. K. H. H.; Browning, R. G.; Lovely, C. J. *Organometallics* **²⁰⁰²**, *²¹*, 1466- 1473.

⁽¹⁴⁾ Van Nes, G. J. H.; Vos, A. *Acta Crystallogr., Sect. B* **¹⁹⁷⁹**, *³⁵*, 2593- 601.

⁽¹⁵⁾ Krossing, I.; Reisinger, A. *Angew. Chem., Int. Ed*. **²⁰⁰³**, *⁴²*, 5725- 5728 and references cited therein.