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Efficient X-ray generation of relatively stable Sm2+ centers is
observed in nanocrystalline Sm3+-activated BaFCl, as prepared
by a one-step wet chemical reaction. The conversion efficiency is
≈50 000 times higher than that in microcrystalline BaFCl/Sm3+

prepared at 900 °C. The Sm2+ centers, and hence the radiation
dose, can be directly monitored by the narrow photoexcited 5DJ−
7FJ f−f luminescence lines. The relatively high efficiency of Sm2+

generation appears to be directly linked to the particle size.

X-ray storage phosphors are materials capable of recording
an image created by the absorption of X-ray radiation;
electronic and structural changes occur upon exposure to
ionizing radiation. The mechanism is usually based on the
capture of radiation-generated electrons and holes in traps.
After photostimulation(usually in the red) electron-hole
recombination occurs, yielding visible light (usually in the
blue) proportional to the dose of ionizing radiation.1-5 The
best-known phosphor is BaF(Brx,I1-x)/Eu2+ with a small
fraction (1 - x) of iodide.1 Upon exposure to ionizing
radiation, electron-hole pairs are created. It is thought that
F and Br vacancies act as the electron traps, leading to the
formation of F centers.1-3 Upon excitation of the F centers
at 2.1 or 2.5 eV for the F(Br-) and F(F-) centers, respec-
tively, the electrons recombine with the holes and transfer
excitation energy to the activator, Eu2+, yielding broad 4f65d
f 4f7 emission at about 390 nm. The main commercial
applications of X-ray storage phosphors are in the field of
computed radiography4 because the sensitivity exceeds that
of a conventional scintillator-screen system by at least an
order of magnitude2 and in dosimetry of ionizing radiation.5

Notwithstanding their recent success, currently available
X-ray storage phosphors still suffer from some disadvantages,
including rapid erasure of the information upon exposure to

ambient light, fading as a result of spontaneous or thermally
induced electron-hole recombinations and the limited signal-
to-noise ratio in the readout process.1-5

More importantly, there is a prevailing effort to improve
the resolution and sensitivity of storage phosphors. The latter
is of high importance in preventive health-care measures such
as breast-screening programs, where it is most desirable to
reduce the applied X-ray dose by at least an order of
magnitude.6,7 Higher efficiency storage phosphors, applied
to imaging plates, may enable such a reduction.

We have recently discovered thatnanocrystallineSm3+-
activated BaFCl displays efficient X-ray generation of Sm2+

and hence may have some potential as a directlyphotoex-
citable (photoluminescent) storage phosphor.8

The preparation of nanocrystalline BaFCl/Sm3+ is based
on the reaction of two aqueous solutions. Hydrated barium
chloride, BaCl2·2H2O, and samarium chloride, SmCl3·6H2O
(0.5 mol %), salts were added to water and dissolved under
stirring to prepare a solution with a BaCl2 concentration of
0.4 mol/L. The solution was kept at room temperature (20-
25 °C). Then the same volume of an aqueous solution of
ammonium hydrogen difluoride, NH4F·HF, with a concentra-
tion of 0.2 M was added to the solution under vigorous
stirring. The obtained nanocrystalline precipitate was sepa-
rated from the solution by centrifugation and subsequent
decanting of the nascent solution and then dried at a
temperature of 70°C. The process yields nanocrystalline
powder of the Sm3+-activated BaFCl phosphor with the space
group P4/nmm(D4h

7 ) as verified by powder X-ray diffrac-
tion. There is no reducing agent in the solution, and thus it
is safe to assume that the Sm is introduced into the lattice in
the 3+ oxidation state. However, a large fraction of the Sm3+

ions will remain in the nascent solution, and hence the 0.5%
is a nominalconcentration only.

From powder diffraction, the main crystal grain size of
the phosphor was estimated to be∼150 nm. This is in good
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agreement with size distributions seen in scanning electron
microscopy (SEM) pictures (see Figure 1).

By analyzing SEM pictures, we get an average particle
size of 300× 200 × 70 nm3.

Figure 2 shows the room-temperature excitation and
luminescence spectra of a sample of nanocrystalline BaFCl/
Sm3+ after exposure to∼100 mGy of 8 keV Cu KR radiation.
Both spectra are clearly due to Sm2+ centers: the narrow
emission lines are readily assigned to5DJ f 7FJ transitions
within the f-electron system, and the broader absorption
transitions in the near-UV region are due to 4f6 f 4f55d
excitations. Transitions are labeled with their initial and final
electronic states. We stress here that none of the Sm2+

transitions are present in freshly prepared, nonirradiated
samples (see Figures 3b and 4).

It has been documented before that Sm3+ in BaFCl can
be reduced to Sm2+ by X-rays.9 However, compared with

bulk crystalline BaFCl/Sm3+, the nanoparticles prepared in
this work exhibit a Sm3+ f Sm2+ conversion efficiency that
is many orders of magnitude higher.

Figure 3 compares the efficiency of X-ray generation of
Sm2+ in nanocrystalline BaFCl/Sm3+, as prepared by wet
chemistry described in this work, with that of microcrystal-
line BaFCl/Sm3+, as prepared by sintering of BaCl2, BaF2,
and SmF3 for 6 h at 900°C. The Sm3+ f Sm2+ conversion
efficiency is ca. 50 000 times higher in the nanocrystalline
sample. This significantly higher efficiency may be associ-
ated with a high number of defects in the nanoncrystalline
particles because of the much larger surface-to-volume ratio.
Figure 3 also shows the luminescence spectra of the
unexposed samples, and the lines can be assigned to the4G5/2

f 6H5/2,7/2,9/2,11/2transitions of Sm3+. This confirms that Sm
is incorporated into the lattice in the 3+ oxidation state.

Figure 4 shows the luminescence spectra of the nano-
crystalline BaFCl/Sm3+ before and after X-ray exposure in
the region of the4G5/2 f 6H5/2,7/2 transitions in more de-
tail.

A slight reduction of the intensity of the Sm3+ lines is
observed while a dramatic increase of the Sm2+ lines occurs.
This behavior can be rationalized by the fact that at 401 nm
(as well as at 415 nm) the Sm2+ ions are excited via a parity-
allowed f-d transition whereas the Sm3+ ions are excited
by a parity-forbidden f-f transition. Hence, the intensities
are not a reflection of the concentrations of the two oxidation
states, and only a fraction of the Sm3+ centers yields stable
Sm2+ centers upon exposure to X-rays. Moreover, it is likely
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Figure 1. SEM picture of the nanocrystalline BaFCl/Sm3+ X-ray storage
phosphor as prepared by the method described in the text.

Figure 2. Room-temperature excitation and luminescence spectra of nano-
crystalline BaFCl/Sm3+ after exposure to∼100 mGy of 8 keV Cu KR
radiation. Initial and final electronic terms for the Sm2+-based transitions
are indicated. The excitation spectrum was measured by monitoring the
luminescence line at 688 nm. The luminescence spectrum was excited at
420 nm. Spectra were measured on a Horiba Jobin-Yvon Spex Fluoromax-3
fluorometer.

Figure 3. X-ray responses of (a) sintered microcrystalline BaFCl/Sm3+

(0.5 mol %) and (b) nanocrystalline BaFCl/Sm3+ (nominal 0.5 mol %) as
prepared by wet chemistry. The dashed (401( 2 nm excitation) and solid
(415 ( 2 nm excitation) lines show the luminescence spectra before and
after irradiation. Samples were exposed in a powder X-ray diffractometer
(40 kV, 25 mA, Cu anode) for (a) 63 600 s and (b) 5 s. The Sm3+ transitions
are assigned in the upper panel.
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that some of the Sm3+ emission is due to impurities that do
not undergo X-ray reduction.

Figure 5 shows the dependence of the intensity of the5D0

f 7F0 emission line on cumulative exposure to 44 keV Tb
γ-ray radiation. The luminescence was excited with 0.5 mW
of 473 nm light from a diode-pumped solid-state laser. This
figure illustrates the sensitivity of the nanocrystalline BaFCl/
Sm3+ phosphor and the near linearity for radiation exposures
up to 400µGy.

The X-ray-induced Sm2+ traps are relatively stable and
are not erased under ambient light conditions or under
irradiation with low-powered lasers. However, exposure to
>20 W/cm2 of 488 nm Ar+ laser light results in relatively
rapid (reversible) erasure. For example, a 10 min exposure
of a X-ray-saturated sample to 30 W/cm2 of 488 nm Ar+

laser light results in erasure of 82% of the Sm2+ centers.
After the erasure, the material retains its sensitivity to X-rays.
We note here that the mechanism of Sm2+ photoionization
in crystals of BaFCl/Sm2+ has been studied previously by
hole-burning spectroscopy.10 The present storage phosphor
is readout bydirect photoexcitationin contrast tophoto-
stimulation, as is the case for currently applied phosphors.

This enables multiple readouts of the latent information
because the Sm2+ traps are relatively stable, potentially
yielding better signal-to-noise ratios in computed radiogra-
phy. We note here that the readout technology for the present
storage phosphor has to be adapted to the relatively long
excited-state lifetime of the5D0 state (ca. 2 ms), and the
conventionally used “flying spot” method is inadequate.
However, we have successfully conducted preliminary imag-
ing experiments, using standard oral examination doses.

The present phosphor can be used in personal radiation
monitoring,5 allowing a nondestructive readout of the ac-
cumulated dose of ionizing radiation (see Figure 5). Opti-
mization of the particle size and its distribution may result
in even higher quantum efficiencies.
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Figure 4. Comparison of the4G5/2-6H5/2,7/2luminescence spectra excited
at 401 nm with a bandpass of 4 nm of nanocrystalline BaFCl/Sm3+ as
prepared by wet chemistry before (dashed line) and after 3 min of exposure
(solid line) to X-ray (40 kV, 25 mA Cu anode) radiation.

Figure 5. Dependence of the luminescence intensity of the5D0-7F0 Sm2+

f-f transition as a function of cumulative irradiation of nanocrystalline
BaFCl/Sm3+ by 44 keV Tbγ-ray radiation. The luminescence was excited
by 0.5 mW of 473 nm light of a diode-pumped solid-state laser (spot size
≈250 µm).
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