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Two new coordination polymers {[Ln,(PDA)sCo3(H,0)s]* XH,0} » [Ln
= Nd, x =7 (1); Ln = Gd, x = 3.25 (2); H,PDA = pyridine-
2,6-dicarboxylic acid] have been prepared under hydrothermal
conditions with Ln(NO3)3-6H,0, CoO, and H,PDA in a molar ratio
of 2:3:6. X-ray crystallographic analyses reveal that they crystallize
in the hexagonal group P6/mcc and exhibit a nanotubular 3D
framework. The adsorption experiment shows that 1 and 2 can
adsorb radicals, which is proven by electron paramagnetic
resonance spectra with the characteristic bands of the radicals at
g = 2.006 and 2.005, respectively.

In recent years, open metabrganic frameworks (MOFs)

have been widely studied and have received much attention

for many practical applications ranging from ion exchange,

catalysis, adsorption, separation, and sensor to optoelectron
ics! Consequently, many chemical researchers attempt to
use various methods to obtain MOFs, and then the synthetic

method of MOFs is rapidly being advanced from the
accidental to rational stagegaining directed frameworks

such as porous frameworks. Up to now, a great many porous
coordination polymers have been synthesized and character-
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ized, including some 4f3d heterometallic series® How-
ever, porous coordination polymers containing both lan-
thanide (4f) and transition (3d) metals are mostly focused
on the lanthanidecopper (Lr-Cu) systenf,while those with
lanthanide-cobalt (Ln—Co) metals are rare.

In particular, based on their porous size and high surface
area, porous coordination polymers may adsorb some
molecules in the pores. Porous materials such as Werner
complexed, Prussian blue compounéisnd Hofmann clath-
rates and their derivativé¢hat can adsorb small molecules
are widely known. In the past decade, there are many
examples of porous coordination polymers that absorb small
molecules, such asHN,, O, CH;, CH;OH, and CQ.%°
The research works with adsorption of larger molecules also
have some reports, such as butane, toluene, styrene, and the
dyes Astrazon Orange R, Nile Red, and Reichardt's'dye.
However, to the best of our knowledge, there is no report of
porous coordination polymers to adsorb radical molecules.
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Scheme 1 Molecular Structure of NIT4Py
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In previous work, our grOL_jp have reported _asef”es ofLn Figure 1. Left: View of a [001] projection of the LrCo series
Mn, Ln—Cr, and Ln-VO mixed-metal coordination poly-  accentuating the column channels. Right: 3D framework with nanosized
mers with 1D, 2D, and 3D frameworRs? In this contribu- channels. Color code: green, Ln; yellow, Co; red, O; blue, N; black, C.

tion, two new Li'—Cd' porous coordination polymers i
({[LN2(PDA)C0s(H20)¢]-XH:0}  [Ln = Nd, x = 7 (1); Ln four carboxylate O atoms at the equatorial plane and two
= Gd, x = 3.25 @)]) were obtained t;y hydroth’ermal water molecules at the apical sites, which form an elongated

synthesis that were structurally characterized by single-crystal0¢tahedral geometry. The fact that each carboxylate group
X-ray diffraction (XRD)!3 The adsorption properties df has one O atom coordinated to 'Cions means that each

and2 are investigated and indicate that they adsorb radical LN" 10N is surrounded by six Cdons in its vicinity, while
NIT4Py [NIT4Py= 2-(4-pyridyl)-4,4,5,5-tetramethylimi- each Cd ion has four LH' ions as nearest neighbors, which
dazoline-1-oxyl-3-oxide; Scheme 1] proven by electron confirms the Lr-Co (2:3) molar relationship. As a result of
paramagnetic resonance (EPR) spectra. this connectivity pattern, a 2D planar honeycomb structure
The X-ray crystallography reveals that and 2 are parallel to (001) is formed with Ln polyhedra. The layers

isomorphous and crystallize in the hexagonal grBfmcc are connected via Coions, each of which bonds to four
The molecular motifs of two compounds show extreme Carboylate O atoms (two from above and two from below),

similarity with a slight difference in the number of lattice 2nd then the 2D structure further develops into a 3D
water molecules. Boti and 2 possess a nanoporous 3D framework structure with columnar channels (Figure 1). The
structure with columnar channels. cross section of the channel is formed by six IkN©

The crystal structures are constructed by two building pollyhedra and six Cofpolyhedra in which the L and
blocks, LnNOs and CoQ (Figure S1 in the Supporting Cd' ions are arra)_/ed alter_nately and cqnnected through
Information). Each LH ion is nine-coordinated by three PDA O ~C—O bridges (Figure S2 in the Supporting Information).

anions, and each PDA anion coordinates to 4 lam through The diameters of the hexagonal channels (defined as the
one N atom and two individual carboxylate O atoms. The distance between LnlA and LnlD; Figure ES in the Sup-
coordination geometry of a I'hion conforms closely to a  Porting Information) are 17.82 and 17.57 A férand 2,

tricapped trigonal prism. The other carboxylate O atoms r€SPectively. _ _
coordinate to Cbions. Each Cbion is six-coordinated by The results from thermogravemetric analysis (TGA)Lof
show two steps of weight loss, while thoseZ$how three
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for all data. Direct methods witBHELXS-97and refinement offr 2 Figure ZA’B_' The spectrum df shows a hyperflne'spllttmg
using SHELXL-97 pattern, which may have resulted from the coupling of'Nd
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The band of radical
at g =2.006
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Figure 2. EPR spectra ol (A) and 1a (B).

the band of radical
at g =2.005
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Figure 3. EPR spectra o (A) and 2a (B).

and Cd ions (Figure 2A). The orbital angular momentums
of Nd" and Cd ions are complex and prevent a simple and
explicit analysis. The difference of two spectra is that there
is a band in Figure 2B a = 2.006 that is the characteristic
band of the radical, indicative df adsorbing NIT4Py.

For confirmation of the adsorption property observed in
1, we also further investigate the adsorption ofFor a
magnetically uncoupled ddion (4f", S=7/,), a central line
with g ~ 2 (transition+ /, < —1/,) and three lateral lines
at both sides of the central line (transitian 7/, < 45/,
+5/, < 3/, £3/, < £1/,) are expected However, it is
obvious that the EPR spectrum ®floes not arise from the
Gd" ion, as shown in some papers associated with tHé Gd
ion, which is always centered gt~ 2.5 Additionally, the
EPR spectrum of the Cdon is difficult to observe at room
temperature. The EPR spectrum2fnay result from the
coupling of Gd' and Cd ions. Compared with that df,
the hyperfine splitting pattern is not observed in thapf
which is due to the quenching orbital angular momentum of
the Gd' ion (4, L = 0). Figure 3A shows the EPR spectrum
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of 2. The EPR spectrum ofa (2 adsorbed NIT4Py) is
displayed in Figure 3B, and the characteristic band of the
radical is alg = 2.005. It is certain that and2 could adsorb
NIT4Py as proven by EPR spectra. The characteristic band
of the free radical is ag = 2.008 (Figure S6 in the
Supporting Information) and has no significant difference
from that of 1a and 2a.

In a comparison with adsorption of other (nonradical)
organic compounds, we choose methanol as the guest
molecules to do the adsorption experiment. The TGA
(Figure S7 in the Supporting Information) and elemental
analysis reveal that compourid adsorbed five methanol
molecules after the loss of all of the uncoordinated water
molecules per NgCos; unit. We tried to determine the amount
of NIT4Py adsorbed, but the elemental analysis, mass
spectrometry, and TGA measurements did not give satisfac-
tory results, which implied that the adsorbed amount of
NIT4Py was very small.

The magnetic susceptibilities as a function of temperature
were measured fod and 2 in the range of 2300 K
(Figure S8 in the Supporting Information). TheT values
are equal to 12.64 and 24.58 tnK mol™! at room
temperature, respectively, which are higher than the theoreti-
cal values [8.84%) and 21.32 2) cm?® K mol~1] for three
spin-only isolated Cbions and two L#' ions in the ground
state forl (*ler, g = #11) and2 (852, g = 2), indicating a
typical contribution of the orbital momentum for tH&,
ground state of Cbions® The coupling interactions between
Nd and Co, and between Gd and Co, are not explicitly
characterized because of the strong sfirbit coupling of
Nd and Co ions.

In summary, two new 4f3d porous coordination poly-
mers with columnar channels have been synthesized. TGA
shows that these coordination polymers do not decompose
until 400 °C and the crystal lattice remains intact after the
guest water molecules are removed, which is further con-
firmed by PXRD. Most importantly,l and 2 can adsorb
radical NIT4Py, and EPR spectra exhibit the characteristic
band of the radical. The novel adsorption properties of these
polymers indicate the promising applications in storage and
adsorption for large molecules.
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